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Preface

When in 1986 Yves Kodratoff started the European Working Session on Lear-
ning at Orsay, France, it could not be foreseen that the conference would grow
year by year and become the premier European conference of the field, attrac-
ting submissions from all over the world. The first European Conference on
Principles of Data Mining and Knowledge Discovery was organized by Henryk
Jan Komorowski and Jan Zytkow in 1997 in Trondheim, Norway. Since 2001 the
two conferences have been collocated, offering participants from both areas the
opportunity to listen to each other’s talks. This year, the integration has moved
even further. Instead of first splitting the field according to ECML or PKDD
topics, we flattened the structure of the field to a single set of topics. For each of
the topics, experts were invited to the Program Committee. Submitted papers
were gathered into one collection and characterized according to their topics.
The reviewers were then asked to bid on all papers, regardless of the conference.
This allowed us to allocate papers more precisely.

The hierarchical reviewing process as introduced in 2005 was continued. We
nominated 30 Area Chairs, each supervising the reviews and discussions of about
17 papers. In addition, 307 reviewers completed the Program Committee. Many
thanks to all of them! It was a considerable effort for the reviewers to carefully
review the papers, some providing us with additional reviews even at short no-
tice. Based on their reviews and internal discussions, which were concluded by
the recommendations of the Area Chairs, we could manage the final selection for
the program. We received 521 submissions, of which 100 were presented at the
conferences, giving us an acceptance rate of 20%. This high selectivity means,
on the one hand, that some good papers could not make it into the conference
program. On the other hand, it supports the traditionally high standards of the
joint conference. We thank the authors from all over the world for submitting
their contributions!

Following the tradition, the first and the last day of the joint conference were
dedicated to workshops and tutorials. ECML PKDD 2008 offered 8 tutorials and
11 workshops. We thank the Workshop and Tutorial Chairs Siegfried Nijssen and
Arno Siebes for their excellent selection. The discovery challenge is also a tradi-
tion of ECML PKDD that we continued. We are grateful to Andreas Hotho and
his colleagues from the Bibsonomy project for organizing the discovery challenge
of this year. The results were presented at the Web 2.0 Mining Workshop.

One of the pleasures of chairing a conference is the opportunity to invite
colleagues whose work we esteem highly. We are grateful to Françoise Fogelman
Soulié (KXEN) for opening the industrial track, Yoav Freund (University of
California, San Diego), Anil K. Jain (Michigan State University), Ray Mooney
(University of Texas at Austin), and Raghu Ramakrishnan (Yahoo! Research)
for accepting our invitation to present recent work at the conference.



VI Preface

Some novelties were introduced to the joint conference this year.
First, there was no distinction into long and short papers. Instead, paper

length was raised to 16 pages for all submissions.
Second, 14 papers were selected for publication in Springer Journals

Seven papers were published in the Machine Learning Journal 72:3 (September
2008), and 7 papers were published in the Data Mining and Knowledge Discovery
Journal 17:1 (August 2008). This LNAI volume includes the abstracts of these
papers, each containing a reference to the respective full journal contribution.
At the conference, participants received the proceedings, the tutorial notes and
workshop proceedings on a USB memory stick.

Third, all papers were additionally allowed to be presented as posters. Since
the number of participants has become larger, questions and discussions after
a talk are no longer possible for all those interested. Introducing poster pre-
sentations for all accepted papers allows for more detailed discussions. Hence,
we did not reserve this opportunity for a minority of papers and it was not an
alternative to an oral presentation.

Fourth, a special demonstration session was held that is intended to be a
forum for showcasing the state of the art in machine learning and knowledge
discovery software. The focus lies on innovative prototype implementations in
machine learning and data analysis. The demo descriptions are included in the
proceedings. We thank Christian Borgelt for reviewing the submitted demos.
Finally, for the first time, the conference took place in Belgium!

September 2008 Walter Daelemans
Bart Goethals

Katharina Morik
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Learning Decision Trees for Unbalanced Data . . . . . . . . . . . . . . . . . . . . . . . . 241
David A. Cieslak and Nitesh V. Chawla

Credal Model Averaging: An Extension of Bayesian Model Averaging
to Imprecise Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Giorgio Corani and Marco Zaffalon

A Fast Method for Training Linear SVM in the Primal . . . . . . . . . . . . . . . 272
Trinh-Minh-Tri Do and Thierry Artières

On the Equivalence of the SMO and MDM Algorithms for SVM
Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
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Jesús Ariel Carrasco-Ochoa, and José Fco. Mart́ınez-Trinidad
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Abstract. In most databases, it is possible to identify small partitions
of the data where the observed distribution is notably different from that
of the database as a whole. In classical subgroup discovery, one considers
the distribution of a single nominal attribute, and exceptional subgroups
show a surprising increase in the occurrence of one of its values. In this
paper, we introduce Exceptional Model Mining (EMM), a framework
that allows for more complicated target concepts. Rather than finding
subgroups based on the distribution of a single target attribute, EMM
finds subgroups where a model fitted to that subgroup is somehow excep-
tional. We discuss regression as well as classification models, and define
quality measures that determine how exceptional a given model on a
subgroup is. Our framework is general enough to be applied to many
types of models, even from other paradigms such as association analysis
and graphical modeling.

1 Introduction

By and large, subgroup discovery has been concerned with finding regions in
the input space where the distribution of a single target variable is substantially
different from its distribution in the whole database [3,4]. We propose to extend
this idea to targets that are models of some sort, rather than just single variables.
Hence, in a very general sense, we want to discover subgroups where a model
fitted to the subgroup is substantially different from that same model fitted to
the entire database.

As an illustrative example, consider the simple linear regression model

Pi = a + bSi + ei

where P is the sales price of a house, S the lot size (measured, say, in square
meters), and e the random error term (see Fig. 1 and Section 4 for an actual
dataset containing such data). If we think the location of the house might make
a difference for the price per square meter, we could consider fitting the same
model to the subgroup of houses on a desirable location:

Pi = aD + bDSi + ei,
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Fig. 1. Scatter plot of lot size and sales price for the housing data

where the subscript D indicates we are only considering houses on a desirable
location. To test whether the slope for desirable locations is significantly differ-
ent, we could perform a statistical test of H0 : b = bD, or more conveniently,
H0 : bD = bD̄, where D̄ denotes the complement of D.

In the above example, we came up ourselves with the idea that houses on a
desirable location might have a different slope in the regression model. The main
idea presented in this paper is that we can find such groups automatically by
using the subgroup discovery framework. Hence, the subgroups are not limited
to simple conditions based on a single variable. Their description may involve
conjunctions of conditions, and in case of multi-relational data, existential quan-
tification and aggregation as well. In the general case of simple linear regression,
we could be looking for subgroups G where the slope bG in

yi = aG + bGxi + ei,

is substantially different from the slope bḠ. The search process only involves the
subgroups; the variables y and x are assumed to be determined by the question
of the user, that is, they are fixed.

We have stated that the objective is to find subgroups where a model fitted
to the subgroup is substantially different from that same model fitted to the
entire database. This statement is deliberately general: we can use different types
of models in this scheme, and for each type of model we can consider several
measures of difference. In this paper we describe a number of model classes and
quality measures that can be useful. All these methods have been implemented
in the Multi-Relational Data Mining system Safarii [5].

This paper is organized as follows. In Section 2, we introduce some notation that
is used throughout the paper, and define the subgroup discovery and exceptional
model mining framework. In Section 3, we give examples of three basic types of
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models for exceptional model mining: correlation, regression and classification.
We also propose appropriate quality measures for the types of models discussed.
In Section 4, we present the results of exceptional model mining applied to two
real-life datasets. Finally, we draw conclusions in Section 5.

2 Exceptional Model Mining

We assume that the database d is a bag of labelled objects i ∈ D, referred to
as individuals, taken from a domain D. We refer to the size of the database as
N = |d|. At this point, we do not fix the nature of individuals, be it propositional,
relational, or graphical, etc. However, each description of an individual includes
a number of attributes x1, ..., xk and optionally an output attribute y. These
attributes are used in fitting models to subgroups of the data. In regular subgroup
discovery, only the y attribute is used, which is typically binary.

We make no assumptions about the syntax of the pattern language, and treat
a pattern simply as a function p : D → {0, 1}. We will say that a pattern p
covers an individual i iff p(i) = 1.

Definition 1 (Subgroup). A subgroup corresponding to a pattern p is the set
of individuals Gp ⊆ d that are covered by p: Gp = {i ∈ d|p(i) = 1}.

Definition 2 (Complement). The complement of a subgroup Gp is the set of
individuals Ḡp ⊆ d that are not covered by p: Ḡp = d\Gp.

When clear from the context, we will omit the p from now on, and simply refer
to a subgroup and its complement as G and Ḡ. We use n and n̄ to denote the size
of G and Ḡ, respectively. In order to judge the quality of candidate patterns in a
given database, a quality measure needs to be defined. This measure determines
for each pattern in a pattern language P how interesting (exceptional) a model
induced on the associated subgroup is.

Definition 3 (Quality Measure). A quality measure for a pattern p is a
function ϕd : P → IR that computes a unique numeric value for a pattern p,
given a database d.

Subgroup discovery [3] is a data mining framework aimed at discovering patterns
that satisfy a number of user-specified inductive constraints. These constraints
typically include an interestingness constraint ϕ(p) ≥ t, as well as a minimum
support threshold n ≥ minsup that guarantees the relative frequency of the
subgroups in the database. Further constraints may involve properties such as the
complexity of the pattern p. In most cases, a subgroup discovery algorithm will
traverse a search lattice of candidate patterns in a top-down, general-to-specific
fashion. The structure of the lattice is determined by a refinement operator
ρ : P → 2P , a syntactic operation which determines how simple patterns can be
extended into more complex ones by atomic additions. In our application (and
most others), the refinement operator is assumed to be a specialisation operator :
∀q ∈ ρ(p) : p � q (p is more general than q).
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The actual search strategy used to consider candidates is a parameter of the
algorithm. We have chosen the beam search strategy [13], because it nicely bal-
ances the benefits of a greedy method with the implicit parallel search resulting
from the beam. Beam search effectively performs a level-wise search that is
guided by the quality measure ϕ. On each level, the best-ranking w patterns are
refined to form the candidates for the next level. This means that although the
search will be targeted, it is less likely to get stuck in a local optimum, because
at each level alternatives are being considered. The search is further bounded by
complexity constraints and the minsup constraint. The end-result is a ranked
list of patterns (subgroups) that satisfy the inductive constraints.

In the case of regular subgroup discovery, with only a single discrete target
variable, the quality measure of choice is typically a measure for how different the
distribution over the target variable is, compared to that of the whole database
(or in fact to that of the complement). As such an unusual distribution is eas-
ily produced in small fractions of the database, the deviation is often weighed
with the size of the subgroup: a pattern is interesting if it is both exceptional
and frequent. Well-known examples of quality measures for binary targets are
frequency, confidence, χ2, and novelty.

The subject of this paper, exceptional model mining (EMM), can now be
viewed as an extension of the subgroup discovery framework. The essential dif-
ference with standard subgroup discovery is the use of more complex target con-
cepts than the regular single attribute. Our targets are models of some sort, and
within each subgroup considered, a model is induced on the attributes x1, ..., xk,
and optionally y. We will define quality measures that capture how exceptional
the model within the subgroup is in relation to the model induced on its comple-
ment. In the next section, we present a number of model types, and propose one
or more quality measures for each. When only the subgroup itself is considered,
the quality measures tend to focus on the accuracy of the model, such as the
fit of a regression line, or the predictive accuracy of a classifier. If the quality
measure captures the difference between the subgroup and its complement, it is
typically based on a comparison between more structural properties of the two
models, such as the slope of the regression lines, or the make-up of the classifiers
(e.g. size, attributes used).

Example 1. Consider again the housing dataset (Fig. 1). Individuals (houses)
are described by a number of attributes such as the number of bathrooms or
whether the house is located at a desirable location. An example of a pattern
(and associated subgroup G) would be:

p : nbath ≥ 2 ∧ drive = 1

which covers 128 houses (about 23% of the data). Its complement (which is often
only considered implicitly) is

p̄ : ¬nbath ≥ 2 ∨ ¬drive = 1

The typical refinement operator will add a single condition on any of the available
attributes to the conjunction. In this example, target models are defined over the
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two attributes x = lot size and y = sales price. Note that these two attributes
are therefore not allowed to appear in the subgroup definitions. One possibility
is to perform the linear regression of y on x. As a quality measure ϕd, we could
consider the absolute difference in slope between the two regression lines fitted
to G and Ḡ. In Section 3.2, we propose a more sophisticated quality measure for
the difference in slope, that implicitly takes into account the supports n and n̄,
and thus the significance of the finding.

3 Model Classes

In this section, we discuss simple examples of three classes of models, and sug-
gest quality measures for them. As an example of a model without an output
attribute, we consider the correlation between two numeric variables. We discuss
linear regression for models with a numeric output attribute, and two simple
classifiers for models with discrete output attributes.

3.1 Correlation Models

As an example of a model without an output attribute, we consider two numeric
variables x1 and x2, and their linear association as measured by the correlation
coefficient ρ. We estimate ρ by the sample correlation coefficient r:

r =
∑

(xi
1 − x̄1)(xi

2 − x̄2)√∑
(xi

1 − x̄1)2
∑

(xi
2 − x̄2)2

where xi denotes the ith observation on x, and x̄ denotes its mean.

Absolute Difference between Correlations (ϕabs). A logical quality mea-
sure is to take the absolute difference of the correlation in the subgroup G and
its complement Ḡ, that is

ϕabs(p) = |rG − rḠ|
The disadvantage of this measure is that it does not take into account the size
of the groups, and hence does not do anything to prevent overfitting. Intuitively,
subgroups with higher support should be preferred.

Entropy (ϕent). As an improvement of ϕabs, the following quality function
weighs the absolute difference between the correlations with the entropy of the
split between the subgroup and its complement. The entropy captures the infor-
mation content of such a split, and favours balanced splits (1 bit of information
for a 50/50 split) over skewed splits (0 bits for the extreme case of either sub-
group or complement being empty). The entropy function H(p) is defined (in
this context) as:

H(p) = −n/N lg n/N − n̄/N lg n̄/N

The quality measure ϕent is now defined as:

ϕent(p) = H(p) · |rG − rḠ|
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Significance of Correlation Difference (ϕscd). A more statistically oriented
approach to prevent overfitting is to perform a hypothesis test on the difference
between the correlation in the subgroup and its complement. Let ρp and ρp̄

denote the population coefficients of correlation for p and p̄, respectively, and let
rG and rḠ denote their sample estimates. The test to be considered is

H0 : ρp = ρp̄ against Ha : ρp 
= ρp̄

We would like to use the observed significance (p-value) of this test as a quality
measure, but the problem is that the sampling distribution of the sample corre-
lation coefficient is not known in general. If x1 and x2 follow a bivariate normal
distribution, then application of the Fisher z transformation

z′ =
1
2

ln
(

1 + r

1 − r

)

makes the sampling distribution of z′ approximately normal [11]. Its standard
error is given by

1√
m − 3

where m is the size of the sample. As a consequence

z∗ =
z′ − z̄′

√
1

n−3 + 1
n̄−3

approximately follows a standard normal distribution under H0. Here z′ and
z̄′ are the z-scores obtained through the Fisher z transformation for G and Ḡ,
respectively. If both n and n̄ are greater than 25, then the normal approxima-
tion is quite accurate, and can safely be used to compute the p-values. Because
we have to introduce the normality assumption to be able to compute the p-
values, they should be viewed as a heuristic measure. Transformation of the
original data (for example, taking their logarithm) may make the normality as-
sumption more reasonable. As a quality measure we take 1 minus the computed
p-value so that ϕscd ∈ [0, 1], and higher values indicate a more interesting sub-
group.

3.2 Regression Model

In this section, we discuss some possibilities of EMM with regression models.
For ease of exposition, we only consider the linear regression model

yi = a + bxi + ei, (1)

but this is in no way essential to the methods we discuss.
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Significance of Slope Difference (ϕssd). Consider model (1) fitted to a sub-
group G and its complement Ḡ. Of course, there is a choice of distance measures
between the fitted models. We propose to look at the difference in the slope b be-
tween the two models, because this parameter is usually of primary interest when
fitting a regression model: it indicates the change in the expected value of y, when
x increases with one unit. Another possibility would be to look at the intercept a,
if it has a sensible interpretation in the application concerned. Like with the cor-
relation coefficient, we use significance testing to measure the distance between
the fitted models. Let bp be the slope for the regression function of p and bp̄ the
slope for the regression function of p̄. The hypothesis to be tested is

H0 : bp = bp̄ against Ha : bp 
= bp̄

We use the least squares estimate

b̂ =
∑

(xi − x̄)(yi − ȳ)
∑

(xi − x̄)2

for the slope b. An unbiased estimator for the variance of b̂ is given by

s2 =
∑

ê2
i

(m − 2)
∑

(xi − x̄)2

where êi is the regression residual for individual i, and m is the sample size.
Finally, we define our test statistic

t′ =
b̂G − b̂Ḡ√
s2

G + s2
Ḡ

Although t′ does not have a t distribution, its distribution can be approximated
quite well by one, with degrees of freedom given by (cf. [10]):

df =

(
s2

G + s2
Ḡ

)2

s4
G

n−2 +
s4

Ḡ

n̄−2

(2)

Our quality measure ϕssd ∈ [0, 1] is once again defined as one minus the p-value
computed on the basis of a t distribution with degrees of freedom given in (2).
If n + n̄ ≥ 40 the t-statistic is quite accurate, so we should be confident to use
it unless we are analysing a very small dataset.

3.3 Classification Models

In the case of classification, we are dealing with models for which the output
attribute y is discrete. In general, the attributes x1, ..., xk can be of any type
(binary, nominal, numeric, etc). Furthermore, our EMM framework allows for
any classification method, as long as some quality measure can be defined in order
to judge the models induced. Although we allow arbitrarily complex methods,
such as decision trees, support vector machines or even ensembles of classifiers,
we only consider two relatively simple classifiers here, for reasons of simplicity
and efficiency.
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Logistic Regression. Analogous to the linear regression case, we consider the
logistic regression model

logit(P (yi = 1|xi)) = ln
(

P (yi = 1|xi)
P (yi = 0|xi)

)

= a + b · xi,

where y ∈ {0, 1} is a binary class label. The coefficient b tells us something about
the effect of x on the probability that y occurs, and hence may be of interest to
subject area experts. A positive value for b indicates that an increase in x leads
to an increase of P (y = 1|x) and vice versa. The strength of influence can be
quantified in terms of the change in the odds of y = 1 when x increases with,
say, one unit.

To judge whether the effect of x is substantially different in a particular sub-
group Gp, we fit the model

logit(P (yi = 1|xi)) = a + b · p(i) + c · xi + d · (p(i) · xi). (3)

Note that

logit(P (yi = 1|xi)) =
{

(a + b) + (c + d) · xi if p(i) = 1
a + c · xi if p(i) = 0

Hence, we allow both the slope and the intercept to be different in the subgroup
and its complement. As a quality measure, we propose to use one minus the p-
value of a test on d = 0 against a two-sided alternative in the model of equation
(3). This is a standard test in the literature on logistic regression [11]. We refer
to this quality measure as ϕsed.

DTM Classifier. The second classifier considered is the Decision Table Ma-
jority (DTM) classifier [7,6], also known as a simple decision table. The idea
behind this classifier is to compute the relative frequencies of the y values for
each possible combination of values for x1, . . . , xk. For combinations that do not
appear in the dataset, the relative frequency estimates are based on that of the
whole dataset. The predicted y value for a new individual is simply the one with
the highest probability estimate for the given combination of input values.

Example 2. As an example of a DTM classifier, consider a hypothetical dataset
of 100 people applying for a mortgage. The dataset contains two attributes de-
scribing the age (divided into three suitable categories) and marital status of
the applicant. A third attribute indicates whether the application was success-
ful, and is used as the output. Out of the 100 applications, 61 were successful.
The following decision table lists the estimated probabilities of success for each
combination of age and married?. The support for each combination is indicated
between brackets.

married? = ‘no’ married? = ‘yes’
age = ‘low’ 0.25 (20) 0.61 (0)
age = ‘medium’ 0.4 (15) 0.686 (35)
age = ‘high’ 0.733 (15) 1.0 (15)
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As this table shows, the combination married? = ‘yes’∧age = ‘low’ does not
appear in this particular dataset, and hence the probability estimate is based
on the complete dataset (0.61). This classifier predicts a positive outcome in all
cases except when married? = ‘no’ and age is either ‘low’ or ’medium’.

For this instance of the classification model we discuss two different quality
measures. The BDEU (Bayesian Dirichlet equivalent uniform) score, which is a
measure for the performance of the DTM classifier on G, and the Hellinger dis-
tance, which assigns a value to the distance between the conditional probabilities
estimated on G and Ḡ.

BDeu Score (ϕBDeu). The BDeu score ϕBDeu is a measure from Bayesian
theory [2] and is used to estimate the performance of a classifier on a subgroup,
with a penalty for small contingencies that may lead to overfitting. Note that
this measure ignores how the classifier performs on the complement. It merely
captures how ‘predictable’ a particular subgroup is.

The BDeu score is defined as
∏

x1,...,xk

Γ (α/q)
Γ (α/q + n(x1, ..., xk))

∏

y

Γ (α/qr + n(x1, .., xk, y))
Γ (α/qr)

where Γ denotes the gamma function, q denotes the number of value combina-
tions of the input variables, r the number of values of the output variable, and
n(x1, ..., xk, y) denotes the number of cases with that value combination. The pa-
rameter α denotes the equivalent sample size. Its value can be chosen by the user.

Hellinger (ϕHel). Another possibility is to use the Hellinger distance [12].
It defines the distance between two probability distributions P (z) and Q(z) as
follows:

H(P, Q) =
∑

z

(√
P (z) −

√
Q(z)

)2

where the sum is taken over all possible values z. In our case, the distributions
of interest are

P (y | x1, ..., xk)

for each possible value combination x1, ..., xk. The overall distance measure be-
comes

ϕHel(p) = D(P̂G, P̂Ḡ) =
∑

x1,...,xk

∑

y

(√

P̂G(y|x1, ..., xk) −
√

P̂Ḡ(y|x1, ..., xk)
)2

where P̂G denotes the probability estimates on G. Intuitively, we measure the
distance between the conditional distribution of y in G and Ḡ for each possi-
ble combination of input values, and add these distances to obtain an overall
distance. Clearly, this measure is aimed at producing subgroups for which the
conditional distribution of y is substantially different from its conditional distri-
bution in the overall database.
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4 Experiments

This section illustrates exceptional model mining on two real-life datasets, using
different quality measures. Although our implementation in Safarii essentially
is multi-relational [5], the two dataset we present are propositional. For each
test, Safarii returns a configurable number of subgroups ranked according to
the quality measure of choice. The following experiments only present the best
ranking subgroup and take a closer look at the interpretation of the results.

4.1 Analysis of Housing Data

First, we analyse the Windsor housing data1 [8]. This dataset contains informa-
tion on 546 houses that were sold in Windsor, Canada in the summer of 1987.
The information for each house includes the two attributes of interest, lot size
and sales price, as plotted in Fig. 1. An additional 10 attributes are available to
define candidate subgroups, including the number of bedrooms and bathrooms
and whether the house is located at a desirable location. The correlation between
lot size and sale price is 0.536, which implies that a larger size of the lot coincides
with a higher sales price. The fitted regression function is:

ŷ = 34136 + 6.60 · x

As this function shows, on average one extra square meter corresponds to a 6.6
dollar higher sales price. Given this function, one might wonder whether it is
possible to find specific subgroups in the data where the price of an additional
square meter is significantly less, perhaps even zero. In the next paragraphs, we
show how EMM may be used to answer this question.

Significance of Correlation Difference. Looking at the restrictions defined
in Section 3.1 we see that the support has to be over 25 in order to be confident
about the test results for this measure. This number was used as minimum
support threshold for a run of Safarii using ϕscd. The following subgroup (and
its complement) was found to show the most significant difference in correlation:
ϕscd(p1) = 0.9993.

p1 : drive = 1 ∧ rec room = 1 ∧ nbath ≥ 2.0

This is the group of 35 houses that have a driveway, a recreation room and at
least two bathrooms. The scatter plots for the subgroup and its complement are
given in Fig. 2. The subgroup shows a correlation of rG = −0.090 compared to
rḠ = 0.549 for the remaining 511 houses. A tentative interpretation could be
that G describes a collection of houses in the higher segments of the markets
where the price of a house is mostly determined by its location and facilities.
The desirable location may provide a natural limit on the lot size, such that this
is not a factor in the pricing. Figure 2 supports this hypothesis: houses in G tend
to have a higher price.
1 Available from the Journal of Applied Econometrics Data Archive at
http://econ.queensu.ca/jae/
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Fig. 2. Housing - ϕscd: Scatter plot of lot size and sales price for drive = 1 ∧
rec room = 1 ∧ nbath ≥ 2 (left) and its complement (right)

In general sales price and lot size are positively correlated, but EMM dis-
covers a subgroup with a slightly negative correlation. However, the value in the
subgroup is not significantly different from zero: a test of

H0 : bp1 = 0 against Ha : bp1 
= 0,

yields a p-value of 0.61. The scatter plot confirms our impression that sales price
and lot size are uncorrelated within the subgroup. For purposes of interpreta-
tion, it is interesting to perform some post-processing. In Table 1 we give an
overview of the correlations within different subgroups whose intersection pro-
duces the final result, as given in the last row. It is interesting to see that
the condition nbath ≥ 2 in itself actually leads to a slight increase in correla-
tion compared to the whole database, but the combination with the presence
of a recreation room leads to a substantial drop to r = 0.129. When we add
the condition that the house should also have a driveway we arrive at the fi-
nal result with r = −0.090. Note that adding this condition only eliminates 3
records (the size of the subgroup goes from 38 to 35) and that the correlation
between sales price and lot size in these three records (defined by the condition
nbath ≥ 2 ∧ ¬drive = 1 ∧ rec room = 1) is −0.894. We witness a phenomenon
similar to Simpson’s paradox: splitting up a subgroup with positive correlation
(0.129) produces two subgroups both with a negative correlation (−0.090 and
−0.894, respectively).

Significance of Slope Difference. In this section, we perform EMM on the
housing data using the Significance of Slope Difference (ϕssd) as the quality
measure. The highest ranking subgroup consists of the 226 houses that have a
driveway, no basement and at most one bathroom:

p2 : drive = 1 ∧ basement = 0 ∧ nbath ≤ 1

The subgroup G and its complement Ḡ (320 houses) lead to the following two
fitted regression functions, respectively:

ŷ = 41568 + 3.31 · x
ŷ = 30723 + 8.45 · x
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Table 1. Different subgroups of the housing data, and their sample correlation coeffi-
cients and supports

Subgroup r n

Whole dataset 0.536 546
nbath ≥ 2 0.564 144
drive = 1 0.502 469
rec room = 1 0.375 97
nbath ≥ 2 ∧ drive = 1 0.509 128
nbath ≥ 2 ∧ rec room = 1 0.129 38
drive = 1 ∧ rec room = 1 0.304 90
nbath ≥ 2 ∧ rec room = 1 ∧ ¬drive = 1 −0.894 3
nbath ≥ 2 ∧ rec room = 1 ∧ drive = 1 −0.090 35
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Fig. 3. Housing - ϕssd: Scatter plot of drive = 1 ∧ basement = 0 ∧ nbath ≤ 1 (left),
and its complement (right)

The subgroup quality is ϕssd > 0.9999, meaning that the p-value of the test

H0 : bp2 = bp̄2 against Ha : bp2 
= bp̄2

is virtually zero. There are subgroups with a larger difference in slope, but the
reported subgroup scores higher because it is quite big. Figure 3 shows the scatter
plots of lot size and sales price for the subgroup and its complement.

4.2 Analysis of Gene Expression Data

The following experiments demonstrate the usefulness of exceptional model min-
ing in the domain of bioinformatics. In genetics, genes are organised in so-called
gene regulatory networks. This means that the expression (its effective activity)
of a gene may be influenced by the expression of other genes. Hence, if one gene is
regulated by another, one can expect a linear correlation between the associated
expression-levels. In many diseases, specifically cancer, this interaction between
genes may be disturbed. The Gene Expression dataset shows the expression-
levels of 313 genes as measured by an Affymetrix microarray, for 63 patients
that suffer from a cancer known as neuroblastoma [9]. Additionally, the dataset
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Fig. 4. Gene Expression - ϕabs: Scatter plot of 11 band = ‘no deletion’ ∧
survivaltime ≤ 1919 ∧ XP 498569.1 ≤ 57 (left; r = −0.950) and its complement
(right; r = 0.363)

contains clinical information about the patients, including age, sex, stage of the
disease, etc.

Correlation Model Experiment. As a demonstration of a correlation model,
we analyse the correlation between ZHX3 (‘Zinc fingers and homeoboxes 2’) and
NAV3 (‘Neuron navigator 3’), in terms of the absolute difference of correlations
ϕabs. These genes show a very slight correlation (r = 0.218) in the whole dataset.
The remaining attributes (both gene expression and clinical information) are
available for building subgroups. As the ϕabs measure does not have any provi-
sions for promoting larger subgroups, we use a minimum support threshold of 10
(15% of the patients). The largest distance (ϕabs(p3) = 1.313) was found with
the following condition:

p3 : 11 band = ‘no deletion’ ∧ survivaltime ≤ 1919 ∧ XP 498569.1 ≤ 57

Figure 4 shows the plot for this subgroup and its complement with the regres-
sion lines drawn in. The correlation in the subgroup is rG = −0.95 and the
correlation in the remaining data is rḠ = 0.363. Note that the subgroup is very
“predictable”: all points are quite close to the regression line, with R2 ≈ 0.9.

DTM Experiment. For the DTM classification experiments on the Gene Ex-
pression dataset, we have selected three binary attributes. The first two at-
tributes, which serve as input variables of the decision table, are related to ge-
nomic alterations that may be observed within the tumor tissues. The attribute
1p band (x1) describes whether the small arm (‘p’) of the first chromosome
has been deleted. The second attribute, mycn (x2), describes whether one spe-
cific gene is amplified or not (multiple copies introduced in the genome). Both
attributes are known to potentially influence the genesis and prognosis of neu-
roblastoma. The output attibute for the classification model is NBstatus (y),
which can be either ‘no event’ or ‘relapse or deceased’. The following decision
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table describes the conditional distribution of NBstatus given 1p band and mycn

on the whole data set:

mycn =‘amplified’ mycn = ‘not amplified’
1p band = ‘deletion’ 0.333 (3) 0.667 (3)
1p band = ‘no change’ 0.625 (8) 0.204 (49)

In order to find subgroups for which the distribution is significantly different, we
run EMM with the Hellinger distance ϕHel as quality measure. As our quality
measures for classification do not specifically promote larger subgroups, we have
selected a slightly higher minimum support constraint: minsup = 16, which
corresponds to 25% of the data. The following subgroup of 17 patients was the
best found (ϕHel = 3.803):

p4 : prognosis = ‘unknown’

mycn =‘amplified’ mycn = ‘not amplified’
1p band = ‘deletion’ 1.0 (1) 0.833 (6)
1p band = ‘no change’ 1.0 (1) 0.333 (9)

Note that for each combination of input values, the probability of ‘relapse or
deceased’ is increased, which makes sense when the prognosis is uncertain. Note
furthermore that the overall dataset does not yield a pure classifier: for every
combination of input values, there is still some confusion in the predictions.
In our second classification experiment, we are interested in “predictable” sub-
groups. Therefore, we run EMM with the ϕBDeu measure. All other settings are
kept the same. The following subgroup (n = 16, ϕBDeu = −1.075) is based on
the expression of the gene RIF1 (‘RAP1 interacting factor homolog (yeast)’)

p5 : RIF1 >= 160.45

mycn =‘amplified’ mycn = ‘not amplified’
1p band = ‘deletion’ 0.0 (0) 0.0 (0)
1p band = ‘no change’ 0.0 (0) 0.0 (16)

In this subgroup, the predictiveness is optimal, as all patients turn out to be
tumor-free. In fact, the decision table ends up being rather trivial, as all cells
indicate the same decision.

Logistic Regression Experiment. In the logistic regression experiment, we
take NBstatus as the output y, and age (age at diagnosis in days) as the predictor
x. The subgroups are created using the gene expression level variables. Hence, the
model specification is

logit{P (NBstatus = ‘relapse or deceased’)} = a + b · p + c · age + d · (p · age).
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We find the subgroup

p6 : SMPD1 ≥ 840 ∧ HOXB6 ≤ 370.75

with a coverage of 33, and quality ϕsed = 0.994. We find a positive coefficient of x
for the subgroup, and a slightly negative coefficient for its complement. Within the
subgroup, the odds of NBstatus = ‘relapse or deceased’ increase with 44% when
the age at diagnosis increases with 100 days, whereas in the complement the odds
decrease with 8%. More loosely, within the subgroup an increase in age at diagno-
sis decreases the probability of survival, whereas in the complement an increase
in age slightly increases the probability of survival. Such reversals of the direction
of influence may be of particular interest to the domain expert.

5 Conclusions and Future Research

We have introduced exceptional model mining (EMM) as an extension of the
well-known subgroup discovery framework. By focusing on models instead of
single target variables, many new interesting analysis possibilities are created.
We have proposed a number of model classes that can be used in EMM, and
defined several quality measures for them. We illustrated the use of EMM by
its application to two real datasets. Like subgroup discovery, EMM is an ex-
ploratory method that requires interaction with a user that is knowledgable in
the application domain. It can provide useful insights into the subject area, but
does not result in ready-to-use predictive models.

We believe there are many possibilities to extend the work presented in this
paper. One could look at different models, for example naive Bayes for classifica-
tion problems or graphical models for modelling the probability distribution of
a number of (discrete) variables. Whatever the selected class of models, the user
should specify a quality measure that relates to the more fundamental questions
a user may have about the data at hand. In the case of our housing example, the
choice for the difference in slope is appropriate, as it captures a relevant aspect
of the data, namely a significant change in price per square meter. For similar
reasons, we used the difference between the coefficients of the explanatory vari-
able (age at diagnosis) in the subgroup and its complement as a quality measure
for logistic regression models.

Specifying an appropriate quality measure that is inspired by a relevant ques-
tion of the user becomes less straightforward when more complex models are
considered, although of course one can always focus on some particular aspect
(e.g. coefficients) of the models. However, even for sophisticated models such
as support vector machines or Bayesian networks, one can think of measures
that make sense, such as the linear separability or the edit distance between two
networks [14], respectively.

From a computational viewpoint, it is advisable to keep the models to be
fitted simple, since many subgroups have to be evaluated in the search process.
For example, fitting a naive Bayes model to a large collection of subgroups can
be done quite efficiently, but fitting a support vector machine could prove to be
too time consuming.
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Abstract. Polarizing discussions on political and social issues are com-
mon in mass and user-generated media. However, computer-based un-
derstanding of ideological discourse has been considered too difficult to
undertake. In this paper we propose a statistical model for ideology dis-
course. By ideology we mean “a set of general beliefs socially shared by a
group of people.” For example, Democratic and Republican are two ma-
jor political ideologies in the United States. The proposed model captures
lexical variations due to an ideological text’s topic and due to an author
or speaker’s ideological perspective. To cope with the non-conjugacy of
the logistic-normal prior we derive a variational inference algorithm for
the model. We evaluate the proposed model on synthetic data as well as
a written and a spoken political discourse. Experimental results strongly
support that ideological perspectives are reflected in lexical variations.

1 Introduction

When people describe a set of ideas as “ideology”, the ideas are usually regarded
as false beliefs. Marxists associate the dominant class’s viewpoints as ideology.
Ideology’s pejorative connotation is usually used to describe other group’s ideas
and rarely our own ideas.

In this paper we take a definition of ideology broader than the classic Marxists’
definition, but define ideology as “a set of general beliefs socially shared by a
group of people” [1]. Groups whose members share similar goals or face similar
problems usually share a set of beliefs that define membership, value judgment,
and action. These collective beliefs form an ideology. For example, Democratic
and Republican are two major political ideologies in the United States.

Written and spoken discourses are critical in the van Dijk’s theory of ideology
[1]. Ideology is not innate and must be learned through interaction with the
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world. Spoken and written texts are major media through which an ideology is
understood, transmitted, and reproduced. For example, two presidential candi-
dates, John Kerry and George W. Bush, gave the following answers during a
presidential debate in 2004:

Example 1. Kerry: What is an article of faith for me is not something that I
can legislate on somebody who doesn’t share that article of faith. I believe that
choice is a woman’s choice. It’s between a woman, God and her doctor. And
that’s why I support that.

Example 2. Bush: I believe the ideal world is one in which every child is protected
in law and welcomed to life. I understand there’s great differences on this issue
of abortion, but I believe reasonable people can come together and put good law
in place that will help reduce the number of abortions.

From their answers we can clearly understand their attitude on the abortion
issue.

Interest in computer based understanding of ideology dates back to the sixties
in the last century, but the idea of learning ideology automatically from texts has
been considered almost impossible. Abelson expressed a very pessimistic view
on automatic learning approaches in 1965 [2]. We share Abelson’s vision but do
not subscribe to his view. We believe that ideology can be statistically modeled
and learned from a large number of ideological texts.

– In this paper we develop a statistical model for ideological discourse. Based
on the empirical observation in Section 2 we hypothesize that ideological
perspectives were reflected in lexical variations. Some words were used more
frequently because they were highly related to an ideological text’s topic
(i.e., topical), while some words were used more frequently because authors
holding a particular ideological perspective chose so (i.e., ideological).

– We formalize the hypothesis and proposed a statistical model for ideolog-
ical discourse in Section 3. Lexical variations in ideological discourse were
encoded in a word’s topical and ideological weights. The coupled weights
and the non-conjugacy of the logistic-normal prior posed a challenging in-
ference problem. We develop an approximate inference algorithm based on
the variational method in Section 3.2.
Such a model can not only uncover topical and ideological weights from data
and can predict the ideological perspective of a document. The proposed
model will allow news aggregation service to organize and present news by
their ideological perspectives.

– We evaluate the proposed model on synthetic data (Section 4.1) as well as
on a written text and a spoken text (Section 4.2). In Section 4.3 we show
that the proposed model automatically uncovered many discourse structures
in ideological discourse.

– In Section 4.4 we show that the proposed model fit ideological corpora bet-
ter than a model that assumes no lexical variations due to an author or
speaker’s ideological perspective. Therefore the experimental results strongly
suggested that ideological perspectives were reflected in lexical variations.
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2 Motivation

Lexical variations have been identified as a “major means of ideological expres-
sion” [1]. In expressing a particular ideological perspective, word choices can
highly reveal an author’s ideological perspective on an issue. “One man’s terror-
ist is another man’s freedom fighter.” Labeling a group as “terrorists” strongly
reveal an author’s value judgement and ideological stance [3].

We illustrate lexical variations in an ideological text about the Israeli-
Palestinian conflict (see Section 4.2). There were two groups of authors hold-
ing contrasting ideological perspectives (i.e., Israeli vs. Palestinian). We count
the words used by each group of authors and showed the top 50 most frequent
words in Figure 1.

abu agreement american arab arafat
bank bush conflict disengagement fence

gaza government international iraq

israel israeli israelis israels
jerusalem jewish leadership minister

palestine palestinian
palestinians peace plan

political president prime process
public return roadmap security settlement

settlements sharon sharons solution

state states terrorism time united

violence war west world years

american arab arafat authority bank

conflict elections end gaza government

international israel israeli
israelis israels jerusalem land law leadership

military minister negotiations occupation

palestine palestinian
palestinians peace people
plan political prime process public

rights roadmap security settlement

settlements sharon side solution state
states territories time united violence wall

west world

Fig. 1. The top 50 most frequent words used by the Israeli authors (left) and the Pales-
tinian authors (right) in a document collection about the Israeli-Palestinian conflict.
A word’s size represents its frequency: the larger, the more frequent.

Both sides share many words that are highly related to the corpus’s topic (i.e.,
the Israeli-Palestinian conflict): “Palestinian”, “Israeli”, “political”, “peace”, etc.
However, each ideological perspective seems to emphasize (i.e., choosing more
frequently) different subset of words. The Israeli authors seem to use more “dis-
engagement”, “settlement”, and “terrorism”. On the contrary, the Palestinian
authors seem to choose more “occupation”, “international”, and “land.” Some
words seem to be chosen because they are about a topic, while some words are
chosen because of an author’s ideological stance.

We thus hypothesize that lexical variations in ideological discourse are at-
tributed to both an ideological text’s topic and an author or speaker’s ideological
point of view. Word frequency in ideological discourse should be determined by
how much a word is related to a text’s topic (i.e., topical) and how much authors
holding a particular ideological perspective emphasize or de-emphasize the word
(i.e., ideological). A model for ideological discourse should take both topical and
ideological aspects into account.
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3 A Joint Topic and Perspective Model

We propose a statistical model for ideological discourse. The model associates
topical and ideological weights to each word in the vocabulary. Topical weights
represent how frequently a word is chosen because of a text’s topic independent
of an author or speaker’s ideological perspective. Ideological weights, on the
other hand, modulate topical weights based on an author or speaker’s ideological
perspective. To emphasize a word (i.e., choosing the word more frequently) we
put a larger ideological weight on the word.

T

V1

V2

w
1 w

2

w3

Fig. 2. A three-word simplex illustrates how topical weights T are modulated by two
differing ideological weights

We illustrate the interaction between topical and ideological weights in a
three-word simplex in Figure 2. A point T represents topical weights about
a specific topic. Suppose authors holding a particular perspective emphasize
the word w3, while authors holding the contrasting perspective emphasize the
word w1. Ideological weights associated with the first perspective will move a
multinomial distribution’s parameter from T to a new position V1, which is more
likely to generate w3 than T is. Similarly, ideological weights associated with the
second perspective will move the multinomial distribution’s parameter from T
to V2, which is more likely to generate w1 than T is.

3.1 Model Specification

Formally, we combine a word’s topical and ideological weights through a logistic
function. The complete model specification is listed as follows,

Pd ∼Bernoulli(π), d = 1, . . . , D

Wd,n|Pd = v ∼Multinomial(βv), n = 1, . . . , Nd

βw
v =

exp(τw × φw
v )∑

w′ exp(τw′ × φw′
v )

, v = 1, . . . , V

τ ∼N(μτ , Στ )
φv ∼N(μφ, Σφ).
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We assume that there are two contrasting perspectives in an ideological text (i.e.,
V = 2), and model a document’s ideological perspective that its author or speaker
holds as a Bernoulli variable Pd, d = 1, . . . , D, where D is the total number of doc-
uments in a collection. Each word in a document, Wd,n, is sampled from a multi-
nomial distribution conditioned on the document d’s perspective, n = 1, . . . , Nd,
where Nd is a document’s length. The bag-of-words representation has been com-
monly used and shown to be effective in text classification and topic modeling.

The multinomial distribution’s parameter, βw
v , indexed by an ideological per-

spective v and w-th word in the vocabulary, consists of two parts: topical weights
τ and ideological weights φ. β is an auxiliary variable, and is deterministically
determined by (latent) topical τ and ideological weights {φv}. The two weights
are combined through a logistic function. The relationship between topical and
ideological weights is assumed to be multiplicative. Therefore, a word of an ide-
ological weight φ = 1 means that the word is not emphasized or de-emphasized.
The prior distributions for topical and ideological weights are normal distri-
butions. The parameters of the joint topic and perspective model, denoted as
Θ, include: π, μτ , Στ , μφ, Σφ. We call this model a Joint Topic and Perspec-
tive Model (jTP). We show the graphical representation of the joint topic and
perspective model in Figure 3.

Pd Wd↪n

V

βv

D

Nd

τ

V

φv

μτ

Στ

μφ

Σφ

π

Fig. 3. A joint topic and perspective model in a graphical model representation (see
Section 3 for details). A dashed line denotes a deterministic relation between parent
and children nodes.

3.2 Variational Inference

The quantities of most interest in the joint topic and perspective model are
(unobserved) topical weights τ and ideological weights {φv}. Given a set of D
documents on a particular topic from differing ideological perspectives {Pd},
the joint posterior probability distribution of the topical and ideological weights
under the joint topic and perspective model is

P (τ, {φv}|{Wd,n}, {Pd}; Θ)

∝P (τ |μτ , Στ )
∏
v

P (φv|μφ, Σφ)
D∏

d=1

P (Pd|π)
Nd∏
n=1

P (Wd,n|Pd, τ, {φv})

= N(τ |μτ , Στ )
∏
v

N(φv|μφ, Σφ)
∏
d

Bernoulli(Pd|π)
∏
n

Multinomial(Wd,n|Pd, β),
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where N(·), Bernoulli(·) and Multinomial(·) are the probability density functions
of multivariate normal, Bernoulli, and multinomial distributions, respectively.

The joint posterior probability distribution of τ and {φv}, however, are com-
putationally intractable because of the non-conjugacy of the logistic-normal
prior. We thus approximate the posterior probability distribution using a vari-
ational method [4], and estimate the parameters using variational expectation
maximization [5]. By the Generalized Mean Field Theorem (GMF) [6], we can
approximate the joint posterior probability distribution of τ and {φv} as the
product of individual functions of τ and φv:

P (τ, {φv}|{Pd}, {Wd,n}; Θ) ≈ qτ (τ)
∏
v

qφv
(φv), (1)

where qτ (τ) and qφv (φv) are the posterior probabilities of the topical and ideo-
logical weights conditioned on the random variables on their Markov blanket.

Specifically, qφ is defined as follows,

qτ (τ) =P (τ |{Wd,n}, {Pd}, {〈φv〉}; Θ) (2)

∝P (τ |μτ , Στ )
∏
v

P (〈φv〉|μφ, Σφ)P ({Wd,n}|τ, {〈φv〉}, {Pd})
(3)

∝N(τ |μτ , Στ ) Multinomial({Wd,n}|{Pd}, τ, {〈φv〉}), (4)

where 〈φv〉 denotes the GMF message based on qφv (·). From (3) to (4) we drop
the terms unrelated to τ .

Calculating the GMF message for τ from (4) is computationally intractable
because of the non-conjugacy between multivariate normal and multinomial dis-
tributions. We follow the similar approach in [7], and made a Laplace approx-
imation of (4). We first represent the word likelihood {Wd,n} as the following
exponential form:

P ({Wd,n}|{Pd}, τ, {〈φv〉}) = exp

(∑
v

nv(〈φv〉 • τ) −
∑

v

nT
v 1C(〈φv〉 • τ)

)
(5)

where • is element-wise vector product, nv is a word count vector under the
ideological perspective v, 1 is a column vector of one, and C function is defined
as follows,

C(x) = log

(
1 +

P∑
p=1

exp xp

)
, (6)

where P is the dimensionality of the vector x.
We expand C using Taylor series to the second order around x̂ as follows,

C(x) ≈ C(x̂) + ∇(x)(x − x̂) +
1
2
(x − x̂)T H(x̂)(x − x̂),



A Joint Topic and Perspective Model for Ideological Discourse 23

where ∇ is the gradient of C, and H is the Hessian matrix of C. We set x̂ as
〈τ〉(t−1) • 〈φv〉. The superscript denoted the GMF message in the t − 1 (i.e.,
previous) iteration.

Finally, we plug the second-order Taylor expansion of C back to (4) and
rearranged terms about τ . We obtain the multivariate normal approximation of
qτ (·) with a mean vector μ∗ and a variance matrix Σ∗ as follows,

Σ∗ =

(
Σ−1

τ +
∑

v

nT
v 1〈φv〉 ↓ H(τ̂ • 〈φv〉) → 〈φv〉

)−1

μ∗ =Σ∗
(

Σ−1
τ μτ +

∑
v

nv • 〈φv〉 −
∑

v

nT
v 1∇C(τ̂ • 〈φv〉) • 〈φv〉

+
∑

v

nT
v 1〈φv〉 • (H(τ̂ • 〈φv〉)(τ̂ • 〈φv〉))

)
,

where ↓ is column-wise vector-matrix product, → is row-wise vector-matrix prod-
uct. The Laplace approximation for the logistic-normal prior has been shown to
be tight [8].

qφv in (3.2) can be approximated in a similar fashion as a multivariate normal
distribution with a mean vector μ† and a variance matrix Σ† as follows,

Σ† =
(
Σ−1

φ + nT
v 1〈τ〉 ↓ H(〈τ〉 • φ̂v) → 〈τ〉

)−1

μ† =Σ†
(
Σ−1

φ μφ + nv • 〈τ〉 − nT
v 1∇C(〈τ〉 • φ̂v) • 〈τ〉

+nT
v 1〈τ〉 • (H(〈τ〉 • φ̂v)(〈τ〉 • φ̂v))

)
,

where we set φ̂v as 〈φv〉(t−1).
In E-step, we have a message passing loop and iterate over the q functions in

(3.2) until converge. We monitor the change in the auxiliary variable β and stop
when the absolute change is smaller than a threshold. In M-step, π can be easily
maximized by taking the sample mean of {Pd}. We monitor the data likelihood
and stop the variational EM loop when the change of data likelihood is less than
a threshold.

3.3 Identifiability

The joint topic and perspective model as specified above is not identifiable.
There are multiple assignments of topical and ideological weights that can pro-
duce exactly the same data likelihood. Therefore, topic and ideological weights
estimated from data may be incomparable.

The first source of un-identifiability is due to the multiplicative relationship
between τ and φv. We can easily multiply a constant to τw and divide φw

v by
the same constant, and the auxiliary variable β stays the same.

The second source of un-identifiability comes from the sum-to-one constraint
in the multinomial distribution’s parameter β. Given a vocabulary W , we have
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only |W| −∞ number of free parameters for τ and {Pd}. Allowing |W| number
of free parameters makes topical and ideological weights unidentifiable.

We fix the following parameters to solve the un-identifiability issue: τ1, {φw
1 },

and φ1
v. We fix the values of the τ1 to be one and {φ1

v} to be zero, v = 1, . . . , V .
We choose the first ideological perspective as a base and fix its ideological weights
φw

1 to be one for all words, w = 1, . . . , |W|. By fixing the corner of φ (i.e., {φ1
v}) we

assume that the first word in the vocabulary are not biased by either ideological
perspectives, which may not be true. We thus add a dummy word as the first
word in the vocabulary, whose frequency is the average word frequency in the
whole collection and conveys no ideological information (in the word frequency).

4 Experiments

4.1 Synthetic Data

We first evaluate the proposed model on synthetic data. We fix the values of the
topical and ideological weights, and generated synthetic data according to the
generative process in Section 3. We test if the variational inference algorithm for
the joint topic and perspective model in Section 3.2 successfully converges. More
importantly, we test if the variational inference algorithm can correctly recover
the true topical and ideological weights that generated the synthetic data.

Specifically, we generate the synthetic data with a three-word vocabulary and
topical weights τ = (2, 2, 1), shown as ◦ in the simplex in Figure 4. We then
simulate different degrees to which authors holding two contrasting ideological
beliefs emphasized words. We let the first perspective emphasize w2 (φ1 = (1, 1+
p, 0)) and let the second perspective emphasized w1 (φ2 = (1+ p, 1, 0). w3 is the
dummy word in the vocabulary. We vary the value of p (p = 0.1, 0.3, 0.5) and
plotted the corresponding auxiliary variable β in the simplex in Figure 4. We
generate the equivalent number of documents for each ideological perspective,
and varied the number of documents from 10 to 1000.

We evaluate how closely the variational inference algorithm recovered the true
topical and ideological weights by measuring the maximal absolute difference
between the true β (based on the true topical weights τ and ideological weights
{φv}) and the estimated β̂ (using the expected topical weights 〈τ〉 and ideological
weights {〈φv〉} returned by the variational inference algorithm).

The simulation results in Figure 5 suggested that the proposed variational
inference algorithm for the joint topic and perspective is valid and effective. Al-
though the variational inference algorithm was based on Laplace approximation,
the inference algorithm recovered the true weights very closely. The absolute dif-
ference between true β and estimated β̂ was small and close to zero.

4.2 Ideological Discourse

We evaluate the joint topic and perspective model on two ideological discourses.
The first corpus, bitterlemons, is comprised of editorials written by the Israeli
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Fig. 4. We generate synthetic data with a three-word vocabulary. The ◦ indicates the
value of the true topical weight τ . �, +, and × are β after τ is modulated by different
ideological weights {φv}.
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Fig. 5. The experimental results of recovering true topical and ideological weights.
The x axis is the number of training examples, and the y axis is the maximal absolute
difference between true β and estimated β̂. The smaller the difference, the better. The
curves in �, +, and × correspond to the three different ideological weights in Figure 4.

and Palestinian authors on the Israeli-Palestinian conflict. The second corpus,
presidential debates, is comprised of spoken words from the Democratic and
Republican presidential candidates in 2000 and 2004.

The bitterlemons corpus consists of the articles published on the website
http://bitterlemons.org/. The website is set up to “contribute to mutual
understanding [between Palestinians and Israelis] through the open exchange
of ideas.”1 Every week an issue about the Israeli-Palestinian conflict is selected
for discussion (e.g., “Disengagement: unilateral or coordinated?”). The website
editors have labeled the ideological perspective of each published article. The
bitterlemons corpus has been used to learn individual perspectives [9], but the
previous work was based on naive Bayes models and did not simultaneously
model topics and perspectives.

The 2000 and 2004 presidential debates corpus consists of the spoken tran-
scripts of six presidential debates and two vice-presidential debates in 2000 and
2004. We downloaded the speech transcripts from the American Presidency
Project2. The speech transcripts came with speaker tags, and we segmented the

1 http://www.bitterlemons.org/about/about.html
2 http://www.presidency.ucsb.edu/debates.php
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transcripts into spoken documents according to speakers. Each
spoken document was either an answer to a question or a rebuttal. We discarded
the words from moderators, audience, and reporters.

We choose these two corpora for the following reasons. First, the two corpora
contain political discourse with strong ideological differences. The bitterlemons
corpus contains the Israeli and the Palestinian perspectives; the presidential de-
bates corpus the Republican and Democratic perspectives. Second, they are from
multiple authors or speakers. There are more than 200 different authors in the
bitterlemons corpus; there are two Republican candidates and four Democratic
candidates. We are interested in ideological discourse expressing socially shared
beliefs, and less interested in individual authors or candidates’ personal beliefs.
Third, we select one written text and one spoken text to test how our model
behaves on different communication media.

We removed metadata that may reveal an author or speaker’s ideological
stance but were not actually written or spoken. We removed the publication
dates, titles, an author’s name and biography in the bitterlemons corpus. We
removed speaker tags, debate dates, and location in the presidential debates
corpus. Our tokenizer removed contractions, possessives, and cases.

The bitterlemons corpus consists of 594 documents. There are a total of 462308
words, and the vocabulary size is 14197. They are 302 documents written by the
Israeli authors and 292 documents written by the Palestinian authors. The pres-
idential debates corpus consists of 1232 spoken documents. There are a total
of 122056 words, and the vocabulary size is 16995. There are 235 spoken doc-
uments from the Republican candidates, and 214 spoken documents from the
Democratic candidates.

4.3 Topical and Ideological Weights

We fit the proposed joint topic and perspective model on two text corpora, and
the results were shown in Figure 6 and Figure 7 in color text clouds3. Text
clouds represent a word’s frequency in size. The larger a word’s size, the more
frequently the word appears in a text collection. Text clouds have been a popular
method of summarizing tags and topics on the Internet (e.g., bookmark tags on
Del.icio.us4 and photo tags on Flicker 5. Here we have matched a word’s size
with its topical weight τ .

To show a word’s ideological weight, we paint a word in color shades. We assign
each ideological perspective a color (red or blue). A word’s color is determined
by which perspective uses a word more frequently than the other. Color shades
gradually change from pure colors (strong emphasis) to light gray (no emphasis).
The degree of emphasis is measured by how extreme a word’s ideological weight φ
is from one (i.e., no emphasis). Color text clouds allow us to present three kinds
of information at the same time: words, their topical weights, and ideological
weights.
3 We omit the words of low topical and ideological weights due to space limit.
4 http://del.icio.us/
5 http://www.flickr.com/
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oslo violence support security ariel peace conflict issue president current

israeli sides palestinian israelis solution future middle jerusalem
settlement world force plan long make issues time leadership public refugees east
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roadmap national policy government final order situation military economic hamas
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based agreements real side united recent work 1967 party made movement important
control authority dont hand violent borders continue change including clear relations

problem society resolution parties building people al means move power role refugee

ongoing intifada nations major civilians fact occupation areas talks council land struggle
efforts hope position compromise rights stop difficult put historic opinion positions give accept

reason inside law internal occupied americans years significant result ending things wall
resistance

Fig. 6. Visualize the topical and ideological weights learned by the joint topic and per-
spective model from the bitterlemons corpus (see Section 4.3). Red: words emphasized
more by the Israeli authors. Blue: words emphasized more by the Palestinian authors.

Let us focus on the words of large topical weights learned from the bitter-
lemons corpus (i.e., words in large sizes in Figure 6). The word of the largest
topical weight is “Palestinian”, followed by “Israeli”, “Palestinians”, “peace”,
and “political”. The topical weights learned by the joint topic and perspective
model clearly match our expectation from the discussions about the Israeli-
Palestinian conflict. Words in large sizes summarizes well what the bitterlemons
corpus is about.

Similarly, a brief glance over words of large topical weights learned from the
presidential debates corpus (i.e., words in large sizes in Figure 7) clearly tells
us the debates’ topic. Words of large topical weights capture what American
politics is about (e.g., “people”, “president”, “America”, “government”) and
specific political and social issues (e.g., “Iraq”, “taxes”, “Medicare”). Although
not every word of large topical weights is attributed to a text’s topic, e.g., “im”
(“I’m” after contraction is removed) occurred frequently because of the spoken
nature of debate speeches, the majority of words of large topical weights appear
to convey what the two text collections are about.

Now let us turn our attention to words’ ideological weights φ, i.e., color shade
in Figure 6. The word “terrorism”, followed by “terrorist”, is painted pure red,
which is highly emphasized by the Israeli authors. “Terrorist” is a word that
clearly reveals an author’s attitude toward the other group’s violent behavior.
Many words of large ideological weights can be categorized into the ideology
discourse structures previously manually identified by researchers in discourse
analysis [1]:
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companies cut john families kids class american governor nuclear give fight gore ago
back jim americans history fund oil didnt year country 1 budget cuts job jobs al

000 laden bin agree national lost kerry ill years presidents rights today bush health
president parents middle number united choice social children schools left college

debt countries day america insurance drug security big bring general things theyve

plan school percent weapons program support benefits forces question means

care put bill respect states theyre war vice world fact tax thing ive
pay problem talk military iraq great trillion im life medicare billion million

good public safe congress prescription education time kind people
difference terrorists dont wrong long 2 made make hussein change
important saddam hes clear drugs senate administration law money
working doesnt man spending mr peace making part lead leadership nation high
intelligence policy troops government move programs coming destruction child find threat
business lot side weve called issue interest youre voted small state seniors

energy hard lets afghanistan strong decision qaida thought deal work end local sense

set vote marriage terror problems wont protect gun understand federal hope reform
system increase nations matter senator talks continue record texas place lives east
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Fig. 7. Visualize the topical weights and ideological weights learned by the joint topic
and perspective model from the presidential debates corpus i(see Section 4.3). Red:
words emphasized by the Democratic candidates. Blue: words emphasized by the Re-
publican candidates.

– Membership: Who are we and who belongs to us? “Jews” and “Jewish” are
used more frequently by the Israeli authors than the Palestinian authors.
“Washington” is used more frequently by the Republican candidates than
Democratic candidates.

– Activities: What do we do as a group? “Unilateral”, “disengagement”, and
“withdrawal” are used more frequently by the Israeli authors than the Pales-
tinian authors. “Resistance” is used more frequently by the Palestinian au-
thors than the Israeli authors.

– Goals: What is our group’s goal? (Stop confiscating) “land” , “indepen-
dent”, and (opposing settlement) “expansion” are used more frequently by
the Palestinian authors than the Israeli authors.

– Values: How do we see ourselves? What do we think is important? “Oc-
cupation” and (human) “rights” are used more frequently by Palestinian
authors than the Israeli authors. “Schools”, “environment”, and “middle”
“class” are used more frequently by the Democratic candidates than the Re-
publican candidates. “Freedom” and “free” are used more frequently by the
Republican candidates.

– Position and Relations: what is our position and our relation to other groups?
“Jordan” and “Arafats” (after removing contraction of “Arafat’s”) are used
more frequently by the Israeli authors than by the Palestinian authors.
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We do not intend to give a detailed analysis of the political discourse in
the Israeli-Palestinian conflict and in American politics. We do, however, want
to point out that the joint topic and perspective model seems to “discover”
words that play important roles in ideological discourse. The results not only
support the hypothesis that ideology is greatly reflected in an author or speaker’s
lexical choices, but also suggest that the joint topic and perspective model closely
captures the lexical variations.

Political scientists and media analysts can formulate research questions based
on the uncovered topical and ideological weights, such as: what are the important
topics in a text collection? What words are emphasized or de-emphasized by
which group? How strongly are they emphasized? In what context are they
emphasized? The joint topic and perspective model can thus become a valuable
tool to explore ideological discourse.

Our results, however, also point out the model’s weaknesses. First, a bag-
of-words representation is convenient but fails to capture many linguistic phe-
nomena in political discourse. “Relief” is used to represent tax relief, marriage
penalty relief, and humanitarian relief. Proper nouns (e.g., “West Bank” in the
bitterlemons corpus and “Al Quida” in the presidential debates corpus) are bro-
ken into multiple pieces. N-grams do not solve all the problems. The discourse
function of the verb “increase” depends much on the context. A presidential
candidate can “increase” legitimacy, profit, or defense, and single words cannot
distinguish them.

4.4 Prediction

We evaluate how well the joint topic and perspective model predicted words from
unseen ideological discourse in terms of perplexity on a held-out set. Perplexity
has been a popular metric to assess how well a statistical language model gen-
eralizes [10]. A model generalizes well if it achieves lower perplexity. We choose
unigram as a baseline. Unigram is a special case of the joint topic and perspec-
tive model that assumes no lexical variations are due to an author or speaker’s
ideological perspective (i.e., fixing all {φv} to one).

Perplexity is defined as the exponential of the negative log word likelihood
with respect to a model normalized by the total number of words:

exp
(
− logP ({Wd,n}|{Pd}; Θ)∑

d Nd

)

We can integrate out topical and ideological weights to calculate the predictive
probability P ({Wd,n}|{Pd}; Θ):

P ({Wd,n}|{Pd}; Θ) =
∫ ∫ D∏

d=1

Nd∏
n=1

P (Wd,n|Pd)dτdφv .

Instead, we approximate the predictive probability by plugging in the point
estimates of τ and φv from the variational inference algorithm.
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For each corpus, we vary the number of training documents from 10% to
90% of the documents, and measured perplexity on the remaining 10% held-
out set. The results were shown in Figure 8. We can clearly see that the joint
topic and perspective model reduces perplexity on both corpora. The results
strongly support the hypothesis that ideological perspectives are reflected in
lexical variations. Only when ideology is reflected in lexical variations can we
observe the perplexity reduction from the joint topic and perspective model. The
results also suggest that the joint topic and perspective model closely captures
the lexical variations due to an author or speaker’s ideological perspective.
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Fig. 8. The proposed joint topic and perspective model reduces perplexity on a held-
out set

5 Related Work

Abelson and Carroll pioneered modeling ideological beliefs in computers in the
sixties [2]. Their system modeled the beliefs of a right-wing politician as a set of
English sentences (e.g., “Cuba subverts Latin America.”). Carbonell proposed a
system, POLITICS, that can interpret text from two conflicting ideologies [11].
These early studies model ideology at a more sophisticated level (e.g., goals,
actors, and action) than the proposed joint topic and perspective model, but
require humans to manually construct a knowledge database. The knowledge-
intensive approaches suffer from the “knowledge acquisition bottleneck.” We take
a completely different approach and aim to automatically learn ideology from a
large number of documents.

[12] explored a similar problem of identifying media’s bias. They found that
the sources of news articles can be successfully identified based on word choices
using Support Vector Machines. They identified the words that can best dis-
criminate two news sources using Canonical Correlation Analysis. In addition
to the clearly different methods between [12] and this paper, there are crucial
differences. First, instead of applying two different methods as [12] did, the Joint
Topic and Perspective Model (Section 3) is a single unified model that can learn
to predict an article’s ideological slant and uncover discriminating word choices
simultaneously. Second, the Joint Topic and Perspective Model makes explicit
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the assumption of the underlying generative process on ideological text. In con-
trast, discriminative classifiers such as SVM do not model the data generation
process [13]. However, our methods implicitly assume that documents are about
the same news event or issue, which may not be true and could benefit from an
extra story alignment step as [12] did.

We borrow statistically modeling and inference techniques heavily from re-
search on topic modeling (e.g., [14], [15] and [16]). They focus mostly on model-
ing text collections that containing many different (latent) topics (e.g., academic
conference papers, news articles, etc). In contrast, we are interested in modeling
ideology texts that are mostly on the same topic but mainly differs in their ideo-
logical perspectives. There have been studies going beyond topics (e.g., modeling
authors [17]). We are interested in modeling lexical variation collectively from
multiple authors sharing similar beliefs, not lexical variations due to individual
authors.

6 Conclusion

We present a statistical model for ideological discourse. We hypothesized that
ideological perspectives were partially reflected in an author or speaker’s lexi-
cal choices. The experimental results showed that the proposed joint topic and
perspective model fit the ideological texts better than a model naively assum-
ing no lexical variations due to an author or speaker’s ideological perspectives.
We showed that the joint topic and perspective model uncovered words that
represent an ideological text’s topic as well as words that reveal ideological dis-
course structures. Lexical variations appeared to be a crucial feature that can
enable automatic understanding of ideological perspectives from a large amount
of documents.
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Effective Pruning Techniques for Mining
Quasi-Cliques�

Guimei Liu and Limsoon Wong
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Abstract. Many real-world datasets, such as biological networks and
social networks, can be modeled as graphs. It is interesting to discover
densely connected subgraphs from these graphs, as such subgraphs rep-
resent groups of objects sharing some common properties. Several algo-
rithms have been proposed to mine quasi-cliques from undirected graphs,
but they have not fully utilized the minimum degree constraint for prun-
ing. In this paper, we propose an efficient algorithm called Quick to find
maximal quasi-cliques from undirected graphs. The Quick algorithm uses
several effective pruning techniques based on the degree of the vertices to
prune unqualified vertices as early as possible, and these pruning tech-
niques can be integrated into existing algorithms to improve their per-
formance as well. Our experiment results show that Quick is orders of
magnitude faster than previous work on mining quasi-cliques.

1 Introduction

Graphs can represent complicated relationships among objects, and they have
been used to model many real-world datasets. For example, a protein-protein
interaction network can be represented as a graph where each vertex represents
a protein and edges represent interactions between proteins. A set of microarray
data can be converted to a graph in which each vertex represents a gene and an
edge between two vertices represents a strong similarity between the expression
data of the two corresponding genes. Highly connected subgraphs in these graphs
often have significant biological implications. They can correspond to protein
complexes [1] or biologically relevant functional groups [2,3,4].

The discovery of dense subgraphs from one or multiple graphs has attracted in-
creasing attention. Cliques are the densest form of subgraphs. A graph is a clique
if there is an edge between every pair of the vertices. However, this requirement
is often too restrictive given that real-world datasets are often incomplete and
noisy. The concept of quasi-cliques has been proposed to relax the requirement.
Different definitions have been given to quasi-cliques. Here we adopt the defi-
nition that is based on the degree of individual vertices, that is, a graph is a
quasi-clique if every vertex in the graph is adjacent to at least �γ(n − 1)� other
vertices in the graph, where γ is a number between 0 and 1 and n is the number
of vertices in the graph.
� This work was supported in part by a Singapore A*STAR SERC PSF grant.
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Given a graph, the search space of the quasi-clique mining problem is the
power set of its vertex set. How to efficiently and effectively prune the search
space is critical to the performance of a quasi-clique mining algorithm. How-
ever, the downward closure property no longer holds on quasi-cliques, which
makes mining quasi-cliques much more challenging than mining cliques. Exist-
ing algorithms for mining quasi-cliques from a single graph all use heuristic or
randomized methods and they do not produce the complete set of quasi-cliques
[5,6,2]. Although existing algorithms for mining quasi-cliques from a set of graphs
generate the complete result, they have not fully exploited the pruning power of
the minimum degree constraint [7,8].

In this paper, we propose an efficient algorithm called Quick to mine quasi-
cliques, which uses several effective pruning techniques based on the degree of the
vertices. These pruning techniques can effectively remove unpromising vertices
as early as possible. We conducted a set of experiments to demonstrate the
effectiveness of the proposed pruning techniques.

The rest of the paper is organized as follows. Section 2 gives the formal prob-
lem definition. Section 3 presents the Quick algorithm, and its performance is
studied in Section 4. Related work is described in Section 5. Finally, Section 6
concludes the paper.

2 Problem Definition

In this section, we formally define the quasi-clique mining problem. We consider
simple graphs only, that is, undirected graphs that have no self-loops and multi-
edges. Graph isomorphism test is very complicated and costly. To simplify the
problem and the presentation, we restrict our discussion to relational graphs
where every vertex has a unique label. In this case, graph isomorphism test can
be performed by simply comparing the vertex set and edge set of two graphs.
Note that the techniques described in this paper can be applied to non-relational
graphs as well. In the rest of this paper, the term “graph” refers to simple
relational graphs unless otherwise stated.

A simple graph G is defined as a pair (V, E), where V is a set of vertices, and
E is a set of edges between the vertices. Two vertices are adjacent if there is an
edge between them. The adjacency list of a vertex v in G, denoted as NG(v), is
defined as {u|(u, v) ∈ E}. The degree of a vertex v in G, denoted as degG(v),
is defined as |NG(v)|. The adjacency list of a vertex set X , denoted as NG(X),
is defined as {u|∀v ∈ X, (u, v) ∈ E}.

The distance between two vertices u and v in a graph G = (V, E), denoted
as distG(u, v), is defined as the number of edges on the shortest path between
u and v. Trivially, distG(u, u) = 0, and distG(u, v) = 1 if u �= v and (u, v) ∈ E.
We denote the set of vertices that are within a distance of k from vertex v as
NG

k (v) = {u|distG(u, v) ≤ k}. The diameter of a graph G, denoted as diam(G),
is defined as maxu,v∈V distG(u, v). A graph is called connected if distG(u, v) < ∞
for any u, v ∈ V .
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Definition 1 (γ-quasi-clique). A graph G = (V, E) is a γ-quasi-clique (0 ≤
γ ≤ 1) if G is connected, and for every vertex v ∈ V , degG(v) ≥ �γ · (|V | − 1)�.

According to the definition, a quasi-clique is a graph satisfying a user-specified
minimum vertex degree bound, and we call γ the minimum degree threshold. A
clique is a special case of quasi-clique with γ=1. Figure 1 shows two example
quasi-cliques. Graph G1 is a 0.5-quasi-clique, but it is not a 0.6-quasi-clique
because the degree of every vertex in G1 is 2, and 2 is smaller than �0.6 · (5 − 1)�.
Graph G2 is a 0.6-quasi-clique.

Given a graph G = (V, E), graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V
and E′ ⊆ E. Graph G is called a supergraph of G′. If V ′ ⊂ V and E′ ⊆ E, or
E′ ⊂ E and V ′ ⊆ V , then G′ is called a proper subgraph of G, and G is called
a proper supergraph of G′. A subgraph G′ of a graph G is called an induced
subgraph of G if, for any pair of vertices u and v of G′, (u, v) is an edge of G′

if and only if (u, v) is an edge of G. We also use G(X) to denote the subgraph
of G induced on a vertex set X ⊆ V . Given a minimum degree threshold γ,
if a graph is a γ-quasi-clique, then its subgraphs usually become uninteresting
even if they are also γ-quasi-cliques. In this paper, we mine only maximal quasi-
cliques.

Definition 2 (Maximal γ-quasi-clique). Given graph G = (V, E) and a ver-
tex set X ⊆ V . G(X) is a maximal γ-quasi-clique of G if G(X) is a γ-quasi-
clique, and there does not exist another vertex set Y such that Y ⊃ X and G(Y )
is a γ-quasi-clique.

Cliques have the downward-closure property, that is, if G is a clique, then all of
its induced subgraphs must also be cliques. This downward-closure property has
been used to mine various frequent patterns in the data mining community. Un-
fortunately, this property does not hold for quasi-cliques. An induced subgraph
of a γ-quasi-clique may not be a γ-quasi-clique. For example, graph G1 in Figure
1 is a 0.5-quasi-clique, but one of its induced subgraph is not a 0.5-quasi-clique
as shown in Figure 1(c). In fact, none of the induced subgraphs of G1 with four
vertices is a 0.5-quasi-clique.

Small quasi-cliques are usually trivial and not interesting. For example, a
single vertex itself is a quasi-clique for any γ. We use a minimum size threshold
min size to filter small quasi-cliques.

Problem statement (Mining maximal quasi-cliques from a single
graph). Given a graph G = (V, E), a minimum degree threshold γ ∈ [0, 1]
and a minimum size threshold min size, the problem of mining maximal quasi-
cliques from G is to find all the vertex sets X such that G(X) is a maximal
γ-quasi-cliques of G and X contains at least min size vertices.

In some applications, users are interested in finding quasi-cliques that occur
frequently in a set of graphs. The techniques proposed in this paper can be
applied to mine frequent quasi-cliques (or so-called cross quasi-cliques [7] or
coherent quasi-cliques [8]) from a given graph database as well.
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(c) G1(V − {v5})

Fig. 1. Examples of quasi-cliques

3 Efficient Mining of Quasi-Cliques

3.1 The Depth-First Search Framework

Given a graph G = (V, E), any subset of V may form a quasi-clique. Therefore,
the search space of the maximal quasi-clique mining problem is the power set
of V , and it can be represented as a set-enumeration tree [9]. Figure 2 shows
the search space tree for a graph G with four vertices {a, b, c, d}. Each node in
the tree represents a vertex set. For every vertex set X in the tree, only vertices
after the last vertex of X can be used to extend X . This set of vertices are
called candidate extensions of X , denoted as cand exts(X). For example, in the
search space tree shown in Figure 2, vertices are sorted into lexicographic order,
so vertex d is in cand exts({a, c}), but vertex b is not a candidate extension of
{a, c} because vertex b is before vertex c in lexicographic order.

The Quick algorithm uses the depth-first order to explore the search space.
In the example search space tree shown in Figure 2, the Quick algorithm first
finds all the quasi-cliques containing vertex a, and then finds all the quasi-cliques
containing vertex b but not containing vertex a, and so on. The size of the search
space is exponential to the number of vertices in the graph. The main issue in
mining quasi-cliques is how to effectively and efficiently prune the search space.
As discussed in Section 2, quasi-cliques do not have the downward-closure prop-
erty, hence we cannot use the downward-closure property to prune the search
space here. According to the definition of quasi-cliques, there is a minimum

{}

{a} {b} {c } {d}

{a, b} {a, c } {a, d}

{a, b, c } {a, b, d}

{a, b, c , d}

{b, c } {b, d}

{b, c , d}

{c , d}

{a, c , d}

Fig. 2. The search space tree (V = {a, b, c, d})
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requirement on the degree of the vertices in a quasi-clique. We use this constraint
to reduce the candidate extensions of each vertex set X .

3.2 Pruning Techniques Used in Existing Work

Before describing the new pruning techniques used in the Quick algorithm, we
first describe the pruning techniques used by existing work. These pruning tech-
niques are adopted in the Quick algorithm.

Pruning based on graph diameters. Pei et al. inferred the upper bound
of the diameter of a γ-quasi-clique based on the value of γ (Theorem 1 in [7]).
In particular, the upper bound of the diameter of a γ-quasi-clique is 2 when
γ ≥ 0.5. They used this upper bound to reduce the candidate extensions of a
vertex set as stated in the following lemma.

Lemma 1. Given graph G = (V, E) and two vertex sets X ⊂ Y ⊆ V , if G(Y ) is
a γ-quasi-clique, then for every vertex u ∈ (Y − X), we have u ∈

⋂
v∈X NG

k (v),
where k is the upper bound of the diameter of a γ-quasi-clique.

Based on the above lemma, those vertices that are not in
⋂

v∈X NG
k (v) can be

removed from cand exts(X).

Pruning based on the minimum size threshold. The size of a valid γ-quasi-
clique should be no less than min size. Consequently, the degree of a vertex con-
tained in any valid γ-quasi-clique should be no less than �γ · (min size − 1)�.
Those vertices whose degree is less than �γ · (min size − 1)� can be removed
since no valid γ-quasi-cliques contain them. Pei et al. [7] used this pruning tech-
nique in their algorithm.

Pruning based on the degree of the vertices. For a vertex set X in the
search space, the Cocain algorithm proposed by Zeng et al. [10] prunes the
candidate extensions of X based on the number of their neighbors in X and
cand ext(X). Given a vertex u, we use indegX(u) to denote the number of
vertices in X that are adjacent to u, and exdegX(u) to denote the number of
vertices in cand exts(X) that are adjacent to u, that is, indegX(u) = |{v|(u, v) ∈
E, v ∈ X}| and exdegX(u) = |{v|(u, v) ∈ E, v ∈ cand ext(X)}|. The Cocain
algorithm uses the following lemmas to prune the search space and interested
readers may refer to [10] for their proof.

Lemma 2. If m+u < �γ · (k + u)�, where m, u, k ≥ 0, then ∀i ∈ [0, u], m+ i <
�γ · (k + i)�.

Lemma 3. Given a vertex set X and a vertex u ∈ cand exts(X), if indegX(u)+
exdegX(u) <

⌈
γ · (|X | + exdegX(u))

⌉
, then there does not exist a vertex set Y

such that (X ∪ {u}) ⊆ Y ⊆ (X ∪ cand exts(X)), and G(Y ) is a γ-quasi-clique.
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For a vertex v ∈ cand exts(X), if there does not exist a vertex set Y such that
(X ∪ {u}) ⊆ Y ⊆ (X ∪ cand exts(X)) and G(Y ) is a γ-quasi-clique, then v is
called an invalid candidate extension of X . The Cocain algorithm removes those
invalid candidate extensions of X based on Lemma 3. Due to the removal of
these invalid candidate extensions, some other candidate extensions of X that
appear to be valid originally may become invalid apparently. Cocain does the
pruning iteratively until no vertex can be removed from cand exts(X). However,
not all the invalid candidate extensions can be removed using Lemma 2.

The Cocain algorithm also checks the extensibility of the vertices in X using
the following lemma.

Lemma 4. Given vertex set X and a vertex v ∈ X, if indegX(v) < �γ · |X |�
and exdegX(v) = 0, or indegX(v) + exdegX(v) <

⌈
γ · (|X | − 1 + exdegX(v))

⌉
,

then there does not exist a vertex set Y such that X ⊂ Y ⊆ (X ∪ cand exts(X))
and G(Y ) is a γ-quasi-clique. Vertex v is called a failed vertex of X.

If there is a failed vertex in X , then there is no need to extend X further.

3.3 New Pruning Techniques Used in the Quick Algorithm

The above pruning techniques can effectively prune the search space, but they
have not fully utilized the pruning power of the minimum degree constraint yet,
and not all the invalid candidate extensions can be detected and removed by
them. Next we describe the new pruning techniques used in our Quick algorithm.

Technique 1: pruning based on the upper bound of the number of
vertices that can be added to X concurrently to form a γ-quasi-clique.
Given vertex set X , the maximum number of vertices that can be added to X
to form a γ-quasi-clique is bounded by the minimal degree of the vertices in X .

Lemma 5. Let degmin(X) = min{indegX(v) + exdegX(v)|v ∈ X}, Y be a su-
perset of X such that Y ⊆ (X ∪ cand exts(X)) and G(Y ) is a γ-quasi-clique.
We have |Y | ≤ �degmin(X)/γ� + 1.

Proof. For every vertex v ∈ X , we have indegX(v) + exdegX(v) ≥ indegY (v) ≥
�γ · (|Y | − 1)�, so we have degmin(X) ≥ �γ · (|Y | − 1)�. Therefore, we have
�degmin(X)/γ� ≥ �(�γ · (|Y | − 1)�)/γ� ≥ �γ · (|Y | − 1)/γ� = |Y | − 1. So we
have |Y | ≤ �degmin(X)/γ�+1.

Based on Lemma 5, we derive the following upper bound:

Definition 3 (Umin
X ). The maximal number of vertices in cand exts(X) that

can be added to X concurrently to form a γ-quasi-clique should be no larger than
�degmin(X)/γ� + 1 − |X |, where degmin(X) = min{indegX(v) + exdegX(v)|v ∈
X}. We denote this upper bound as Umin

X = �degmin(X)/γ� + 1 − |X |.

We further tighten this lower bound based on the observation that if G(Y )
is a γ-quasi-clique, then for any subset X of Y , we have

∑
v∈X indegY (v) ≥

|X | · �γ · (|Y | − 1)�.
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Lemma 6. Let vertices in cand exts(X) be sorted in descending order of their
indegX value, and the set of sorted vertices be denoted as {v1, v2, · · · , vn}. Given
an integer 1 ≤ k ≤ n, if

∑
v∈X indegX(v)+

∑
1≤i≤k indegX(vk) < |X |·�γ ·(|X |+

k − 1)�, then for every vertex set Z such that Z ⊆ cand exts(X) and |Z| = k,
X ∪ Z is not a γ-quasi-clique.

Proof. Given a vertex set Z such that Z ⊆ cand exts(X) and |Z| = k, we have∑
v∈X indegX∪Z(v)=

∑
v∈X indegX(v)+

∑
v∈X indegZ(v)=

∑
v∈X indegX(v)+∑

v∈Z indegX(v) ≤
∑

v∈X indegX(v) +
∑

1≤i≤|Z| indegX(vi) < |X |· �γ · (|X |+
|Z| − 1)�. Therefore, X ∪ Z is not a γ-quasi-clique.

Based on the above lemma, we tighten the upper bound as follows:

Definition 4 (Upper bound UX). Let UX =max{t|
∑

v∈X indegX(v)+
∑

1≤i≤t

indegX(vi) ≥ |X | · �γ · (|X | + t − 1)�, 1 ≤ t ≤ Umin
X } if such t exists, otherwise

UX=0. If G(Y ) is a γ-quasi-clique and X ⊆ Y ⊆ (X ∪ cand exts(X)), then
|Y − X | ≤ UX .

Lemma 7. Given a vertex set X and a vertex u ∈ cand exts(X), if indegX(u)+
UX −1 < �γ · (|X | + UX − 1)�, then there does not exist a vertex set Y such that
(X ∪ {u}) ⊆ Y ⊆ (X ∪ cand exts(X)), and G(Y ) is a γ-quasi-clique.

Proof. Let Y be a vertex set such that G(Y ) is a γ-quasi-clique and (X ∪
{u}) ⊆ Y ⊆ (X ∪ cand exts(X)). Since u ∈ (Y − X), there are at most
|Y | − |X | − 1 vertices in Y − X that are adjacent to u, and |Y | − |X | − 1 ≤
UX − 1 based on the definition of UX . Based on Lemma 2 and the fact that
indegX(u)+UX −1 < �γ · (|X | + UX − 1)�, we have indegX(u)+ |Y |−|X |−1 <
�γ · (|X | + |Y | − |X | − 1)� = �γ · (|Y | − 1)�. Therefore, we have indegY (u) ≤
indegX(u) + |Y | − |X | − 1 < �γ · (|Y | − 1)�. It contradicts the assumption that
G(Y ) is a γ-quasi-clique.

Similarly, we can get the following lemma, and its proof is similar to Lemma 7.

Lemma 8. Given a vertex set X and a vertex u ∈ X, if indegX(u) + UX <
�γ · (|X | + UX − 1)�, then there does not exist a vertex set Y such that X ⊆ Y ⊆
(X ∪ cand exts(X)), and G(Y ) is a γ-quasi-clique.

For each vertex set X , its candidate extensions are pruned based on the up-
per bound as follows. We first check whether UX=0. If it is true, then no ver-
tices in cand exts(X) can be added to X to form a γ-quasi-clique. Next, we
check whether there exists some vertex u ∈ X such that indegX(u) + UX <
�γ · (|X | + UX − 1)�. If such u exists, then no γ-quasi-cliques can be generated
by extending X . Otherwise, we remove the invalid candidate extensions of X
identified by Lemma 7 from cand exts(X). The removal of these invalid candi-
date extensions can in turn reduce the degree of other vertices in cand exts(X),
thus making other invalid vertices identifiable. The pruning is iteratively carried
out until no more vertices can be removed from cand exts(X).
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Technique 2: pruning based on the lower bound of the number of
vertices that can be added to X concurrently to form a γ-quasi-clique.
Given a vertex set X , if there exists a vertex u ∈ X such that indegX(u) <
�γ · (|X | − 1)�, then at least a certain number of vertices need to be added to
X to increase the degree of u in order to form a γ-quasi-clique. We denote this
lower bound as Lmin

X , and it is defined as follows.

Definition 5 (Lmin
X ). Let indegmin(X) = min{indegX(v)|v ∈ X}. Lmin

X is
defined as Lmin

X = min{t|indegmin(X) + t ≥ �γ · (|X | + t − 1)�}.
Again, this lower bound can be further tightened based on Lemma 6. We sort
vertices in cand exts(X) = {v1, v2, · · · , vn} in descending order of indegX value.

Definition 6 (Lower bound LX). Let LX =min{t|
∑

v∈X indegX(v)+
∑

1≤i≤t

indegX(vi) ≥ |X | · �γ · (|X | + t − 1)� , Lmin
X ≤ t ≤ n} if such t exists. Oth-

erwise LX = |cand exts(X)|+1. If G(Y ) is a γ-quasi-clique and X ⊆ Y ⊆
(X ∪ cand exts(X)), then |Y − X | ≥ LX .

Based on the definition of LX , we can get the following lemmas.

Lemma 9. Let X be a vertex set and u be a vertex in cand exts(X). If indegX(u)
+exdegX(u) < �γ · (|X | + LX − 1)�, then there does not exist a vertex set Y such
that (X ∪ {u}) ⊆ Y ⊆ (X ∪ cand exts(X)), and G(Y ) is a γ-quasi-clique.

Lemma 10. Let X be a vertex set and u be a vertex in X. If indegX(u) +
exdegX(u) < �γ · (|X | + LX − 1)�, then there does not exist a vertex set Y such
that X ⊆ Y ⊆ (X ∪ cand exts(X)), and G(Y ) is a γ-quasi-clique.

For each vertex set X , its candidate extensions are pruned based on the lower
bound as follows. We first check whether LX > UX . If it is true, then no need to
extend X further. Next, we check whether there exists some vertex u ∈ X such
that indegX(u)+ exdegX(u) < �γ · (|X | + LX − 1)�. If such u exists, then no γ-
quasi-cliques can be generated by extending X based on Lemma 10. Otherwise,
we remove the invalid candidate extensions of X identified by Lemma 9. Again
the removal is carried out iteratively until no more candidate can be removed.

Note that the removal of the invalid candidate extensions based on Lemma
3, 7 and 9 may further tighten the two bounds LX and UX , which may in turn
make more invalid candidate extensions identifiable.

Technique 3: pruning based on critical vertices. Let X be a vertex
set. If there exists a vertex v ∈ X such that indegX(v) + exdegX(v) =
�γ · (|X | + LX − 1)�, then v is called a critical vertex of X .

Lemma 11. If v ∈ X is a critical vertex of X, then for any vertex set Y such
that X ⊂ Y ⊆ (X ∪ cand exts(X)) and G(Y ) is a γ-quasi-clique, we have
{u|(u, v) ∈ E ∧ u ∈ cand exts(X)} ⊆ Y .

Proof. Let u be a vertex such that u ∈ cand exts(X) and (u, v) ∈ E. Sup-
pose that u /∈ Y , then we have indegY (v) < indegX(v) + exdegX(v) =
�γ · (|X | + LX − 1)� ≤ �γ · (|Y | − 1)�. It contradicts the fact that Y is a γ-
quasi-clique.
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Based on the above lemma, we can identify the critical vertices for every vertex
set X . If such critical vertex exists, let it be v, then we add the vertices in
cand exts(X) that are adjacent to v to X . Let Y be the resultant vertex set. The
remaining mining is performed on Y , and the cost for extending X ∪{u}(u /∈ Y )
is saved.

Technique 4: pruning based on cover vertices. This pruning technique is
inspired by the technique used in [11] for mining maximal cliques. Tomita et al.
use the following lemma to prune non-maximal cliques.

Lemma 12. Let X be a clique and u be a vertex in NG(X). For any vertex set
Y such that G(Y ) is a clique and Y ⊆ (X ∪ NG(X ∪ {u})), G(Y ) cannot be a
maximal clique.

Proof. Vertex u is adjacent to all the vertices in X , and it is also adjacent to
all the vertices in NG(X ∪ {u}). Hence u is adjacent to all the vertices in Y . In
other words, Y ∪ {u} is a clique, thus clique Y is not maximal.

Based on the above lemma, Tomita et al. pick a vertex with the maximal degree
from cand exts(X). Let u be the picked vertex. When X is extended using
vertices in cand exts(X), the vertex set extended from X must contain at least
one vertex that is not in NG(X ∪{u}). In this way, the subsets of (X ∪NG(X ∪
{u})) are pruned since they are not maximal.

Here we generalize the above lemma to quasi-cliques.

Lemma 13. Let X be a vertex set and u be a vertex in cand exts(X) such that
indegX(u) ≥ �γ · |X |�. If for any vertex v ∈ X such that (u, v) /∈ E, we have
indegX(v) ≥ �γ · |X |�, then for any vertex set Y such that G(Y ) is a γ-quasi-
clique and Y ⊆ (X ∪ (cand exts(X) ∩ NG(u) ∩ (

⋂
v∈X∧(u,v)/∈E NG(v)))), G(Y )

cannot be a maximal γ-quasi-clique.

Proof. Vertex set Y is a γ-quasi-clique, then for every vertex v ∈ Y , we have
indegY (v) ≥ �γ · (|Y | − 1)�. Let us look at vertex set Y ∪{u}. (1) Vertex u is ad-
jacent to all the vertices in cand exts(X) ∩ NG(u) ∩ (

⋂
v∈X∧(u,v)/∈E NG(v)) and

indegX(u) ≥ �γ · |X |�, so we have indegY ∪{u}(u) = indegX(u) + |Y | − |X | ≥
�γ · |X |� + |Y | − |X | ≥ �γ · |Y |�. (2) Similarly, for every vertex v ∈ X such
that (u, v) /∈ E, v is adjacent to all the vertices in cand exts(X) ∩ NG(u) ∩
(
⋂

v∈X∧(u,v)/∈E NG(v)) and indegX(u) ≥ �γ · |X |�, so we have indegY ∪{u}(v) =
indegX(v) + |Y | − |X | ≥ �γ · |X |� + |Y | − |X | ≥ �γ · |Y |�. (3) For every ver-
tex v ∈ X such that (u, v) ∈ E, we have indegY ∪{u}(v) = indegY (v) + 1 ≥
�γ · (|Y | − 1)� + 1 ≥ �γ · |Y |�. (4) Similarly, for every vertex v ∈ (Y − X), we
have indegY ∪{u}(v) = indegY (v) + 1 ≥ �γ · |Y |�. In summary, Y ∪ {u} is a
γ-quasi-clique and Y is not maixmal.

We use CX(u) to denote the set of vertices that are covered by u with respect
to X , that is, CX(u) = cand exts(X) ∩ NG(u) ∩ (

⋂
v∈X∧(u,v)/∈E NG(v)). Based

on the above lemma, we find a vertex that maximize the size of CX(u) from
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cand exts(X). Let u be the picked vertex. We call u the cover vertex of X . We
prune those vertex sets that are subsets of X ∪ CX(u) by putting the vertices in
CX(u) after all the other vertices in cand exts(X) and then using the vertices
in cand exts(X) − CX(u) to extend X .

Technique 5: the lookahead technique. This pruning technique has been
used in mining maximal frequent itemsets [12]. Its basic idea is that before
extending X using any vertex from cand exts(X), we first check whether
X ∪ cand exts(X) is a γ-quasi-clique. If it is, then there is no need to ex-
tend X further because all the vertex sets extended from X are subsets of
X ∪ cand exts(X), thus they cannot be maximal except for X ∪ cand exts(X)
itself.

Algorithm 1. Quick Algorithm
Input:

X is a vertex set
cand exts is the valid candidate extensions of X
γ is the minimum degree threshold
min size is the minimum size threshold

Output:
true if some superset of X can form a γ-quasi-clique, otherwise false;

Description:
1. Find the cover vertex u of X; Sort vertices in cand exts(X) such that vertices in CX(u) are

after all the other vertices;
2. bhas qclq = false;
3. for all vertex v ∈ candexts(X) − CX(u) do
4. if |X| + |cand exts(X)| < min size then
5. return bhas qclq;
6. if G(X ∪ cand exts(X)) is a γ-quasi-clique then
7. Output X ∪ cand exts(X);
8. return t rue;
9. Y = X ∪ {v};
10. cand exts(X) = cand exts(X) − {v};
11. candY = cand exts(X) ∩ NG

k (v), where k is calculated based on Theorem in [7];
12. repeat
13. Calculate the upper bound UY and lower bound LY of the number of vertices that can be

added to Y concurrently to form a γ-quasi-clique;
14. if there is a critical vertex u′ in Y then
15. Y = Y ∪ (candY ∩ NG(u′));
16. candY = candY − (candY ∩ NG(u′));
17. update UY and LY ;
18. Z = {v | indegY (v) + exdegY (v) < 	γ · (|Y | + exdegY (v) − 1)
 ∨

indegY (v) + UY <

	γ · (|Y | + UY − 1)
 ∨
indegY (v) + exdeg(Y )(v) < 	γ · (|Y | + LY − 1)
, v ∈ X};

19. if Z is not empty then
20. candY = {};
21. Z = {v | indegY (v) + exdegY (v) < 	γ · (|Y | + exdegY (v))
 ∨

indegY (v) + UY − 1 <

	γ · (|Y | + UY − 1)
 ∨
indegY (v) + exdeg(Y )(v) < 	γ · (|Y | + LY − 1)
, v ∈ candY };

22. candY = CandY − Z;
23. until LY > UY OR Z = {} OR candY = {}
24. if LY ≤ UY AND |candY | >0 AND |Y | + |candY | ≥ min size then
25. bhas superqclq = Quick(Y , candY , γ, min size);
26. bhas qclq = bhas qclq OR bhas superqclq;
27. if |Y | ≥ min size AND G(Y ) is a γ-quasi-clique AND bhas superqclq==false then
28. bhas qclq = true;
29. Output Y ;
30. return bhas qclq;
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3.4 The Pseudo-codes of the Quick Algorithm

Algorithm 1 shows the pseudo-codes of the Quick algorithm. When the algorithm
is first called on a graph G = (V, E), X is set to the empty set, and cand exts(X)
is set to {v|exdegX(v) ≥ �γ · (min size − 1)� , v ∈ V }.

The Quick algorithm explores the search space in depth-first order. For a
vertex set X in the search space, Quick first finds its covering vertex u, and puts
the vertices in CX(u) after all the other vertices in cand exts(X) (line 1). Only
the vertices in cand exts(X)−CX(u) are used to extend X to prune the subsets
of X ∪CX(u) based on Lemma 13 (line 3). Before using a vertex v to extend X ,
Quick uses the minimum size constraint (line 4-5) and the lookahead technique
to prune search space. Quick checks whether X ∪ cand exts(X) is a γ-quasi-
clique. If it is, then Quick outputs X ∪ cand exts(X) and skips the generation
of subsets of X ∪ cand exts(X) (line 6-8).

When using a vertex v to extend X , Quick first removes those vertices
that are not in NG

k (v), where k is the upper bound of the diameter of
G(X ∪ cand exts(X)) if G(X ∪ cand exts(X)) is a γ-quasi-clique (line 11). Let
Y = X ∪ {u}. Next Quick calculates the upper bound UY and lower bound LY

of the number of vertices that can be added to Y concurrently to form a γ-
quasi-clique, and uses these two bounds to iteratively remove invalid candidate
extensions of Y as follows (line 12-23). It first identifies critical vertices in Y .
If there is a critical vertex u in Y , Quick adds all the vertices in cand exts(Y )
that are adjacent to u to Y based on Lemma 11 (line 14-16). Next, Quick checks
the extensibility of the vertices in Y based on Lemma 4, 8 and 10 (line 18-20).
Quick then prunes invalid candidate extensions based on Lemma 3, 7 and 9 (line
21-22). If candY is not empty after all the pruning, Quick extends Y recursively
using candY (line 25).

The last two pruning techniques described in Section 3.3 can remove some non-
maximal quasi-cliques, but they cannot remove all. To further reduce the number
of non-maximal quasi-cliques generated, we check whether there is any γ-quasi-
clique generated from some superset of Y , and output Y only if there is none
(line 26-28). The remaining non-maximal quasi-cliques are removed in a post-
processing step. We store all the vertex sets of the γ-quasi-cliques produced by
Algorithm 1 in a prefix-tree. Quasi-cliques represented by internal nodes cannot
be maximal. For each quasi-clique represented by a leaf node, we search for its
subsets in the tree and mark them as non-maximal. At the end, the quasi-cliques
represented by the leaf nodes that are not marked as non-maximal are maximal,
and they are put into the final output.

Algorithm 1 prunes the search space based on the lemmas described in Section
3.2 and 3.3, so its correctness and completeness is guaranteed by the correctness
of these lemmas.

4 A Performance Study

In this section, we study the efficiency of the Quick algorithm and the effective-
ness of the pruning techniques used in Quick. Our experiments were conducted
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on a PC with an Intel Core 2 Duo CPU (2.33GHz) and 3.2GB of RAM. The
operating system is Fedora 7. Our algorithm was implemented using C++ and
complied using g++.

We used both real datasets and synthetic datasets in our experi-
ments. The real datasets are protein interaction networks downloaded from
DIP(http://dip.doe-mbi.ucla.edu/). The yeast interaction network contains
4932 vertices (proteins) and 17201 edges (interactions). The E.coli interaction
network contains 1846 vertices and 5929 edges. The synthetic graphs are gener-
ated using several parameters: V is the number of vertices, Q is the number of
quasi-cliques planted in the graph, γmin is the minimum degree threshold of the
planted quasi-cliques, MinSize and MaxSize are the minimum and maximum
size of the planted quasi-cliques, and d is the average degree of the vertices. To
generate a synthetic graph, we first generate a value γ between γmin and 1, and
then generate Q γ-quasi-cliques. The size of the quasi-cliques is uniformly dis-
tributed between MinSize and MaxSize. If the average degree of the V vertices
is less than d after all the Q quasi-cliques are planted, then we randomly add
edges into the graph until the average degree reaches d.

4.1 Comparison with Cocain

We compared Quick with Cocain [8] in terms of mining efficiency. The Co-
cain algorithm is designed for mining coherent closed quasi-cliques from a graph
database. A quasi-clique is closed if all of its supergraphs that are quasi-cliques
are less frequent than it. When applied to a single graph with minimum support
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Fig. 3. Running time on four datasets
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Fig. 4. Varying dataset generation parameters (default parameters: V =3000, Q=100
γmin=0.5, MinSize=5, MaxSize=10, d=10.0)

of 100%, mining coherent closed quasi-cliques is equivalent to mining maximal
quasi-cliques. The executable of Cocain was kindly provided by their authors.

Figure 3 shows the running time of the two algorithms with respect to the
γ threshold on four datasets. The first two datasets are synthetic datasets.
Dataset V1000Q50r0.5s5-15d10 was generated with V = 1000, Q=50, γmin=0.5,
MinSize=5, MaxSize=15 and d=10. Dataset V2000Q100r0.7s5-10d20 was gen-
erated with V = 2000, Q = 100, γmin=0.7, MinSize=5, MaxSize=10 and
d=20. On all four datasets, the min size threshold is set to 1. Quick is tens of
times or even hundreds of times more efficient than Cocain on all four datasets. It
indicates that the pruning techniques used in Quick are very effective in pruning
search space. The running time of both algorithms increases with the decrease
of the γ threshold because more γ-quasi-cliques are generated and less vertices
can be pruned when γ decreases.

We studied the scalability of the two algorithms using synthetic datasets. Fig-
ure 4 shows the running time of the two algorithms when varying the number of
vertices V , the number of planted quasi-cliques Q, the maximum size the planted
quasi-cliques MaxSize and the average degree of the vertices d respectively. The
default parameters are set as follows: V =3000, Q=100, γmin=0.5, MinSize=5,
MaxSize=10, and d=10. The running time of both algorithm increases steadily
with the increase of the number of vertices and the number of planted quasi-
cliques. They are more sensitive to the increase of the maximum size of the
planted quasi-cliques and the average degree of the vertices. We observed the
same trend on the number of maximal quasi-cliques generated.
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4.2 Effectiveness of the Proposed Pruning Techniques

In this experiment, we study the effectiveness of the proposed pruning tech-
niques. We implemented a baseline mining algorithm that does not use any of
the five pruning techniques described in Section 3.3, but it uses the pruning
techniques described in Section 3.2. We then add one of the five pruning tech-
niques to the baseline algorithm. Table 1 shows the running time of the baseline
algorithm with no or one of the five pruning techniques on dataset DIP-E.coli
with γ=0.8 and min size=1.

Table 1 shows that on dataset DIP-E.coli, the most effective pruning tech-
nique is the one based on the lower bound of the number of vertices that should
be added to the current vertex set concurrently to form a γ-quasi-clique (Tech-
nique 2 in Section 3.3). The lookahead technique does not help very much on
this dataset. However, on dataset V1000Q50r0.5s5-15d10, the lookahead tech-
nique can achieve a speedup ratio of 1.34. It implies that the effectiveness of the
pruning techniques also depends on the characteristics of the datasets. The over-
all speedup ratio of the Quick algorithm over the baseline algorithm is 402.71,
which is smaller than the multiplication of the speedup ratios of individual prun-
ing techniques. The reason being that some invalid candidate extensions can be
pruned by multiple pruning techniques.

Table 1. The effectiveness of the five pruning techniques on dataset DIP-E.coli

Algorithms time speedup
Baseline 3604.67 -

Baseline+UpperBound 1032.88 3.49
Baseline+LowerBound 18.73 192.48
Baseline+CriticalVertex 3572.09 1.01
Baseline+CoverVertex 2505.75 1.44
Baseline+Lookahead 3601.45 1.00

Quick 8.95 402.71

5 Related Work

The problem of determining whether a graph contains a clique of at least a given
size k is a NP-complete problem [13]. It is an even harder problem to enumerate
all the maximal cliques or quasi-cliques from a graph. Bron and Kerbosch [14]
proposed an efficient algorithm to solve the problem more than 30 years ago,
which is still one of the most efficient algorithms for enumerating all maximal
cliques today. Their algorithm is recently improved by Tomita et al. [11] by using
a tree-like output format.

There is a growing interest in mining quasi-cliques in recent years. Matsuda
et al. [5] introduced a graph structure called p-quasi complete graph, which is
the same as the γ-quasi-cliques defined in this paper, and they proposed an
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approximation algorithm to cover all the vertices in a graph with a minimum
number of p-quasi complete subgraphs. Abello et al. [6] defined a γ-clique in a
graph as a connected induced subgraph with edge density no less than γ. They
proposed a greedy randomized adaptive search algorithm called GRASP to find
γ-cliques. Bu et al. [2] used the spectral clustering method to find quasi-cliques
and quasi-bicliques from protein interaction networks.

The above work finds cliques or quasi-cliques from a single graph. Some work
mines the clique and quasi-clique from multiple graphs. Pei et al. [7] proposed
an algorithm called Crochet to mine cross quasi-cliques from a set of graphs,
and they required that a quasi-clique must appear in all the graphs. The prun-
ing techniques used in this paper is mainly based on the co-occurrences of the
vertices across all the graphs. Wang et al. [15] studied the problem of mining
frequent closed cliques from graph databases. A clique is frequent if it appears
in sufficient number of graphs. A clique is closed if all of its super-cliques are
less frequent than it. Since cliques still have the downward closure property, so
mining cliques is much easier than mining quasi-cliques. Zeng et al. [8] studied a
more general problem formulation, that is, mining frequent closed quasi-cliques
from graph databases, and proposed an efficient algorithm called Cocain to solve
the problem. The same group of authors later extended the algorithm for out-
of-core mining of quasi-cliques from very large graph databases [10]. Cocain uses
several pruning techniques to prune search space, but it has not fully utilized the
pruning power of the minimum degree constraint yet. The pruning techniques
proposed in this paper can be integrated into Crochet and Cocain to improve
their performance.

There are also some work on finding densely connected subgraphs from one
single graph or from a graph database. The connectivity of a subgraph can be
measured by the size of its minimum cut [16,17], edge density [3] or by other
measures. Hartuv and Shamir [16] proposed an algorithm called HCS which re-
cursively splits the weighted graph into a set of highly connected components
along the minimum cut. Each highly connected component is considered as a
gene cluster. Yan et al. [17] investigated the problem of mining closed frequent
graphs with connectivity constraints in massive relational graphs, and proposed
two algorithms, CloseCut and Splat, to solve the problem. Hu et al. [3] proposed
an algorithm called Codense to mine frequent coherent dense subgraphs across
massive biological networks where all edges in a coherent subgraph should have
sufficient support in the whole graph set. Gibson et al. [18] proposed an algo-
rithm to find large dense bipartite subgraphs from massive graphs, and their
algorithm is based on a recursive application of fingerprinting via shingles. Ucar
et al. [4] used a refinement method based on neighborhoods and the biological
importance of hub proteins to find dense subgraphs from protein-protein in-
teraction networks. Bader and Hogue [1] proposed a heuristic algorithm called
MCODE which is based on vertex weighting by local neighborhood density and
outward traversal from a locally dense seed protein to isolate the dense regions
according to given parameters.



48 G. Liu and L. Wong

6 Discussion and Conclusion

In this paper, we proposed several effective pruning techniques for mining quasi-
cliques. These techniques can be applied to mining quasi-cliques from a single
graph or a graph database. We describe the pruning techniques in the context
of relational graphs where each vertex has a unique label. It is not difficult to
apply these pruning techniques to non-relational graphs where different vertices
may have the same label. Our preliminary experiment results show that by using
these pruning techniques, our algorithm can be orders of magnitude faster than
existing algorithms for the task of mining quasi-cliques from a single graph. In
our future work, we will study the effectiveness of these pruning techniques for
mining frequent quasi-cliques from a graph database.
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Abstract. In this paper we applied multilabel classification algorithms to the
EUR-Lex database of legal documents of the European Union. On this docu-
ment collection, we studied three different multilabel classification problems, the
largest being the categorization into the EUROVOC concept hierarchy with al-
most 4000 classes. We evaluated three algorithms: (i) the binary relevance ap-
proach which independently trains one classifier per label; (ii) the multiclass
multilabel perceptron algorithm, which respects dependencies between the base
classifiers; and (iii) the multilabel pairwise perceptron algorithm, which trains
one classifier for each pair of labels. All algorithms use the simple but very ef-
ficient perceptron algorithm as the underlying classifier, which makes them very
suitable for large-scale multilabel classification problems. The main challenge we
had to face was that the almost 8,000,000 perceptrons that had to be trained in
the pairwise setting could no longer be stored in memory. We solve this prob-
lem by resorting to the dual representation of the perceptron, which makes the
pairwise approach feasible for problems of this size. The results on the EUR-Lex
database confirm the good predictive performance of the pairwise approach and
demonstrates the feasibility of this approach for large-scale tasks.

1 Introduction

The EUR-LEX text collection is a collection of documents about European Union law.
It contains many several different types of documents, including treaties, legislation,
case-law and legislative proposals, which are indexed according to several orthogonal
categorization schemes to allow for multiple search facilities. The most important cat-
egorization is provided by the EUROVOC descriptors, which is a topic hierarchy with
almost 4000 categories regarding different aspects of European law.

This document collection provides an excellent opportunity to study text classifica-
tion techniques for several reasons:

– it contains multiple classifications of the same documents, making it possible to
analyze the effects of different classification properties using the same underlying
reference data without resorting to artificial or manipulated classifications,

– the overwhelming number of produced documents make the legal domain a very
attractive field for employing supportive automated solutions and therefore a ma-
chine learning scenario in step with actual practice,
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– the documents are available in several European languages and are hence very in-
teresting e.g. for the wide field of multi- and cross-lingual text classification,

– and, finally, the data is freely accessible (at http://eur-lex.europa.eu/)

In this paper, we make a first step towards analyzing this database by applying mul-
tilabel classification techniques on three of its categorization schemes. The database is
a very challenging multilabel scenario due to the high number of possible labels (up to
4000), which, for example, exceeds the number of labels in the REUTERS databases
by one order of magnitude.

We evaluated three methods on this task:

– the conventional binary relevance approach (BR), which trains one binary classifier
per label

– the multilabel multiclass perceptron (MMP), which also trains one classifier per
label but does not treat them independently, instead it tries to minimize a ranking
loss function of the entire ensemble [3]

– the multilabel pairwise perceptron (MLPP), which trains one classifier for each pair
of classes [12]

Previous work on using these algorithms for text categorization [12] has shown that
the MLPP algorithm outperforms the other two algorithms, while being slightly more
expensive in training (by a factor that corresponds to the average number of labels for
each example). However, another key disadvantage of the MLPP algorithm is its need
for storing one classifier for each pair of classes. For the EUROVOC categorization,
this results in almost 8,000,000 perceptrons, which would make it impossible to solve
this task in main memory.

To solve this problem, we introduce and analyze a novel variant that addresses this
problem by representing the perceptron in its dual form, i.e. the perceptrons are for-
mulated as a combination of the documents that were used during training instead of
explicitly as a linear hyperplane. This reduces the dependence on the number of classes
and therefore allows the Dual MLPP algorithm to handle the tasks in the EUR-Lex
database.

We must note that in this work we do not solve the entire multilabel classification
problem, but, following [3], we only provide a ranking of all possible labels. There are
three reasons for this: (i) the MMP and the pairwise method naturally provide such a
ranking, (ii) the ranking allows to evaluate the performance differences on a finer scale,
and (iii) our key motivation is to study the scalability of these approaches which is
determined by the rankings. However, there are several methods for finding a delimiter
between relevant and irrelevant labels within a provided ranking of the labels, a good
overview can be found in [17]. For the pairwise approach, we have recently introduced
the idea of using an artificial label that encodes the boundary between relevant and
irrelevant labels for each example [2], which has also been successfully applied to the
REUTERS text categorization task [7].

The outline of the paper is as follows: We start with a presentation of the EUR-
Lex respository and the datasets that we derived from it (Section 2). Section 3 briefly
recapitulates the algorithms that we study, followed by the presentation of the dual
version of the MLPP classifier (section 4). In Section 5, we compare the computational
complexity of all approaches, and present the experimental results in Section 6.
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Title and reference
Council Directive 91/250/EEC of 14 May 1991 on the legal protection of computer
programs

Classifications

EUROVOC descriptor
– data-processing law, computer piracy, copyright, software, approximation of

laws
Directory code

– 17.20.00.00 Law relating to undertakings / Intellectual property law
Subject matter

– Internal market, Industrial and commercial property

Text
COUNCIL DIRECTIVE of 14 May 1991 on the legal protection of computer programs
(91/250/EEC)

THE COUNCIL OF THE EUROPEAN COMMUNITIES,

Having regard to the Treaty establishing the European Economic Community and in
particular Article 100a thereof, . . .

Fig. 1. Excerpt of a EUR-Lex sample document with the CELEX ID 31991L0250. The original
document contains more meta-information. We trained our classifiers to predict the EUROVOC
descriptors, the directory code and the subject matters based on the text of the document.

2 The EUR-Lex Repository

The EUR-Lex/CELEX (Communitatis Europeae LEX) Site1 provides a freely accessi-
ble repository for European Union law texts. The documents include the official Journal
of the European Union. They are available in most of the languages of the EU. We re-
trieved the HTML versions with bibliographic notes recursively from all (non empty)
documents in the English version of the Directory of Community legislation in force2,
in total 19,596 documents. Only documents related to secondary law (in contrast to
primary law, the constitutional treaties of the European Union) and international agree-
ments are included. The legal form of the included acts are mostly decisions (8,917
documents), regulations (5,706), directives (1,898) and agreements (1,597).

The bibliographic notes of the documents contain information such as dates of effect,
authors, etc. and classifications. The classifications include the assignment to several
EUROVOC descriptors, directory codes and subject matters, hence all classifications
are multilabel ones. EUROVOC is a multilingual thesaurus providing a controlled vo-
cabulary3. Documents in the documentation systems of the EU are indexed using this
thesaurus.The directory codes are classes of the official classification hierarchy of the

1 http://eur-lex.europa.eu
2 http://eur-lex.europa.eu/en/legis/index.htm
3 http://europa.eu/eurovoc/
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Directory of Community legislation in force. It contains 20 chapter headings with up to
four sub-division levels.

The high number of 3,993 different EUROVOC descriptors were identified in the
retrieved documents, each document is associated to 5.37 descriptors on average. In
contrast there are only 201 different subject matters appearing in the dataset, with a
mean of 2.23 labels per document, and 412 different directory codes, with a label set
size of on average 1.29.

Figure 1 shows an excerpt of a sample document with all information that has not
been used removed. The full document can be viewed at http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT. We extracted the text
body from the HTML documents, excluding HTML tags, bibliographic notes or other
additional information that could distort the results. The text was tokenized into lower
case, stop words were excluded, and the Porter stemmer algorithm was applied. In or-
der to perform cross validation, the instances were randomly distributed into ten folds.
The tokens were projected for each fold into the vector space model using the com-
mon TF-IDF term weighting.In order to reduce the memory requirements, of the ap-
prox. 200,000 resulting features we selected the first 5,000 ordered by their document
frequency.

3 Preliminaries

We represent an instance or object as a vector x̄ = (x1, . . . , xM ) in a feature space
X ⊆ RN . Each instance x̄i is assigned to a set of relevant labels Y i, a subset of the
K possible classes Y = {c1, . . . , cK}. For multilabel problems, the cardinality |Y i| of
the label sets is not restricted, whereas for binary problems |Y i| = 1. For the sake of
simplicity we use the following notation for the binary case: we define Y = {1, −1} as
the set of classes so that each object x̄i is assigned to a yi ∈ {1, −1} , Y i = {yi}.

3.1 Ranking Loss Functions

In order to evaluate the predicted ranking we use different ranking losses. The losses
are computed comparing the ranking with the true set of relevant classes, each of them
focusing on different aspects. For a given instance x̄, a relevant label set Y , a negative
label set Y = Y\Y and a given predicted ranking r : Y → {1 . . .K}, with r(c) return-
ing the position of class c in the ranking, the different loss functions are computed as
follows:

ISERR . The is-error loss determines whether r(c) < r(c′) for all relevant classes
c ∈ Y and all irrelevant classes c′ ∈ Y . It returns 0 for a completely correct, perfect
ranking, and 1 for an incorrect ranking, irrespective of ‘how wrong’ the ranking is.

ONEERR . The one error loss is 1 if the top class in the ranking is not a relevant
class, otherwise 0 if the top class is relevant, independently of the positions of the
remaining relevant classes.

RANKLOSS . The ranking loss returns the number of pairs of labels which are not
correctly ordered normalized by the total number of possible pairs. As ISERR, it is
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0 for a perfect ranking, but it additionally differentiates between different degrees
of errors.

E
def= {(c, c′) | r(c) > r(c′)} ⊆ Y × Y δRANKLOSS

def=
|E|

|Y ||Y | (1)

MARGIN . The margin loss returns the number of positions between the worst ranked
positive and the best ranked negative classes. This is directly related to the number
of wrongly ranked classes, i.e. the positive classes that are ordered below a negative
class, or vice versa. We denote this set by F .

F
def={c ∈ Y | r(c) > r(c′), c′ ∈ Y} ∪ {c′ ∈ Y | r(c) > r(c′), c ∈ Y} (2)

δMARGIN
def= max(0, max{r(c) | c ∈ Y} − min{r(c′) | c′ /∈ Y}) (3)

AVGP . Average Precision is commonly used in Information Retrieval and computes
for each relevant label the percentage of relevant labels among all labels that are
ranked before it, and averages these percentages over all relevant labels. In order to
bring this loss in line with the others so that an optimal ranking is 0, we revert the
measure.

δAVGP
def= 1 − 1

Y

∑

c∈Y

|{c∗ ∈ Y | r(c∗) ≤ r(c)}|
r(c)

. (4)

3.2 Perceptrons

We use the simple but fast perceptrons as base classifiers [16]. As Support Vector
Machines (SVM), their decision function describes a hyperplane that divides the N -
dimensional space into two halves corresponding to positive and negative examples.
We use a version that works without learning rate and threshold:

o′(x̄) = sgn(x̄ · w̄) (5)

with the internal weight vector w̄ and sgn(t) = 1 for t ≥ 0 and −1 otherwise. If
there exists a separating hyperplane between the two set of points, i.e. they are linearly
separable, the following update rule provably finds it (cf., e.g., [1]).

αi = (yi − o′(x̄i)) w̄i+1 = w̄i + αix̄i (6)

It is important to see that the final weight vector can also be represented as linear com-
bination of the training examples:

w̄ =
M∑

i=1

αix̄i o′(x̄) = sgn(
M∑

i=1

αi · x̄ix̄) (7)

assuming M to be the number of seen training examples and αi ∈ {−1, 0, 1}. The per-
ceptron can hence be coded implicitly as a vector of instance weights α=(α1, . . . , αM )
instead of explicitly as a vector of feature weights. This representation is denominated
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Require: Training example pair (x̄, Y), perceptrons w̄1, . . . , w̄K

1: calculate x̄w̄1, . . . , x̄w̄K , loss δ
2: if δ > 0 then � only if ranking is not perfect
3: calculate error sets E, F
4: for each c ∈ F do τc ← 0, σ ← 0 � initialize τ ’s, σ

5: for each (c, c′) ∈ E do
6: p ← PENALTY(x̄w̄1, . . . , x̄w̄K)
7: τc ← τc + p � push up pos. classes
8: τc′ ← τc′ − p � push down neg. classes
9: σ ← σ + p � for normalization

10: for each c ∈ F do
11: w̄c ← w̄c + δ τc

σ
· x̄ � update perceptrons

12: return w̄1 . . . w̄K � return updated perceptrons

Fig. 2. Pseudocode of the training method of the MMP algorithm

the dual form and is crucial for developing the memory efficient variant in Section 4.
The main reason for choosing the perceptrons as our base classifier is because, con-
trary to SVMs, they can be trained efficiently in an incremental setting, which makes
them particularly well-suited for large-scale classification problems such as the Reuters-
RCV1 benchmark [10], without forfeiting too much accuracy though SVMs find the
maximum-margin hyperplane [5, 3, 18].

3.3 Binary Relevance Ranking

In the binary relevance (BR) or one-against-all (OAA) method, a multilabel training
set with K possible classes is decomposed into K binary training sets of the same
size that are then used to train K binary classifiers. So for each pair (x̄i,Y i) in the
original training set K different pairs of instances and binary class assignments (x̄i, yij )
with j = 1 . . .K are generated setting yij = 1 if cj ∈ Y i and yij = −1 otherwise.
Supposing we use perceptrons as base learners, K different o′j classifiers are trained in
order to determine the relevance of cj . In consequence, the combined prediction of the
binary relevance classifier for an instance x̄ would be the set {cj | o′j(x̄) = 1}. If, in
contrast, we desire a class ranking, we simply use the inner products and obtain a vector
ō(x̄) = (x̄w̄1, . . . , x̄w̄K). Ties are broken randomly to not favor any particular class.

3.4 Multiclass Multilabel Perceptrons

MMPs were proposed as an extension of the one-against-all algorithm with perceptrons
as base learners [3]. Just as in binary relevance, one perceptron is trained for each class,
and the prediction is calculated via the inner products. The difference lies in the update
method: while in the binary relevance method all perceptrons are trained independently
to return a value greater or smaller than zero, depending on the relevance of the classes
for a certain instance, MMPs are trained to produce a good ranking so that the relevant
classes are all ranked above the irrelevant classes. The perceptrons therefore cannot
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Require: Training example pair (x̄, Y),
perceptrons {w̄u,v | u < v, cu, cv ∈ Y}

1: for each (cu, cv) ∈ Y × Y do
2: if u < v then
3: w̄u,v ← TRAINPERCEPTRON(w̄u,v, (x̄, 1)) � train as positive example
4: else
5: w̄v,u ← TRAINPERCEPTRON(w̄v,u, (x̄, −1)) � train as negative example

6: return {w̄u,v | u < v, cu, cv ∈ Y} � updated perceptrons

Fig. 3. Pseudocode of the training method of the MLPP algorithm

be trained independently, considering that the target value for each perceptron depends
strongly on the values returned by the other perceptrons.

The pseudocode in Fig. 2 describes the MMP training algorithm. In summary, for
each new training example the MMP first computes the predicted ranking, and if there
is an error according to the chosen loss function δ (e.g. any of the losses in Sec. 3.1),
it computes the set of wrongly ordered class pairs in the ranking and applies to each
class in this set a penalty score according to a freely selectable function. We chose the
uniform update method, where each pair in E receives the same score [3]. Please refer
to [3] and [12] for a more detailed description of the algorithm.

3.5 Multilabel Pairwise Perceptrons

In the pairwise binarization method, one classifier is trained for each pair of classes, i.e.,
a problem with K different classes is decomposed into K(K−1)

2 smaller subproblems.
For each pair of classes (cu, cv), only examples belonging to either cu or cv are used to
train the corresponding classifier o′u,v . All other examples are ignored. In the multilabel
case, an example is added to the training set for classifier o′u,v if u is a relevant class
and v is an irrelevant class, i.e., (u, v) ∈ Y × Y (cf. Figure 4). We will typically assume
u < v, and training examples of class u will receive a training signal of +1, whereas
training examples of class v will be classified with −1. Figure 3 shows the training
algorithm in pseudocode. Of course MLPPs can also be trained incrementally.

In order to return a class ranking we use a simple voting strategy, known as max-
wins. Given a test instance, each perceptron delivers a prediction for one of its two
classes. This prediction is decoded into a vote for this particular class. After the evalua-
tion of all K(K−1)

2 perceptrons the classes are ordered according to their sum of votes.
Ties are broken randomly in our case.

Figure 5 shows a possible result of classifying the sample instance of Figure 4. Per-
ceptron o′1,5 predicts (correctly) the first class, consequently c1 receives one vote and
class c5 zero (denoted by o′1,5 = 1 in the first and o′5,1 = −1 in the last row). All 10
perceptrons (the values in the upper right corner can be deduced due to the symmetry
property of the perceptrons) are evaluated though only six are ‘qualified’ since they
were trained with the original example.

This may be disturbing at first sight since many ‘unqualified’ perceptrons are involved
in the voting process: o′1,2 is asked for instance though it cannot know anything relevant
in order to determine if x̄ belongs to c1 or c2 since it was neither trained on this example
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Fig. 4. MLPP training: training example x̄ belongs to Y = {c1, c2}, Y = {c3, c4, c5} are the
irrelevant classes, the arrows represent the trained perceptrons

o′
1,2 = 1 o′

2,1 = -1 o′
3,1 = -1 o′

4,1 = -1 o′
5,1 = -1

o′
1,3 = 1 o′

2,3 = 1 o′
3,2 = -1 o′

4,2 = -1 o′
5,2 = -1

o′
1,4 = 1 o′

2,4 = 1 o′
3,4 = 1 o′

4,3 = -1 o′
5,3 = -1

o′
1,5 = 1 o′

2,5 = 1 o′
3,5 = 1 o′

4,5 = 1 o′
5,4 = -1

v1 = 4 v2 = 3 v3 = 2 v4 = 1 v5 = 0

Fig. 5. MLPP voting: an example x̄ is classified by all 10 base perceptrons o′
u,v, u �= v , cu, cv ∈

Y . Note the redundancy given by o′
u,v = −o′

v,u. The last line counts the positive outcomes for
each class.

nor on other examples belonging simultaneously to both classes (or to none of both). In
the worst case the noisy votes concentrate on a single negative class, which would lead
to misclassifications. But note that any class can at most receive K − 1 votes, so that in
the extreme case when the qualified perceptrons all classify correctly and the unqualified
ones concentrate on a single class, a positive class would still receive at least K − |Y |
and a negative at most K − |Y | − 1 votes. Class c3 in Figure 5 is an example for this: It
receives all possible noisy votes but still loses against the positive classes c1 and c2.

The pairwise binarization method is often regarded as superior to binary relevance
because it profits from simpler decision boundaries in the subproblems [6, 8]. In the
case of an equal class distribution, the subproblems have 2

K times the original size
whereas binary relevance maintains the size. Typically, this goes hand in hand with
an increase of the space where a separating hyperplane can be found. Particularly in
the case of text classification the obtained benefit clearly exists. An evaluation of the
pairwise approach on the Reuters-RCV1 corpus [10], which contains over 100 classes
and 800,000 documents, showed a significant and substantial improvement over the
MMP method [12]. This encourages us to apply the pairwise decomposition to the
EUR-Lex database, with the main obstacle of the quadratic number of base classifier
in relationship to the number of classes. Since this problem can not be coped for the
present classifications in EUR-Lex, we propose to reformulate the MLPP algorithm in
the way described in the next section.

4 Dual Multilabel Pairwise Perceptrons

With an increasing number of classes the required memory by the MLPP algorithm
grows quadratically and even on modern computers with a large memory this problem
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becomes unsolvable for a high number of classes. For the EUROVOC classification,
the use of MLPP would mean maintaining approximately 8,000,000 perceptrons in
memory. In order to circumvent this obstacle we reformulate the MLPP ensemble of
perceptrons in dual form as we did with one single perceptron in Equation 7. In con-
trast to MLPP, the training examples are thus required and have to be kept in mem-
ory in addition to the associated weights, as a base perceptron is now represented as
w̄u,v =

∑M
i=1 αt

u,v x̄i. This makes an additional loop over the training examples in-
evitable every time a prediction is demanded. But fortunately it is not necessary to
recompute all x̄ix̄ for each base perceptron since we can reuse them by iterating over
the training examples in the outer loop, as can be seen in the following equations:

w̄1,2x̄ = α1
1,2x̄1x̄ + α2

1,2x̄2x̄ + . . . + αM
1,2x̄M x̄

w̄1,3x̄ = α1
1,3x̄1x̄ + α2

1,3x̄2x̄ + . . . + αM
1,3x̄M x̄

...

w̄1,K x̄ = α1
1,K x̄1x̄ + α2

1,K x̄2x̄ + . . . + αM
1,K x̄M x̄

w̄2,3x̄ = α1
2,3x̄1x̄ + α2

2,3x̄2x̄ + . . . + αM
2,3x̄M x̄

...

(8)

By advancing column by column it is not necessary to repeat the dot products compu-
tations, however it is necessary to store the intermediate values, as can also be seen in
the pseudocode of the training and prediction phases in Figures 6 and 7. Note also that
the algorithm preserves the property of being incrementally trainable. We denote this
variant of training the pairwise perceptrons the dual multilabel pairwise perceptrons
algorithm (DMLPP).

In addition to the savings in memory and run-time, analyzed in detail in Section 5, the
dual representation allows for using the kernel trick, i.e. to replace the dot product by a
kernel function, in order to be able to solve originally not linearly separable problems.
However, this is not necessary in our case since text problems are in general linearly
separable.

Note also that the pseudocode needs to be slightly adapted when the DMLPP algo-
rithm is trained in more than one epoch, i.e. the training set is presented to the learning
algorithm more than once. It is sufficient to modify the assignment in line 8 in Figure
6 to an additive update αt

u,v = αt
u,v + 1 for a revisited example x̄t. This setting is

particularly interesting for the dual variant since, when the training set is not too big,
memorizing the inner products can boost the subsequent epochs in a substantial way,
making the algorithm interesting even if the number of classes is small.

5 Computational Complexity

The notation used in this section is the following: K denotes the number of possible
classes, L the average number of relevant classes per instance in the training set, N the
number of attributes and N ′ the average number of attributes not zero (size of the sparse
representation of an instance), and M denotes the size of the training set. For each com-
plexity we will give an upper bound O in Landau notation. We will indicate the runtime
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Require: New training example pair (x̄M , Y),
training examples x̄1 . . . x̄M−1,
weights {αi

u,v | cu, cv ∈ Y, 0 < i < M}
1: for each x̄i ∈ x̄1 . . . x̄M−1 do
2: pi ← x̄i · x̄M

3: for each (cu, cv) ∈ Y × Y do
4: if αi

u,v �= 0 then
5: su,v ← su,v + αi

u,v · pt � note that su,v = −sv,u

6: for each (cu, cv) ∈ Y × Y do
7: if su,v < 0 then
8: αM

u,v ← 1 � note that αu,v = −αv,u

9: return {αM
u,v | (cu, cv) ∈ Y × Y} � return new weights

Fig. 6. Pseudocode of the training method of the DMLPP algorithm

Require: example x̄ for classification,
training examples x̄1 . . . x̄M−1,
weights {αi

u,v | cu, cv ∈ Y, 0 < i < M}
1: for each x̄i ∈ x̄1 . . . x̄M do
2: p ← x̄i · x̄
3: for each (cu, cv) ∈ Y i × Y t do
4: if αi

u,v �= 0 then
5: su,v ← su,v + αi

u,v · p

6: for each (cu, cv) ∈ Y × Y do
7: if u �= v ∨ su,v > 0 then
8: vu ← vu + 1
9: return voting v̄ = (v1, . . . , v|Y|) � return voting

Fig. 7. Pseudocode of the prediction phase of the DMLPP algorithm

complexity in terms of real value additions and multiplications ignoring operations that
have to be performed by all algorithms such as sorting or internal real value operations.
Additionally, we will present the complexities per instance as all algorithms are incre-
mentally trainable. We will also concentrate on the comparison between MLPP and the
implicit representation DMLPP.

The MLPP algorithm has to keep K(K−1)
2 perceptrons, each with N weights in

memory, hence we need O(K2N) memory. The DMLPP algorithm keeps the whole
training set in memory, and additionally requires for each training example x̄ access
to the weights of all class pairs Y × Y . Furthermore, it has to intermediately store the
resulting scores for each base perceptron during prediction, hence the complexity is
O(MLK + MN ′ + K2) = O(M(LK + N ′) + K2).4 We can see that MLPP is

4 Note that we do not estimate L as O(K) since both values are not of the same order of mag-
nitude in practice. For the same reason we distinguish between N and N ′ since particularly in
text classification both values are not linked: a text document often turns out to employ around
100 different words whereas the size of the vocabulary of a the whole corpus can easily reach
100,000 words (although this number is normally reduced by feature selection).



60 E. Loza Mencı́a and J. Fürnkranz

Table 1. Computational complexity given in expected number of addition and multiplication
operations. K: #classes, L: avg. #labels per instance, M : #training examples, N : #attributes,
N ′: #attributes�= 0, δ̂: avg. Loss, δ̂per, δ̂ISERR ≤ 1, δ̂MARGIN < K.

training time testing time memory requirement
MMP, BR O(KN ′) O(KN ′) O(KN)
MLPP O(LKN ′) O(K2N ′) O(K2N)
DMLPP O(M(LK + N ′)) O(M(LK + N ′)) O(M(LK+N ′)+K2)

applicable especially if the number of classes is low and the number of examples high,
whereas DMLPP is suitable when the number of classes is high, however it does not
handle huge training sets very well.

For processing one training example, O(LK) dot products have to be computed by
MLPP, one for each associated perceptron. Assuming that a dot product computation
costs O(N ′), we obtain a complexity of O(LKN ′) per training example. Similarly,
the DMLPP spends M dot product computations. In addition the summation of the
scores costs O(LK) per training instance, leading to O(M(LK +N ′)) operations. It is
obvious that MLPP has a clear advantage over DMLPP in terms of training time, unless
K is of the order of magnitude of M or the model is trained over several epochs, as
already outlined in the previous Section 4.

During prediction the MLPP evaluates all perceptrons, leading to O(K2N ′) com-
putations. The dual variant again iterates over all training examples and associated
weights, hence the complexity is O(M(LK + N ′)). At this phase DMLPP benefits
from the linear dependence of the number of classes in contrast to the quadratic rela-
tionship of the MLPP. Roughly speaking the breaking point when DMLPP is faster in
prediction is approximately when the square of the number of classes is clearly greater
than the number of training documents. We can find a similar trade-off for the mem-
ory requirements with the difference that the factor between sparse and total number
of attributes becomes more important, leading earlier to the breaking point when the
sparseness is high. A compilation of the analysis can be found in Table 1, together with
the complexities of MMP and BR. A more detailed comparison between MMP and
MLPP can be found in [12].

In summary, it can be stated that the dual form of the MLPP balances the relationship
between training and prediction time by increasing training and decreasing prediction
costs, and especially benefits from a decreased prediction time and memory savings
when the number of classes is large. Thus, this technique addresses the main obstacle
to applying the pairwise approach to problems with a large number of labels.

6 Experiments

For the MMP algorithm we used the ISERR loss function and the uniform penalty func-
tion. This setting showed the best results in [3] on the RCV1 data set. The perceptrons
of the BR and MMP ensembles were initialized with random values. We performed
also tests with a multilabel variant of the multinomial Naive Bayes (MLNB) algorithm
in order to provide a baseline.
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6.1 Ranking Performance

The results for the four algorithms and the three different classifications of EUR-Lex are
presented in Table 2. MLPP results are omitted since they are equal to those of DMLPP.
The values for ISERR, ONEERR, RANKLOSS and AVGP are shown ×100% for better
readability, AVGP is also presented in the conventional way (with 100% as the optimal
value) and not as a loss function. The number of epochs indicates the number of times
that the online-learning algorithms were able to see the training instances. No results
are reported for the performance of DMLPP on EUROVOC for more than two epochs
due to time restrictions.

The first appreciable characteristic is that DMLPP dominates all other algorithms on
all three views of the EUR-Lex data, regardless of the number of epochs or losses. For
the directory code DMLPP achieve a result in epoch 2 that is still beyond the reach of
the other algorithms in epoch 10, except for MMP’s ISERR. Especially on the losses
that directly evaluate the ranking performance the improvement is quite pronounced
and the results are already unreachable after the first epoch.

It is also interesting to compare the performances of MMP and BR as they have still
the advantage of reduced computational costs and memory requirements in comparison
to the (dual) pairwise approach and could therefore be more applicable for very complex
data sets such as EUROVOC, which is certainly hard to tackle for DMLPP (cf. Section
6.2). Please refer to [13] for a more detailed comparison between MMP and BR.

The fact that in only approximately 4% of the cases a perfect classification is achieved
and in only approx. 60% the top class is correctly predicted (MMP) should not lead to an
underestimation of the performance of these algorithms. Considering that with almost
4000 possible classes and only 5.3 classes per example the probability of randomly
choosing a correct class is less than one percent, namely 0.13%, the performance is
indeed substantial.

6.2 Computational Costs

In order to allow a comparison independent from external factors such as logging ac-
tivities and the run-time environment, we ignored minor operations that have to be
performed by all algorithms, such as sorting or internal operations. An overview over
the amount of real value addition and multiplication computations is given in Table 3
(measured on the first cross validation split, trained for one epoch), together with the
CPU-times on an AMD Dual Core Opteron 2000 MHz as additional reference infor-
mation. We included in this table also the results for the non-dual MLPP, however no
values have been received for the EUROVOC problem due to the discussed memory
space problem: MLPP requires 539 MB memory for the subject matter and already
1825 MB for the directory code problem, whereas DMLPP consumes 203 MB and
resp. 217 MB It is remarkable that MMP uses similar MMP 151 MB resp. 165MB.
Also for EUROVOC the usage of 1143 MB is comparable to DMLPP’s 2246 MB.

We can observe a clear advantage of the non-pairwise approaches on the subject mat-
ter data especially for the prediction phase, however the training costs are in the same
order of magnitude. Between MLPP and DMLPP we can see an antisymmetric be-
havior: while MLPP requires only almost half of the amount of the DMLPP operations
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for training, DMLPP reduces the amount of prediction operations by a factor of more
than 4. For the directory code the rate for MMP and BR more than doubles in corre-
spondence with the increase in number of classes, additionally the MLPP testing time
substantially increases due to the quadratic dependency, while DMLPP profits from the
decrease in the average number of classes per instance. It even causes less computa-
tions in the training phase than MMP/BR. The reason for this is not only the reduced
maximum amount of weights per instance (cf. Section 5), but particularly the decreased
probability that a training example is relevant for a new training example (and conse-
quently that dot products and scores have to be computed) since it is less probable that
both class assignments match, i.e. that both examples have the same pair of positive and
negative classes. This becomes particularly clear if we observe the number of non-zero
weights and actually used weights during training for each new example. The classifier
for subject matter has on average 21 weights set per instance out of 443 (= L(K − L))
in the worst case (a ratio of 4.47%), and on average 5.1% of them are required when a
new training example arrives. For the directory code with a smaller fraction L/K 35.5
weights are stored (3.96%), of which only 1.11% are used when updating. This also
explains the relatively small number of operations for training on EUROVOC, since
from the 1,802 weights per instance (8.41%), only 0.55% are relevant to a new training
instance. In this context, regarding the disturbing ratio between real value operations
and CPU-time for training DMLPP on EUROVOC, we believe that this is caused by a
suboptimal storage structure and processing of the weights and we are therefore con-
fident that it is possible to reduce the distance to MMP in terms of actual consumed
CPU-time by improving the program code.

Note that MMP and BR compute the same amount of dot products, the computa-
tional costs only differ in the number of vector additions, i.e. perceptron updates. A
deeper analysis of the contrary behavior of both algorithms when the number of classes
increases can be found in [11].

7 Conclusions

In this paper, we introduced the EUR-Lex text collection as a promising test bed for
studies in text categorization. Among its many interesting characteristics (e.g., multi-
linguality), our main interest was the large number of categories, which is one order of
magnitude above other frequently studied text categorization benchmarks, such as the
Reuters-RCV1 collection.

On the EUROVOC classification task, a multilabel classification task with 4000 pos-
sible labels, the DMLPP algorithm, which decomposes the problem into training clas-
sifiers for each pair of classes, achieves an average precision rate of slightly more than
50%. Roughly speaking, this means that the (on average) five relevant labels of a docu-
ment will (again, on average) appear within the first 10 ranks in the relevancy ranking
of the 4,000 labels. This is a very encouraging result for a possible automated or semi-
automated real-world application for categorizing EU legal documents into EUROVOC
categories.

This result was only possible by finding an efficient solution for storing the approx.
8,000,000 binary classifiers that have to be trained by this pairwise approach. To this
end, we showed that a reformulation of the pairwise decomposition approach into a
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dual form is capable of handling very complex problems and can therefore compete
with the approaches that use only one classifier per class. It was demonstrated that de-
composing the initial problem into smaller problems for each pair of classes achieves
higher prediction accuracy on the EUR-Lex data, since DMLPP substantially outper-
forms all other algorithms. This confirms previous results of the non-dual variant on the
large Reuters Corpus Volume 1 [12]. The dual form representation allows for handling a
much higher number of classes than the explicit representation, albeit with an increased
dependence on the training set size. Despite the improved ability to handle large prob-
lems, DMLPP is still less efficient than MMP, especially for the EUROVOC data with
4000 classes. However, in our opinion the results show that DMLPP is still compet-
itive for solving large-scale problems in practice, especially considering the trade-off
between runtime and prediction performance. Additionally, we are currently investigat-
ing hybrid variants to further reduce the computational complexity. The idea is to use a
different formulation in training than in the prediction phase depending on the specific
memory and runtime requirements of the task. In order e.g. to combine the advantage of
MLPP during training and DMLPP during predicting on the subject matter subproblem,
we could train the classifier as in the MLPP (with the difference of iterating over the
perceptrons first so that only one perceptron has to remain in memory) and than convert
it to the dual representation by means of the collected information during training the
perceptrons. The use of SVMs during training is also an interesting option.

For future research, on the one hand we see space for improvement for the MMP
and pairwise approach for instance by using a calibrated ranking approach [2]. The
basic idea of this algorithm is to introduce an artificial label which, for each example,
separates the relevant from irrelevant labels in order to return a set of classes instead
of only a ranking. On the other hand, we see possible improvements by exploiting
advancements in the perceptron algorithm and in the pairwise binarization, e.g. by using
one of the several variants of the perceptron algorithm that, similar to SVMs, try to
maximize the margin of the separating hyperplane in order to produce more accurate
models [4, 9], or by employing a voting technique that takes the prediction weights into
account such as the weighted voting technique by Price et al. [15]. Finally, we note that
we are currently working on an adaptation of the efficient voting technique introduced
in [14] to the multilabel case, of which a further significant reduction in classification
time can be expected.
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Abstract. In this paper we address reinforcement learning problems
with continuous state-action spaces. We propose a new algorithm, fitted
natural actor-critic (FNAC), that extends the work in [1] to allow for
general function approximation and data reuse. We combine the natural
actor-critic architecture [1] with a variant of fitted value iteration using
importance sampling. The method thus obtained combines the appealing
features of both approaches while overcoming their main weaknesses: the
use of a gradient-based actor readily overcomes the difficulties found in
regression methods with policy optimization in continuous action-spaces;
in turn, the use of a regression-based critic allows for efficient use of data
and avoids convergence problems that TD-based critics often exhibit. We
establish the convergence of our algorithm and illustrate its application
in a simple continuous space, continuous action problem.

1 Introduction

In theory, reinforcement learning (RL) can be applied to address any optimal
control task, yielding optimal solutions while requiring very little a priori infor-
mation on the system itself. Existing RL methods are able to provide optimal
solutions for many real-world control problems featuring discrete state and ac-
tion spaces and exhibit widely studied convergence properties [2]. However, most
such methods do not scale well in problems with large state and/or action spaces.

Many RL works addressing problems with infinite state-spaces combine func-
tion approximations with learning methods. Encouraging results were reported,
perhaps the most spectacular of which by Tesauro and his learning Gammon
player [3]. However, as seen in [4, 5], DP/TD-based methods exhibit unsound
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convergence behavior when combined with general function approximation. Con-
vergence of methods such as Q-learning with general function approximation
thus remains an important open issue [6].

If problems with infinite state-spaces pose important challenges when devel-
oping efficient RL algorithms, the simultaneous consideration of infinite action-
spaces adds significant difficulties. Few RL methods to this day address problems
featuring continuous state and action spaces. A fundamental issue in this class of
problems is policy optimization: many RL methods rely on explicit maximization
of a utility function to achieve policy optimization. If the number of available
actions is infinite, this maximization is generally hard to achieve, especially if we
consider that it is not local but global maximization. This significant difficulty
affects many methods with otherwise sound performance guarantees, rendering
such performance guarantees unusable [7].

When addressing problems with large/infinite state and/or action spaces, two
major approaches have been considered in the RL literature. Regression-based
methods use sample data collected from the system to estimate some target util-
ity function using regression techniques. This class of methods is particularly
suited to address problems with infinite state-spaces, although more general
applications have been proposed in the literature [7]. Such algorithms can take
advantage of the numerous regression methods available from the machine learn-
ing literature while exhibiting solid convergence properties [7, 8] and have been
successfully applied in many different problems [9, 10, 11, 12].

Gradient-based methods, on the other hand, are naturally suited to address
problems with infinite action-spaces. Such methods consider a parameterized
policy and estimate the gradient of the performance with respect to the policy
parameters. The parameters are then updated in the direction of this estimated
gradient. By construction, gradient-based methods implement an incremental
policy optimization and thus avoid the need for explicit maximization; it is no
surprise that many RL works addressing problems with continuous action spaces
thus rely on a gradient-based architecture [1, 13, 14].

However, gradient-based methods are line-search methods and, therefore, con-
vergence is guaranteed only to local minima. Moreover, “pure” gradient methods
usually exhibit large variance and, as argued in [15], make poor use of data.
Actor-critic architectures [16] provide a suitable extension to pure gradient me-
thods. They have been extensively analyzed in several works (e.g., [1, 15, 17, 18])
and found to exhibit several advantages over pure gradient methods (in partic-
ular, in terms of variance and data-usage).

1.1 Contributions and Structure of the Paper

In this paper, we combine the appealing properties of actor-critic methods with
those of regression-based methods in a new method dubbed as fitted natural
actor-critic (FNAC). FNAC extends the natural actor-critic (NAC) architecture
[1], allowing general function approximation and data reuse. In particular, we
modify the TD-based critic in the NAC and implement a variant of fitted value
iteration using importance sampling.
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FNAC thus combines in a single algorithm the potentially faster convergence
of natural gradients [19] and the sound convergence properties and efficient use
of data of regression algorithms [7]. We also make use of an importance sampling
strategy that allows the reuse of data, making our algorithm very efficient in
terms of data usage and allowing the analysis of convergence of the algorithm.1

To this respect, it is also worth mentioning that, in many practical problems,
collecting data is costly and time-consuming. In these situations, the efficient
use of data in FNAC is a significant advantage over other existing approaches.
Finally, it is also important to emphasize that the gradient-based policy updates
readily overcome the most obvious difficulties of stand-alone regression-methods
with respect to policy optimization. Summarizing, FNAC allows for general func-
tion approximation in the critic component, while being able to use all sampled
data in all iterations of the algorithm (unlike most previous methods).

The paper is organized as follows. Section 2 reviews some background material
on MDPs and policy gradient methods. Section 3 introduces the fitted natural
actor-critic algorithm and its main properties. We evaluate its performance in
the continuous mountain-car problem in Section 4 and conclude in Section 5
with some final remarks and directions for future work.

2 Background

In this section we review some background material that will be of use in the
remainder of the paper. In particular, we briefly review the MDP framework
[20], the policy gradient theorem and its application in approximate settings [21]
and the use of natural gradients in actor-critic methods [1, 19].

2.1 Markov Decision Problems

Given two compact sets X ⊂ Rp and A ⊂ Rq, let {Xt} be an X -valued con-
trolled Markov chain, with control parameter taking values in A. The transition
probabilities for the chain are given by the kernel

P [Xt+1 ∈ UX | Xt = x, At = a] = Pa(x, UX),

for any measurable set UX ⊂ X . The A-valued process {At} represents the
control process: At is the control action at time instant t. A decision-maker
must determine the control process {At} so as to maximize the functional

V ({At} , x) = E

[ ∞∑
t=0

γtR(Xt, At) | X0 = x

]
,

where 0 ≤ γ < 1 is a discount-factor and R(x, a) represents a random “reward”
received for taking action a ∈ A in state x ∈ X . To play it safe, we assume
1 As remarked in [18], such analysis is not immediate in the original NAC algorithm,

since the data used in NAC is generated online from the current policy estimate in
the algorithm.
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throughout this paper that there is a deterministic continuous function r defined
on X × A × X assigning a reward r(x, a, y) every time a transition from x to y
occurs after taking action a and that

E [R(x, a)] =
∫
X

r(x, a, y)Pa(x, dy).

This simplifies the notation without introducing a great loss in generality. We
further assume that there is a constant R ∈ R such that |r(x, a, y)| < R for
all x, y ∈ X and all a ∈ A. We refer to the 5-tuple (X, A, P, r, γ) as a Markov
decision problem (MDP).

Given an MDP M = (X, A, P, r, γ), the optimal value function V ∗ is defined
for each state x ∈ X as

V ∗(x) = max
{At}

E

[ ∞∑
k=0

γtR(Xt, At) | X0 = x

]

and verifies
V ∗(x) = max

a∈A

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy), (1)

which is a form of the Bellman optimality equation.2 The optimal Q-values
Q∗(x, a) are defined for each state-action pair (x, a) ∈ X × A as

Q∗(x, a) =
∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy).

From Q∗ we can define the mapping π∗(x) = arg max
a

Q∗(x, a) for all x ∈ X .

The control process defined by At = π∗(Xt) is optimal in the sense that the
corresponding value function equals V ∗. The mapping π∗ thus defined is an
optimal policy for the MDP M.

More generally, a policy is a (time-dependent) mapping πt defined over X ×A
that generates a control process {At} verifying

P [At ∈ UA | Xt = x] =
∫

UA

πt(x, a)da, ∀t,

where UA ⊂ A is any measurable set. We write V πt(x) instead of V ({At} , x)
if the control process {At} is generated by a policy πt. A stationary policy is a
policy π that does not depend on t.

2.2 The Policy Gradient Theorem

Let πθ be a stationary policy parameterized by some finite-dimensional vector
θ ∈ RM . Assume, in particular, that π is continuously differentiable with respect
2 Notice that the maximum in (1) is well defined due to our assumption of compact

A and continuous r.
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to (w.r.t.) θ. We henceforth write V θ instead of V πθ

to denote the corresponding
value function. Also, given some probability measure μ0 over X , we define

ρ(θ) = (μ0V
θ) =

∫
X

V θ(x)μ0(dx).

We abusively write ρ(θ) instead of ρ(πθ) to simplify the notation. The function
ρ(θ) can be seen as the total discounted reward that an agent expects to receive
when following the policy πθ and the initial state is distributed according to μ0.

We wish to compute the parameter vector θ∗ such that the corresponding
policy πθ∗

maximizes the expected income for the agent in the sense of ρ. In
other words, we wish to compute θ∗ = arg maxθ ρ(θ). If ρ is differentiable w.r.t.
θ, this can be achieved by updating θ according to

θt+1 = θt + αt∇θρ(θt),

where {αt} is a step-size sequence and ∇θ denotes the gradient w.r.t. θ. We can
now introduce the following result from [21, 22].

Theorem 1. Given an MDP M = (X, A, P, r, γ), it holds for every x ∈ X that

∇θV
θ(x) =

∫
X×A

∇θπ
θ(y, a)Qθ(y, a)da K̂θ

γ(x, dy),

where K̂θ
γ is the un-normalized γ-resolvent associated with the Markov chain

induced by πθ.3

The fact that ρ(θ) = (μ0V
θ) immediately implies that

∇θρ(θ) =
∫
X

∇θV
θ(x)μ0(dx).

For simplicity of notation, we henceforth denote by μθ
γ the measure over X

defined by

μθ
γ(UX) =

∫
X

(∫
UX

K̂θ
γ(x, dy)

)
μ0(dx).

2.3 Policy Gradient with Function Approximation

From Theorem 1 it is evident that, in order to compute the gradient ∇ρ, the
function Qθ needs to be computed. However, when addressing MDPs with infinite
state and/or action spaces (as is the case in this paper), some form of function
approximation is needed in order to compute Qθ.

3 The γ-resolvent [23] associated with a Markov chain (X ,P) is the transition kernel
Kγ defined as Kγ(x, U) = (1−γ)

∑∞
t=0 γtPt(x,U) and the un-normalized γ-resolvent

is simply K̂γ(x, U) =
∑∞

t=0 γtPt(x,U).
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Let {φi, i = 1, . . . , M} be a set of M linearly independent functions and L (φ)
its linear span. Let Q̂θ be the best approximation of Qθ in L (φ), taken as the
orthogonal projection of Qθ on L (φ) w.r.t. the inner product

〈f, g〉 =
∫
X×A

f(x, a) · g(x, a)πθ(x, a)da μθ
γ(dx).

As any function in L (φ), Q̂θ can be written as

Q̂θ(x, a) =
∑

i

φi(x, a)wi = φ�(x, a)w.

This leads to the following result from [21].

Theorem 2. Given an MDP M = (X, A, P, r, γ) and a set of basis functions
{φi, i = 1, . . . , M} as defined above, if

∇wQ̂θ(x, a) = ∇θ log(πθ(x, a)) (2)

then
∇θρ(θ) =

∫
X×A

∇θπ
θ(x, a)Q̂θ(x, a)da μθ

γ(dx).

Notice that, in the gradient expression in Theorems 1 and 2, we can add an
arbitrary function b(x) to Qθ and Q̂θ. This is clear from noting that∫

A
∇θπ

θ(x, a)b(x)da = 0.

Such functions are known as baseline functions and, as recently shown in [18],
if b is chosen so as to minimize the mean-squared error between Q̂θ and Qθ, the
optimal choice of baseline function is b(x) = V θ(x). Recalling that the advantage
function [24] associated with a policy π is defined as Aπ(x, a) = Qπ(x, a)−V π(x),
we get

∇θρ(θ) =
∫
X×A

∇θπ
θ(x, a)Âθ(x, a)da μθ

γ(dx), (3)

where Âθ(x, a) denotes the orthogonal projection of the advantage function as-
sociated with πθ, Aθ, into L (φ). Finally, recalling that Âθ(x, a) = φ�(x, a)w, we
can compactly write (3) as ∇θρ(θ) = G(θ)w, with G the all-action matrix [1].

G(θ) =
∫
X×A

∇θπ
θ(x, a)φ�(x, a)da μθ

γ(dx). (4)

2.4 Natural Gradient

Given a general manifold M parameterized by a finite-dimensional vector θ ∈
RM and a real function F defined over this manifold, the gradient ∇θF seldom
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corresponds to the actual steepest descent direction, as it fails to take into ac-
count the geometry of the manifold [25]. However, in many practical situations,
it is possible to impose a particular structure on the manifold (namely, a Rie-
mannian metric) and compute the steepest descent direction taking into account
the geometry of the manifold (in terms of the Riemannian metric). This “nat-
ural gradient” is invariant to changes in parameterization of the manifold and
can potentially overcome the so-called plateau phenomenon [25].

As seen in [19], the parameterized policy space can be seen as a manifold that
can be endowed with an adequate Riemannian metric. One possible metric relies
on the Fisher information matrix, and is defined by the following matrix [19]

F(θ) =
∫
X×A

∇θ log(πθ(x, a))∇θ log(πθ(x, a))�πθ(x, a)da μθ
γ(dx).

The natural gradient is given, in this case, by ∇̃θρ(θ) = F−1(θ)G(θ)w. However,
as shown in [1], multiplying and dividing the integrand in (4) by πθ(x, a), we get
G(θ) = F(θ), and the natural gradient comes, simply, ∇̃θρ(θ) = w.4

3 Fitted Natural Actor-Critic

We now use the ideas from the previous section to derive a new algorithm, fitted
natural actor-critic (FNAC). This algorithm takes advantage of several appealing
properties of fitting methods (namely, the solid convergence guarantees and the
effective use of data) while overcoming some of the limitations of this class of
methods in problems with continuous action spaces.

3.1 The FNAC Architecture

We start by briefly going through the FNAC architecture, illustrated in Figure 1.
The algorithm uses a set D of samples obtained from the environment, each

consisting of a tuple (xt, at, rt, yt), where yt is a sample state distributed ac-
cording to the measure Pat(xt, ·) and rt = r(xt, at, yt). For the purposes of the
algorithm, it is not important how the samples in D are collected. In particular,
they can all be collected before the algorithm is run or they can be collected in-
crementally, as more iterations of the algorithm are performed. Nevertheless, it
is important to remark that, for the purposes of our critic, enough data-samples
need to be collected to avoid conditioning problems in the regression algorithms.

At each iteration of the FNAC algorithm, the data in D is processed by the
critic component of the algorithm. This component, as detailed below, uses a
generic regression algorithm to compute an approximation V̂ θ of the value func-
tion associated with the current policy, πθ. This approximation is then used
to estimate an approximation of the advantage function, Âθ, using a linear
function approximation with compatible basis functions. Finally, the evaluation

4 Peters et al. [1] actually showed that F(θ) is the Fisher information matrix for the
probability distribution over possible trajectories associated with a given policy.



FNAC: A New Algorithm for Continuous State-Action MDPs 73
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Fig. 1. Detailed FNAC architecture

performed by the critic (i.e., the approximation Âθ computed from the data)
is used by the actor to update the policy πθ using a standard policy gradient
update.

In the remaining of this section, we detail our FNAC algorithm.

3.2 The Actor

The actor component of the FNAC algorithm implements a policy gradient up-
date. As seen in Section 2, this update relies on the natural gradient. The fact
that the natural gradient manages to take into account the geometry of the pol-
icy space may potentially bring significant advantages in terms of performance
of the algorithm (namely, in terms of rate of convergence and ability to over-
come the plateau phenomenon) [25]. Therefore, given the parameterized policy
at iteration k, πθk

, the actor component will update the parameter vector as

θk+1 = θk + αk∇̃θρ(θk).

As seen in Subsection 2.4, the natural gradient is given by ∇̃ρ(θk) = wk, where
wk is the linear coefficient vector corresponding to the orthogonal projection of
the advantage function Aθk in the linear space spanned by the compatible basis
functions, obtained from 2:

φi(x, a) =
∂ log(πθk

)
∂θk(i)

(x, a).

Therefore, provided that the critic component yields such an approximation of
the advantage function, the update rule for the actor is, simply, θk+1 = θk+αtwk.

3.3 The Critic

The critic of the FNAC algorithm is the element that distinguishes our algorithm
from other gradient-based approaches, such as [1, 18]. Although we discuss these
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differences in detail in the next subsection, it is still worth to briefly outline the
fundamental differences. The algorithm in [18] can be seen as an online version of
the algorithm in [1]. Our algorithm is closest to that in [1] (it is, by construction,
a batch algorithm, although it can straightforwardly be converted in an online
algorithm). However, FNAC allows for more efficient use of data than any of the
two aforementioned algorithms and is designed so as to accommodate general
regression methods (and, thus, general approximations).

Let D = {(xt, at, rt, xt+1), t = 1, . . . , n} be a sequence of sample transitions
obtained from the MDP when following some policy π0. As seen before, the value
function associated with a general policy π verifies

V π(x) =
∫
X×A

(
r(x, a, y) + γV π(y)

)
Pa(x, dy)π(x, a)da

or, equivalently,∫
X×A

(
r(x, a, y) + γV π(y)

)
Pa(x, dy)π(x, a)da − V π(x) = 0.

This can be written as∫
X×A

(
r(x, a, y) + γV π(y) − V π(x)

)
Pa(x, dy)π(x, a)da = 0.

We want to approximate V π by a general parameterized family of functions V ={
Vv(x) | v ∈ RN

}
. In other words, we want to compute v∗ such that V π(x) ≈

Vv∗(x). For the policy π0 used to generate the dataset D, we can use the data
in D and solve the following regression problem:

v∗ = arg min
v

∑
t

1
μ̂(xt)

(
rt + γVv(yt) − Vv(xt)

)2
, (5)

where μ̂(xt) is the empirical distribution of state x obtained from the dataset
D.5 We remark that the function Vv∗ thus obtained is the one minimizing the
empirical Bellman residual. However, in order to adequately perform the above
minimization, double sampling is necessary, as pointed out in [4]. In systems
where double sampling is not possible, a correction term can be included in
the regression to avoid negative correlation effects [26], rendering the regression
problem equivalent to the solution of the following fitted-VI iteration:

Vk+1 = min
V

∑
t

1
μ̂(xt)

(
rt + γVk(yt) − V (xt)

)2
.

5 The inclusion of the term μ̂(xt) merely ensures that regions of the state-space that
happen to appear more often in the dataset do not have “extra weight” in the regres-
sion. In fact, since the data in D can be obtained by any arbitrary sampling process,
its distribution will generally be distinct from that induced by the obtained policy.
The “normalization” w.r.t. μ̂(xt) minimizes any bias that the sampling process may
introduce in the regression. Alternative regularizations are possible, however.
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Nevertheless, the computation of V π as described above is possible because the
data is distributed according to the policy π0.

Suppose now that we want to approximate the value function associated with
some other policy πθ 
= π0. The value function for this policy verifies

V θ(x) =
∫
X×A

(
r(x, a, y) + γV θ(y)

)
Pa(x, dy)πθ(x, a)da.

If we want to use the same data to compute V θ, some modification is needed
since the data in D is not distributed according to πθ. If the policy πθ is known,
the above expression can be modified to yield∫

X×A

(
r(x, a, y) + γV π(y) − V π(x)

)
Pa(x, dy)·

· πθ(x, a)
π0(x, a)

π0(x, a)da = 0.

(6)

This means that we should be able to reuse the data in D to solve the following
regression problem, similar to that in (5):

v∗ = argmin
v

∑
t

1
μ̂(xt)

πθ(xt, at)
π0(xt, at)

(
rt + γVv(yt) − Vv(xt)

)2
.

Notice that the above regression makes use of importance sampling, by including
the term πθ(x,a)

π0(x,a) . Notice also that this importance-sampling term is well-defined
for all samples (xt, at, rt, yt), since π0(xt, at) > 0 necessarily holds. Notice also
that, as before, the term μ̂(xt) is meant to minimize any bias that the sampling
process may introduce in the regression, and no change is necessary with the
particular policy πθ considered.

Given an estimate Vv∗ of the value function associated with a given policy πθ,
the corresponding advantage function can now be approximated by solving the
following regression problem:

w∗ = argmin
w

∑
t

1
μ̂(xt)

(
rt + γVv∗(yt) − Vv∗(xt) − φ�(xt, at)w

)2
,

where each φi(x, a) is a compatible basis function verifying (2). We remark that
no importance sampling is necessary in the above estimation, as can easily be
seen by repeating the above computations for the advantage function. The re-
gression problem can now easily be solved by setting

M =
∑

t

1
μ̂(xt)

φ(xt, at)φ�(xt, at)

and
b =

∑
t

φ(xt, at)
μ̂(xt)

(
rt + γVv∗(xt+1) − Vv∗(xt+1)

)
,

from where we obtain w∗ = M−1b. We conclude by observing that, with enough
samples, the inverse in the expression above is well defined, since we assume the
functions φi to be linearly independent.
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3.4 Analysis and Discussion of the Algorithm

We now discuss several important properties of FNAC and compare it with other
related algorithms in the literature.

We start by remarking that the general regression-based critic and the impor-
tance sampling “regularization” imply that the dataset can be made independent
of the current learning policy. The main consequence of this is that, by requir-
ing minimum regularity conditions from the regression algorithm, the following
result can easily be established:

Theorem 3. Let F(θ) denote the regression algorithm used in FNAC to produce
the estimates Âθ and V̂ θ for an MDP M, given a θ-dependent policy πθ. Then,
if F is Lipschitz w.r.t. θ, and the step-size sequence {αt} used in the actor update
is such that ∑

t

αt = ∞
∑

t

α2
t < ∞

FNAC converges with probability 1.

Proof. Due to space limitations, we provide only a brief sketch of the proof.
The result arises as a consequence of the convergence results in [18]. In the

referred paper, convergence is established by analyzing a two-time-scale update
of the general form:

wk+1 = wk + αkF (wk, θk)
θk+1 = θk + βkG(wk+1, θk),

(7)

where α = o(βk). By requiring several mild regularity conditions on the under-
lying process, on the policy space and on the set of basis functions, convergence
can be established by an ODE argument. In particular, the proof starts by es-
tablishing global asymptotic stability of the “faster” ODE

ẇt = f(wt, θ),

for every θ, where f is an “averaged” version of F . Then, denoting by w∗(θ) the
corresponding limit point, the proof proceeds by establishing the global asymp-
totic stability of the “slower” ODE

θ̇t = g(w∗(θt), θt),

where, once again, g is an “averaged” version of G. Convergence of the coupled
iteration (7) is established as long as w∗(θ) is Lipschitz continuous w.r.t. θ.

In terms of our analysis, and since our critic is a regression algorithm, it holds
that at every iteration of the actor the critic is actually in the corresponding
limit w∗(θ). Therefore, since our data is policy-independent and we assume our
regression algorithm to be Lipschitz on θ, the convergence of our method is a
consequence of the corresponding result in [18]. �
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Another important difference that distinguished FNAC from other works is the
efficient data use in regression methods. To emphasize this point, notice that
after each policy update by the actor, the critic must evaluate the updated
policy, computing the associated advantage function. In previous actor-critic
algorithms [1, 15, 18], this required the acquisition of new sampled data obtained
using the updated policy. However, in many problems, the acquisition of new
data is a costly and time-consuming process. Furthermore, the evaluation of the
updated policy makes poor use of previously used data.6 In our algorithm, all
data collected can be used in every iteration. Evidently, the importance-sampling
term in (6) will weight some samples more than others in the estimation of each
V θ, but this is conducted so as to take full advantage of available data.

Finally, we remark that, from Theorem 2 and subsequent developments, the
(natural) gradient is computed from the orthogonal projection of Qθ/Aθ into
L (φ). However, as all other actor-critic methods currently available [1, 15, 17,
18], our critic cannot compute this projection exactly, since it would require the
knowledge of the function to be projected. This will impact the performance of
the algorithm in a similar way to that stated in Theorem 1 of [18].

4 Experimental Results

We conducted several experiments to evaluate the behavior of our algorithm
in a simple continuous state, continuous action problem. We applied FNAC to
the well-known mountain-car problem [27]. In this problem, an underpowered car
must go up a steep hill, as depicted in Figure 2. As it has not enough acceleration

Fig. 2. The mountain-car problem: an underpowered car must go up a steep hill

to go all the way up the hill, it must bounce back-and-forth to gain enough
velocity to climb up. The car is described by two continuous state-variables,
namely position p and velocity v, and is controlled by a single continuous action,
the acceleration a. The range of allowed positions is [−1.2; +0.5] and the velocity
ranges between −0.07 and 0.07. The acceleration takes values in the interval
[−1, 1]. The car can be described by the dynamic equations:

v(t + 1) = bound
[
v(t) + 0.001a(t) − 0.0025 cos(3p(t))

]
p(t + 1) = bound

[
p(t) + v(t + 1)

]
6 In incremental algorithms [15, 18], the step-size sequence works as a “forgetting”

factor.
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Fig. 3. Average performance of FNAC in the mountain-car problem: (a) Average time
to reach the goal as the number of iterations is increased. (b) Average time to reach
the goal as the size of the dataset is increased. The results depicted correspond to the
average over 100 independent Monte-Carlo trials. Average times of 500 steps indicate
that the car was not able to reach the goal.

where the function bound maintains the values of p and v within the limits.
Whenever the car reaches the position limits, its velocity is set to zero. Whenever
the car reaches the top of the hill, its position and velocity are randomly reset
and the car gets a reward of 10. Otherwise, it gets a reward of −1.

We are interested in analyzing how much data and time are required for the
FNAC algorithm to learn a “good” policy. To this purpose, we ran the FNAC
algorithm with different dataset sizes and for different amounts of time. For each
such run, we evaluated the learnt policy, initializing the car in the bottom-most
position of the environment with zero velocity and running the learnt policy up
to a maximum of 500 steps. We then observed the number of steps taken to
reach the goal. Figure 3.a shows the evolution of the average time to goal as we
increase the number of iterations of the algorithm.

It is clear from Figure 3.a that after only 300 iterations the algorithm already
learnt a good policy (one that is able to reach the goal) and, for the case of a
dataset of 104 points, the policy after 600 iterations is practically as good as
the best policy computed. It is important to refer at this point that we used
a simple linear approximator with 16 RBFs spread uniformly across the state
space. The policy was parameterized using a Boltzmann-like distribution relying
on the linear combination of 64 RBF uniformly distributed across the state-
action space. Notice also that, by using a linear approximator, the regression in
(6) can be computed analytically.

We also present in Figure 3.b the evolution of the average time to goal as
we increase the size of the dataset. We tested the performance of the algorithm
with datasets containing 100, 500, 103, 5 × 103 and 104 samples.7 As clearly

7 We notice that, due to the deterministic transitions, no double sampling is necessary
in this particular example.
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seen from the results in Figure 3.b, the size of the dataset greatly influences the
performance of the algorithm. In the particular problem considered here, the
FNAC algorithm was able to find a “good” policy with 5 × 103 points and the
best performance was attained with a dataset of 104 samples.

5 Concluding Remarks

In this paper we presented the fitted natural actor-critic algorithm (FNAC).
Our algorithm uses natural policy-gradient updates in the actor. However, unlike
other natural actor-critic (NAC) algorithms, the critic component of FNAC relies
on regression methods, with several important advantages:

– The use of regression methods allows the estimates of the value-function to
use general function approximation, unlike previous NAC algorithms which,
due to their use of TD-based critics, are limited to linear approximators.
Notice, however, that Theorem 2 requires Aπ to be linearly approximated,
using a compatible set of basis functions verifying (2). The use of general
function approximation for V π will impact (in a positive way) the accuracy
with which Aπ can be represented.

– By adding an importance-sampling component, we allow our critic to reuse
all data in all iterations of the algorithm, this being a fundamental advantage
in problems where collecting data is costly or time consuming;

– The reuse of data allows the algorithm to consider datasets which are policy-
independent. This, means that, unlike other NAC methods, the convergence
of the algorithm can be conducted by a simple ODE argument;

It is also worth mentioning that FNAC is amenable to a multitude of different
implementations, fully exploring the power of general fitting/regression methods.

The work portrayed here also suggests several interesting avenues for future
research. First of all, and although not discussed in the paper, an online imple-
mentation of our algorithm can easily be obtained by an iterative implementation
of the regression routines. Our convergence result holds if the relative weight of
each sample in the data-set is stored (in terms of sampling policy).

Also, our initial experimental results illustrate the efficient use of data of our
algorithm, since FNAC could attain good performance, reusing the same dataset
at every iteration. Currently we are exploring the performance of the algorithm
in more demanding tasks (namely, robotic grasping tasks encompassing high-di-
mensional state and action spaces). It would also be interesting to have some
quantitative evaluation of the advantages of FNAC in face of other methods for
MDPs with continuous state-action spaces. However, a direct comparison is not
possible: in the current implementation of FNAC, the data gathering process is
completely decoupled from the actual algorithm, while in most methods both
processes occur simultaneously, thus impacting the corresponding learning times.

On a more general perspective, the critic component in FNAC estimates at
each iteration the value function V θ by minimizing the empirical Bellman resid-
ual. Approximations relying on Bellman residual minimization are more stable
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and more “predictable” than TD-based approaches [28]. It would be interesting
to further explore these results to gain a deeper understanding of the advantages
of this type of approximation in the setting considered here.

Finally, the simple and elegant results arising from the consideration of natural
gradients suggests that it may be possible to further extend this approach and
make use of higher-order derivatives (e.g., as in Newton-like methods) to develop
policy search methods for RL problems.

Acknowledgements

The authors would like to acknowledge the useful comments from Jan Peters
and the anonymous reviewers.

References

1. Peters, J., Vijayakumar, S., Schaal, S.: Natural Actor-Critic. In: Proc. European
Conf. Machine Learning, pp. 280–291 (2005)

2. Bertsekas, D., Tsitsiklis, J.: Neuro-Dynamic Programming. Athena Scientific (1996)
3. Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-

level play. Neural Computation 6(2), 215–219 (1994)
4. Baird, L.: Residual algorithms: Reinforcement learning with function approxima-

tion. In: Proc. Int. Conf. Machine Learning, pp. 30–37 (1995)
5. Tsitsiklis, J., Van Roy, B.: An analysis of temporal-difference learning with function

approximation. IEEE Trans. Automatic Control 42(5), 674–690 (1996)
6. Sutton, R.: Open theoretical questions in reinforcement learning. In: Proc. Euro-

pean Conf. Computational Learning Theory, pp. 11–17 (1999)
7. Antos, A., Munos, R., Szepesvári, C.: Fitted Q-iteration in continuous action-space

MDPs. In: Adv. Neural Information Proc. Systems, vol. 20 (2007)
8. Munos, R., Szepesvári, C.: Finite-time bounds for sampling-based fitted value it-

eration. J. Machine Learning Research (submitted, 2007)
9. Gordon, G.: Stable fitted reinforcement learning. In: Adv. Neural Information Proc.

Systems, vol. 8, pp. 1052–1058 (1996)
10. Ormoneit, D., Sen, S.: Kernel-based reinforcement learning. Machine Learning 49,

161–178 (2002)
11. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning.

J. Machine Learning Research 6, 503–556 (2005)
12. Riedmiller, M.: Neural fitted Q-iteration: First experiences with a data efficient

neural reinforcement learning method. In: Gama, J., Camacho, R., Brazdil, P.B.,
Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 317–328.
Springer, Heidelberg (2005)

13. Kimura, H., Kobayashi, S.: Reinforcement learning for continuous action using
stochastic gradient ascent. In: Proc. Int. Conf. Intelligent Autonomous Systems,
pp. 288–295 (1998)

14. Lazaric, A., Restelli, M., Bonarini, A.: Reinforcement learning in continuous action
spaces through sequential Monte Carlo methods. In: Adv. Neural Information Proc.
Systems, vol. 20 (2007)

15. Konda, V., Tsitsiklis, J.: On actor-critic algorithms. SIAM J. Control and Opti-
mization 42(4), 1143–1166 (2003)



FNAC: A New Algorithm for Continuous State-Action MDPs 81

16. Barto, A., Sutton, R., Anderson, C.: Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Trans. Systems, Man and Cybernet-
ics 13(5), 834–846 (1983)

17. van Hasselt, H., Wiering, M.: Reinforcement learning in continuous action spaces.
In: Proc. 2007 IEEE Symp. Approx. Dynamic Programming and Reinforcement
Learning, pp. 272–279 (2007)

18. Bhatnagar, S., Sutton, R., Ghavamzadeh, M., Lee, M.: Incremental natural actor-
critic algorithms. In: Adv. Neural Information Proc. Systems, vol. 20 (2007)

19. Kakade, S.: A natural policy gradient. In: Adv. Neural Information Proc. Systems,
vol. 14, pp. 1531–1538 (2001)

20. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., Chichester (1994)

21. Sutton, R., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for
reinforcement learning with function approximation. In: Adv. Neural Information
Proc. Systems, vol. 12, pp. 1057–1063 (2000)

22. Marbach, P., Tsitsiklis, J.: Simulation-based optimization of Markov reward pro-
cesses. IEEE Trans. Automatic Control 46(2), 191–209 (2001)

23. Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability. Springer, Heidel-
berg (1993)

24. Baird, L.: Advantage updating. Tech. Rep. WL-TR-93-1146, Wright Laboratory,
Wright-Patterson Air Force Base (1993)

25. Amari, S.: Natural gradient works efficiently in learning. Neural Computa-
tion 10(2), 251–276 (1998)

26. Antos, A., Szepesvári, C., Munos, R.: Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path. Ma-
chine Learning 71, 89–129 (2008)

27. Singh, S., Sutton, R.: Reinforcement learning with replacing eligibility traces. Ma-
chine Learning 22, 123–158 (1996)

28. Munos, R.: Error bounds for approximate policy iteration. In: Proc. Int. Conf.
Machine Learning, pp. 560–567 (2003)



A New Natural Policy Gradient
by Stationary Distribution Metric

Tetsuro Morimura1,2, Eiji Uchibe1, Junichiro Yoshimoto1,3, and Kenji Doya1,3,4

1 Initial Research Project, Okinawa Institute of Science and Technology
2 IBM Research, Tokyo Research Laboratory

3 Graduate School of Information Science, Nara Institute of Science and Technology
4 ATR Computational Neuroscience Laboratories

{morimura,uchibe,jun-y,doya}@oist.jp

Abstract. The parameter space of a statistical learning machine has a
Riemannian metric structure in terms of its objective function. Amari
[1] proposed the concept of “natural gradient” that takes the Rieman-
nian metric of the parameter space into account. Kakade [2] applied it to
policy gradient reinforcement learning, called a natural policy gradient
(NPG). Although NPGs evidently depend on the underlying Riemannian
metrics, careful attention was not paid to the alternative choice of the
metric in previous studies. In this paper, we propose a Riemannian met-
ric for the joint distribution of the state-action, which is directly linked
with the average reward, and derive a new NPG named “Natural State-
action Gradient” (NSG). Then, we prove that NSG can be computed by
fitting a certain linear model into the immediate reward function. In nu-
merical experiments, we verify that the NSG learning can handle MDPs
with a large number of states, for which the performances of the existing
(N)PG methods degrade.

Keywords: policy gradient reinforcement learning, natural gradient,
Riemannian metric matrix, Markov decision process.

1 Introduction

Policy gradient reinforcement learning (PGRL) attempts to find a policy that
maximizes the average (or time-discounted) reward, based on the gradient ascent
in the policy parameter space [3,4,5]. As long as the policy is represented by a
parametric statistical model that satisfies some mild conditions, PGRL can be
instantly implemented in the Markov decision process (MDP). Moreover, since
it is possible to treat the parameter controlling the randomness of the policy,
PGRLs, rather than value-based RLs, can obtain the appropriate stochastic
policy and be applied to the partially observable MDP (POMDP). Meanwhile,
depending on the tasks, PGRL methods often take a huge number of learning
steps. In this paper, we propose a new PGRL method that can improve the slow
learning speed by focusing on the metric of the parameter space of the learning
model.
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It is easy to imagine that large-scale tasks suffer from a slow learning speed
because the dimensionality of the policy parameters increases in conjunction
with the task complexity. Besides the problem of dimensionality, the geometric
structure of the parameter space also gives rise to slow learning. Ordinary PGRL
methods omit the sensitivity of each element of the policy parameter and the
correlation between the elements, in terms of the probability distributions of the
MDP. However, most probability distributions expressed by the MDP have some
manifold structures instead of Euclidean structures. Therefore, the updating di-
rection of the policy parameter by the ordinary gradient method is different from
the steepest direction on the manifold; thus, the optimization process occasion-
ally falls into a stagnant state, commonly called a plateau. This is mainly due
to the regions in which the geometric structure for the objective function with
respect to the parameter coordinate system becomes fairly flat and its derivative
becomes almost zero [6]. It was reported that a plateau was observed in a very
simple MDP with only two states [2]. In order to solve such problem, Amari [1]
proposed a “natural gradient” for the steepest gradient method in Riemannian
space. Because the direction of the natural gradient is defined on a Riemannian
metric, it is an important issue how to design the Riemannian metric. Never-
theless, the metric proposed by Kakade [2] has so far been the only metric in
the application of the natural gradient for RL [7,8,9], commonly called natural
policy gradient (NPG) reinforcement learning.

In this paper, we propose the use of the Fisher information matrix of the
state-action joint distribution as the Riemannian metric for RL and derive a
new robust NPG learning, “natural state-action gradient” (NSG) learning. It is
shown that this metric considers the changes in the stationary state-action joint
distribution, specifying the average reward as the objective function. In contrast,
Kakade’s metric takes into account only changes in the action distribution and
omits changes in the state distribution, which also depends on the policy in
general. A comparison with the Hessian matrix is also given in order to confirm
the adequacy of the proposed metric. We also prove that the gradient direction
as computed by NSG is equal to the adjustable parameter of the linear regression
model with the basis function defined on the policy when it minimizes the mean
square error for the rewards. Finally, we demonstrate that the proposed NSG
learning improves the performance of conventional (N)PG-based learnings by
means of numerical experiments with varying scales of MDP tasks.

2 Conventional Natural Policy Gradient Method

We briefly review PGRL in section 2.1 and the natural gradient [1] and the NPG
in section 2.2. In section 2.3, we introduce the controversy of NPGs.

2.1 Policy Gradient Reinforcement Learning

PGRL is modeled on a discrete-time Markov decision process (MDP) [10,11]. It is
defined by the quintuplet (S, A, p, r, πθ), where S � s and A � a are finite sets of
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states and actions, respectively. Further, p : S×A×S → [0, 1] is a state transition
probability function of a state st, an action at, and the following state st+1 at a
time step t, i.e., p(st+1|st, at) ≡ Pr(st+1|st, at) 1. r : S × A × S → R is a reward
function of st, at, and st+1, and is bounded, which defines an immediate reward
rt+1 = r(st, at, st+1) observed by a learning agent. π : A × S × Rd → [0, 1] is an
action probability function of at, st, and a policy parameter θ ∈ Rd, and is always
differentiable with respect to θ known as a policy, i.e., π(at|st; θ) ≡ Pr(at|st, θ).
It defines the decision-making rule of the learning agent and is adjustable by
tuning θ. We make an assumption that the Markov chain M(θ) = {S, A, p, πθ}
is ergodic for all θ. Then, there exists a unique stationary state distribution
dθ(s) ≡ Pr(s|M(θ)), which is equal to the limiting distribution and independent
of the initial state, dθ(s′) = limt→∞ Pr(St = s′|S0 = s, M(θ)), ∀s ∈ S. This
distribution satisfies the balance equation:

dθ(s′) =
∑

s∈S

∑

a∈A
p(s′|s, a)π(a|s;θ)dθ(s). (1)

The following equation instantly holds [10]:

dθ(s′)= lim
T→∞

1
T

T∑

t=1

Pr(St =s′|S0 =s, M(θ)), ∀s ∈ S. (2)

The goal of PGRL is to find the policy parameter θ∗ that maximizes the
average of the immediate rewards called the average reward:

R(θ) ≡ lim
T→∞

1
T

E

{ T∑

t=1

rt

∣∣∣s0, M(θ)
}

, (3)

where E{·} denotes expectation. It is noted that, under the assumption of er-
godicity (eq.2), the average reward is independent of the initial state s0 and can
be shown to equal [10]:

R(θ) =
∑

s∈S

∑

a∈A

∑

s′∈S
dθ(s)π(a|s;θ)p(s′|s, a)r(s, a, s′)

=
∑

s∈S

∑

a∈A
dθ(s)π(a|s;θ)r̄(s, a)

≡
∑

s∈S

∑

a∈A
Pr(s, a|M(θ))r̄(s, a). (4)

where r̄(s, a) ≡
∑

s′∈S p(s′|s, a)r(s, a, s′). The statistical model Pr(s, a|M(θ))
is called the stationary state-action (joint) distribution. Since r̄(s, a) is usually
independent of the policy parameter, the derivative of the average reward with

1 Although it should be Pr(St+1 = st+1|St = st, At = at) for the random variables
St+1, St, and At to be precise, we notate Pr(st+1|st, at) for simplicity. The same rule
is applied to the other distributions.
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respect to the policy parameter, ∇θR(θ) ≡ [∂R(θ)/∂θ1, ..., ∂R(θ)/∂θd]	 is given
by

∇θR(θ) =
∑

s∈S

∑

a∈A
∇θ {dθ(s)π(a|s;θ)} r̄(s, a)

=
∑

s∈S

∑

a∈A
dθ(s)π(a|s;θ)r̄(s, a) {∇θln π(a|s; θ) + ∇θln dθ(s)} , (5)

where � denotes transpose and ∇θaθbθ ≡ (∇θaθ)bθ. Therefore, the average
reward R(θ) increases by updating the policy parameter as follows:

θ := θ + α∇θR(θ),

where := denotes the right-to-left substitution and α is a sufficiently small learn-
ing rate. The above framework is called the PGRL method [5].

2.2 Natural Gradient [1]

Natural gradient learning is a gradient method on a Riemannian space. The
parameter space being a Riemannian space implies that the parameter θ ∈ Rd

is on the Riemannian manifold defined by the Riemannian metric matrix G(θ) ∈
Rd×d (positive definite matrix) and the squared length of a small incremental
vector Δθ connecting θ to θ + Δθ is given by

‖Δθ‖2
G = Δθ	G(θ)Δθ.

Under the constraint ‖Δθ‖2
G = ε2 for a sufficiently small constant ε, the steepest

ascent direction of a function R(θ) is given by

∇̃G,θ R(θ) = G(θ)−1∇θR(θ). (6)

It is called the natural gradient of R(θ) in the Riemannian space G(θ). In
RL, the parameter θ is the policy parameter, the function R(θ) is the average
reward, and the gradient ∇̃G,θR(θ) is called the natural policy gradient (NPG)
[2]. Accordingly, in order to (locally) maximize R(θ), θ is incrementally updated
by

θ := θ + α ∇̃G,θ R(θ). (7)

When we consider a statistical model of a variable x parameterized by θ, Pr(x|θ),
the Fisher information matrix (FIM) Fx(θ) is often used as the Riemannian
metric matrix: [12]

Fx(θ) ≡
∑

x∈X
Pr(x|θ)∇θ ln Pr(x|θ)∇θ ln Pr(x|θ)	

= −
∑

x∈X
Pr(x|θ)∇2

θ ln Pr(x|θ), (8)
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where X is a set of possible values taken by x. ∇2
θaθ denotes ∇θ(∇θaθ). The rea-

son for using F (θ) as G(θ) comes from the fact that F (θ) is a unique metric ma-
trix of the second-order Taylor expansion of Kullback-Leibler (KL) divergence2,
which is known as a (pseudo) distance between two probability distributions.
That is, the KL divergence of Pr(x|θ+Δθ) from Pr(x|θ) is represented by

DKL{Pr(x|θ)| Pr(x|θ+Δθ)}=
1
2
Δθ	Fx(θ)Δθ+O(‖Δθ‖3),

where ‖a‖ denotes the Euclidean norm of a vector a.

2.3 Controversy of Natural Policy Gradients

PGRL is regarded as an optimizing process of the policy parameter θ on some
statistical models relevant to both a stochastic policy π(a|s;θ) and a state transi-
tion probability p(s′|s, a). If a Riemannian metric matrix G(θ) can be designed
on the basis of the FIM of an apposite statistical model, F ∗(θ), an efficient NPG
∇̃F ∗,θR(θ) is instantly derived by eq.6.

As Kakade [2] pointed out, the choice of the Riemannian metric matrix G(θ)
for PGRL is not unique and the question what metric is apposite to G(θ) is still
open. Nevertheless, all previous studies on NPG [13,14,8,7,9] did not seriously
address the above problem and (naively) used the Riemannian metric matrix
proposed by Kakade [2]. In the next section, we will discuss the statistical models
and metric spaces for PGRL and propose a new Riemannian metric matrix.

3 Riemannian Metric Matrices for PGRL

In section 3.1, we propose a new Riemannian metric matrix for RL and derive
its NPG named the NSG. In sections 3.2 and 3.3, we discuss the validity of this
Riemannian metric by comparing it with the Riemannian metric proposed by
Kakade [2] and the Hessian matrix of the average reward.

3.1 A Proposed Riemannian Metric Matrix and NPG Based on
State-Action Probability

Since the only adjustable function in PGRL is the policy function π(a|s;θ), pre-
vious studies on NPG focused on the policy function π(a|s;θ), i.e., the statistical
models Pr(a|s, M(θ)). However, the perturbations in the policy parameter θ also
give rise to the change in the probability of the state Pr(s|M(θ)). Because the
average reward R(θ) as the objective function of PGRL is specified by the joint
probability distribution of the state and the action (s, a) ∈ S × A (eq.4), it is
natural and adequate to focus on the statistical model Pr(s, a|M(θ)). For this
case, the FIM of Pr(s, a|M(θ)) can be used as the Riemannian metric G(θ).
Then, its NPG consists with the direction maximizing the average reward under
2 It is same in the case of all f-divergences in general, except for scale [12].
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the constraint that a measure of changes in the KL divergence of the stationary
state-action distribution with respect to θ is fixed by a sufficient small constant
ε: DKL{Pr(s, a|M(θ))| Pr(s, a|M(θ + Δθ))} = ε2. The FIM of this statistical
model, Fs,a(θ), is calculated with Pr(s, a|M(θ)) = dθ(s)π(a|s;θ) and eq.8 to be

Fs,a(θ) =
∑

s∈S

∑

a∈A
Pr(s, a|M(θ))∇θ ln Pr(s, a|M(θ))∇θ ln Pr(s, a|M(θ))	

= −
∑

s∈S

∑

a∈A
dθ(s)π(a|s;θ)∇2

θ ln (dθ(s)π(a|s;θ))

= Fs(θ) +
∑

s∈S
dθ(s)Fa(s, θ), (9)

where
Fs(θ) =

∑

s∈S
dθ(s)∇θln dθ(s)∇θ ln dθ(s)	 (10)

is the FIM defined from the statistical model comprising the state distribution,
Pr(s|M(θ))=dθ(s), and

Fa(s, θ) =
∑

a∈A
π(a|s;θ)∇θln π(a|s; θ)∇θln π(a|s; θ)	 (11)

is the FIM of the policy comprising the action distribution given the state s,
Pr(a|s, M(θ)) = π(a|s;θ). Hence, the new NPG on the FIM of the stationary
state-action distribution is

∇̃Fs,a,θR(θ) = Fs,a(θ)−1 ∇θR(θ).

We term it the “natural state-action gradient”(NSG).

3.2 Comparison with Kakade’s Riemannian Metric Matrix

The only Riemannian metric matrix for RL that has been proposed so far is the
following matrix, which was proposed by Kakade [2] and was the weighted sum
of the FIMs of the policy by the stationary state distribution dθ(s),

F a(θ) ≡
∑

s∈S
dθ(s)Fa(s, θ). (12)

This is equal to the second term in eq.9. If it is assumed that the stationary
state distribution is not changed by a variation in the policy, i.e., if ∇θdθ(s) =
0 holds, then Fs(θ) = 0 holds according to eq.10. While this assumption is
not true in general, Kakade’s metric F a(θ) is equivalent to Fs,a(θ) if it holds.
These facts indicate that F a(θ) is the Riemannian metric matrix ignoring the
change in the stationary state distribution dθ(s) caused by the perturbation in
the policy parameter θ in terms of the statistical model of the stationary state-
action distribution Pr(s, a|M(θ)).
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Meanwhile, Bagnell et al. [13] and Peters et al. [14] independently, showed
the relationship between the Kakade’s metric and the system trajectories ξT =
(s0, a0, s1, ..., aT−1, sT ) ∈ ΞT . When the FIM of the statistical model for the
system trajectory ξT ,

Pr(ξT |M(θ)) = Pr(s0)
T−1∏

t=0

π(at|st;θ)p(st+1|st, at),

is normalized by the time steps T with the limit T → ∞, it is equivalent to the
Kakade’s Riemannian metric,

lim
T→∞

1
T

FξT (θ) = − lim
T→∞

1
T

∑

ξT ∈ΞT

Pr(ξT |M(θ))∇2
θ

{
T−1∑

t=0

ln π(at|st;θ)

}

= −
∑

s∈S
dθ(s)

∑

a∈A
π(a|s;θ)∇2

θ ln π(a|s;θ)

= F a(θ)

Since the PGRL objective, i.e., the maximization of the average reward, is re-
duced to the optimization of the system trajectory by eq.3 [13,14] suggested
that the Kakade’s metric F a(θ) could be a good metric. However, being equal
to F a(θ), the normalized FIM for the infinite-horizon system trajectory obvi-
ously differs with Fs,a(θ) and is the metric that ignores the information Fs(θ)
about the stationary state distribution Pr(s|M(θ)). This is due to the fact that
the statistical model of the system trajectory considers not only the state-action
joint distribution but also the progress for the (infinite) time steps, as follows.

Here, s+t and a+t are the state and the action, respectively, progressed in t
time steps after converging to the stationary distribution. Since the distribution
of the system trajectory for T time steps from the stationary distribution, ξ+T ≡
(s, a+0, s+1, ..., a+T−1, s+T ) ∈ ΞT , is

Pr(ξ+T |M(θ)) = dθ(s)
T−1∏

t=0

π(a+t|s+t;θ)p(s+t+1|s+t, a+t),

its FIM is given by

Fξ+T (θ) = Fs(θ) + TF a(θ). (13)

The derivation of which is shown in appendix A. Because of limT→∞ Fξ+T /T =
F a(θ), the Kakade’s metric F a(θ) is regarded as the limit T → ∞ of the system
trajectory distribution for T time steps from the stationary state distribution.
Consequently, F a(θ) omits the FIM of the state distribution, Fs(θ). On the
other hand, the FIM of the system trajectory distribution for one time step
is obviously equivalent to the FIM of the state-action joint distribution, i.e.,
Fξ+1(θ) = Fs,a(θ).

Now, we discuss which FIM is adequate for the average reward maximization.
As discussed in section 3.1, the average reward in eq.4 is the expectation of r̄(s, a)
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over the distribution of the state-action (i.e. the +1-time-step system trajectory)
and does not depend on the system trajectories after +2 time steps. It indicates
that the Kakade’s metric F a(θ) supposed a redundant statistical model and the
proposed metric for state-action distribution, Fs,a(θ), would be more natural and
adequate for PGRL. We give comparisons among various metrics such as Fs,a(θ),
F a(θ), and a unit matrix I through the numerical experiments in section 5.

Similarly, when the reward function is extended a function of T time steps,
r(st, at, ..., at+T−1, st+T ), instead of one time step, r(st, at, st+1), the FIM of the
T -time-step system trajectory distribution, Fξ+T (θ), would be a natural metric
because the average reward becomes R(θ) =

∑
ξ+T ∈ΞT

Pr(ξ+T |M(θ))r(ξ+T ).

3.3 Analogy with Hessian Matrix

We discuss the analogies between the Fisher information matrices Fs,a(θ) and
F a(θ) and the Hessian matrix H(θ), which is the second derivative of the aver-
age reward with respect to the policy parameter θ,

H(θ) ≡ ∇2
θR(θ)

=
∑

s∈S

∑

a∈A
r̄(s, a)dθ(s)π(a|s;θ)

{
∇2

θ ln
(
dθ(s)π(a|s;θ)

)
+ ∇θ ln

(
dθ(s)π(a|s;θ)

)
∇θ ln

(
dθ(s)π(a|s;θ)

)	}

(14)

=
∑

s∈S

∑

a∈A
r̄(s, a)dθ(s)π(a|s;θ)

{
∇2

θ ln π(a|s;θ) + ∇θ ln π(a|s;θ)∇θ ln π(a|s;θ)	 + ∇2
θ ln dθ(s)

+ ∇θ ln dθ(s)∇θ ln dθ(s)	 + ∇θln dθ(s)∇θln π(a|s;θ)	

+ ∇θln π(a|s;θ)∇θln dθ(s)	
}

. (15)

Comparing eq.12 of the Kakade’s metric matrix F a(θ) with eq.15 of the Hessian
matrix H(θ), the Kakade’s metric does not have any information about the
last two terms in braces {·} of eq.15, as Kakade [2] pointed out3. This is because
F a(θ) is derived under ∇θdθ(s) = 0. By eq.9 and eq.14, meanwhile, the proposed
metric Fs,a(θ) obviously has some information about all the terms of H(θ).
This comparison with the Hessian matrix suggests that Fs,a(θ) should be an
appropriate metric for PGRL. Additionally, Fs,a(θ) becomes equivalent to the
Hessian matrix in the cases using an atypical reward function that depends on
θ (see Appendix B).

It is noted that the average reward would not be a quadratic form with re-
spect to the policy parameter θ in general. Especially when θ is far from the
optimal parameter θ∗, the Hessian matrix H(θ) occasionally gets into an indef-
inite matrix. Meanwhile, FIM F (θ) is always positive (semi-)definite, assured

3 Strictly speaking, H(θ) is sligthtly different from the Hessian matrix used in [2].
However, the essence of argument is the same as in [2].
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by its definition in eq.8. Accordingly, the natural gradient method using FIM
might be a more versatile covariant gradient ascent for PGRL than the Newton-
Raphson method [15], in which the gradient direction is given by ∇̃−H,θ R(θ).
Comparison experiments are presented in section 5.

4 Computation of Natural State-Action Gradient

In this section, we view the estimation of the NSG. It will be shown that this
estimation can be reduced to the regression problem of the immediate rewards.

Consider the following linear regression model

fθ(s, a; ω) ≡ φθ(s, a)	ω, (16)

where ω is the adjustable parameter and φθ(s, a) is the basis function of the
state and action, also depending on the policy parameter θ,

φθ(s, a) ≡ ∇θ ln (dθ(s)π(a|s;θ))
= ∇θln dθ(s) + ∇θln π(a|s; θ). (17)

Then, the following theorem holds:

Theorem 1. Let the Markov chain M(θ) have the fixed policy parameter θ, if
the objective is to minimize the mean square error ε(ω) of the linear regression
model fθ(st, at; ω) in eq.16 for the rewards rt+1,

ε(ω) = lim
T→∞

1
2T

T−1∑

t=0

{rt+1 − fθ(st, at; ω)}2
, (18)

then the optimal adjustable parameter ω∗ is equal to NSG as the natural policy
gradient on Fs,a(θ):

∇̃Fs,a,θR(θ) = ω∗.

Proof: By the ergodic property of M(θ), eq.18 is written as

ε(ω) =
1
2

∑

s∈S

∑

a∈A
dθ(s)π(a|s;θ) (r̄(s, a) − fθ(s, a; ω))2 .

Since ω∗ satisfies ∇ωε(ω)|ω=ω∗ = 0, we have
∑

s∈S

∑

a∈A
dθ(s)π(a|s;θ)φθ(s, a)φθ(s, a)	ω∗ =

∑

s∈S

∑

a∈A
dθ(s)π(a|s;θ)φθ(s, a)r̄(s, a).

By the definition of the basis function (eq.17), the following equations hold,
∑

s,a

dθ(s)π(a|s;θ)φθ(s, a)φθ(s, a)	 = Fs,a(θ),

∑

s,a

dθ(s)π(a|s;θ)φθ(s, a)r̄(s, a) = ∇θR(θ).
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(i) Δθ�Fs,a(θ)Δθ = 0.14 (ii) Δθ�F a(θ)Δθ = 0.12 (iii) Δθ�IΔθ = 0.35

Fig. 1. Phase planes of a policy parameter in a two-state MDP: The gray level denotes
ln dθ(1)/dθ(2). Each ellipsoid denotes the fixed distance spaces by each metric G(θ) :=
(i) Fs,a(θ), (ii) F a(θ), or (iii) I .

Therefore, the following equation holds:

ω∗ = Fs,a(θ)−1∇θR(θ) = ∇̃Fs,a,θR(θ). �

It is confirmed by theorem 1 that if the least-square regression to the immedi-
ate reward rt+1 by the linear function approximator fθ(st, at; ω) with the basis
function φθ(s, a) ≡ ∇θ ln (dθ(s)π(a|s;θ)) is performed, the adjustable parameter
ω becomes the unbiased estimate of NSG ∇̃Fs,a,θR(θ). Therefore, since the NSG
estimation problem is reduced to the regression problem of the reward function,
NSG would be simply estimated by the least-square technique or by such a gra-
dient descent technique as the method with the eligibility traces proposed by
Morimura et al. [7], where the matrix inversion is not required.

It should be noted that, in order to implement this estimation, the com-
putation of both the derivatives, ∇θln π(a|s; θ) and ∇θln dθ(s), is required for
the basis function φθ(s, a). While ∇θln π(a|s; θ) can be instantly calculated,
∇θln dθ(s) cannot be solved analytically because the state transition probabili-
ties are generally unknown in RL. However, an efficient online estimation manner
for ∇θln dθ(s), which is similar to the method of estimating the value function,
has been established by Morimura et al. [16]. However, we have not discussed
the concrete implementations in this paper.

5 Numerical Experiments

5.1 Comparison of Metrics

We first looked into the differences among the Riemannian metric matrices
G(θ)—the proposed metric Fs,a(θ), Kakade’s metric F a(θ), and unit matrix
I—in a simple two-state MDP [2], where each state s ∈ {1, 2} has self- and
cross-transition actions A = {l, m} and each state transition is deterministic.
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The policy with θ ∈ R2 is represented by the sigmoidal function: π(l|s; θ) =
1/(1 + exp(−θ	ψ(s))), where ψ(1) = [1, 0]	 and ψ(2) = [0, 1]	. Figure 1 shows
the phase planes of the policy parameter θ. The gray level denotes the log ratio
of the stationary state distribution, and each ellipsoid corresponds to the set of
Δθ satisfying a constant distance Δθ	G(θ)Δθ = ε2, in which NPG looks for
the steepest direction maximizing the average reward. It is confirmed that the
ellipsoids by the proposed metric Fs,a(θ) coped with the changes in the state
distribution by the perturbation in θ because the alignment of the minor axis
of the ellipsoid on Fs,a(θ) complied with the direction significantly changing the
dθ(s). This indicates that the policy update with NSG does not drastically change
dθ(s). As we see theoretically. the other metrics could not grasp the changes even
though F a(θ) is the expectation of Fa(θ) over dθ(s).

5.2 Comparison of Learnings

We compared NSG with Kakade’s NPG, the ordinary PG, and the (modified)
Newton PG learnings in terms of the optimizing performances for θ through ran-
domly synthesized MDPs with a varying number of states, |S| ∈ {3, 10, 20, 35,
50, 65, 80, 100}. Note that the only difference among these gradients is the defini-
tion of the matrix G(θ) in eq.6. The Newton PG uses a modified Hessian matrix
H�(θ) to assure the negative definiteness:

H�(θ) = H(θ) − max(0, λmax − λ′
max)I,

where λmax and λ′
max are the maximum and the largest-negative eigenvalues of

H(θ), respectively4.
It is noted that each gradient was computed analytically because we focussed

on the direction of the gradients rather than the sampling issue in this paper.

Experimental Setup. We initialized the |S|-state MDP in each episode as
follows. The set of the actions was always |A| = {l, m}. The state transition
probability function was set by using the Dirichlet distribution Dir(α ∈ R2)
and the uniform distribution U(|S|; b) generating an integer from 1 to |S| other
than b: we first initialized it such that p(s′|s, a) := 0, ∀(s′, s, a) and then, with
q(s, a)∼Dir(α=[.3, .3]) and x\b ∼ U(|S|; b),

{
p(s + 1|s, l) := q1(s, l)
p(x\s+1|s, l) := q2(s, l)

{
p(s|s, m) := q1(s, m)
p(x\s|s, m) := q2(s, m)

where s′=1 and s′= |S|+1 are the identical states. The reward function r(s, a, s′)
was temporarily set for each argument by Gaussian distribution N(μ=0, σ2 =1)
and was normalized such that maxθ R(θ) = 1 and minθ R(θ) = 0;

r(s, a, s′) :=
r(s, a, s′) − minθ R(θ)

maxθ R(θ) − minθ R(θ)
.

4 We examined various Hessian modifications [15]. The modification adopted here
worked best in this task.
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The policy parameterization was the same as that for previous experiment. Ac-
cordingly, in this MDP setting, there is no local optimum except for the global
optimum. Each element of θ0 ∈ R|S| and ψ(s) ∈ R|S| for any state s was drawn
from N(0, .5) and N(0, 1), respectively. We set the total episode time step at
T = 300 and the initial learning rate α0 in eq.7 for each (N)PG before each
episode at the inverse of RMS,

α0 =
√

|S|/
∥∥∇̃G,θR(θ)|θ=θ0

∥∥.

If the learning rate α is decent, R(θ) will always increase by the policy update
of eq.7. Hence, when the policy update decreased R(θ), we tuned the learning
rate “α :=α/2” and reattempted the update in the same time step. This tuning
was kept until ΔR(θ) ≥ 0. On the other hand, when α0 > α held true at the
following time step, we also tuned “α := 2α” to avoid standstills of the learning.

Results and Discussions. Figure 2 shows the learning curves for ten individual
episodes in 100-state MDPs and reveals that NSG learning was able to succeed in
optimizing the policy parameter uniformly and robustly though, compared with
the other gradients, NSG was not infrequently slow in improving of performance
at a moment. These are consistent with the results about the application of the
natural gradient method to the learning of the multilayer perceptron [17].

Figure 3(A) shows the success rate of the learning by 300 episodes at each
number of states. Since the maximum of the average reward was set to 1, we
regarded the episodes satisfying R(θT ) ≥ 0.95 as “successful” episodes. This
suggests that, in the case of the MDPs with a small number of states, NSG and
Kakade’s NPG methods could avoid falling into the severe plateau phenomena
and robustly optimize the policy parameter θ, compared with the other methods.
The reason why Kakade’s NPG could work as well as NSG would be that the
Riemannian metric used in Kakade’s method has partial information about the
statistical model Pr(s, a|M(θ)). Meanwhile, Kakade’s method frequently failed
to improve the average reward in the cases of the MDPs with a large number
of states. This could be due to the fact that Kakade’s metric omits the FIM
about the state distribution, Fs(θ) unlike the proposed metric, as discussed
theoretically in section 3.2. It is also confirmed that Kakade’s NPG was inferior
to the modified Newton PG in the cases of many states. This could also be a
result of whether the gradient has the information about the derivative of dθ(s)
or not.

Finally, we analyzed how severe was the plateau in which these PG learnings
were trapped. As this criterion, we utilized the smoothness of the learning curve
(approximate curvature),

Δ2R(θt)=ΔR(θt+1)−ΔR(θt),
where ΔR(θt) ≡ R(θt)−R(θt−1). The criterion for the plateau measure of the
episode was defined by

PM=
∑T−1

t=1 ‖Δ2R(θt)‖.

Figure 3(B) represents the average of PM over all episodes for each PG and shows
that NSG learning could learn very smoothly. This result indicates that the
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Fig. 2. Time courses of R(θ) for ten individual runs by (i) ∇̃Fs,a,θ R(θ), (ii) ∇̃F a,θR(θ),
(iii) ∇̃I,θ R(θ), (iv) ∇̃−H�,θ R(θ)
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learning by NSG could most successfully escape from a plateau; this is consistent
with all other results.

Since NSG could avoid the plateau and robustly optimize θ without any
serious effect of the setting of the MDP and the initial policy parameter, we
conclude that NSG could be a more robust and natural NPG than the NPG by
Kakade [2].

6 Summary and Future Work

This paper proposed a new Riemannian metric matrix for the natural gradient
of the average reward, which was the Fisher information matrix of the station-
ary state-action distribution. We clarified that Kakade’s NPG [2], which has
been widely used in RL, does not consider the changes in the stationary state
distribution caused by the perturbation of the policy, while our proposed NSG
does. The difference was confirmed in numerical experiments where NSG learn-
ing could dramatically improve the performance and rarely fell into the plateau.
Additionally, we proved that, when the immediate rewards were fitted by using
the linear regression model with the basis function defined on the policy, its
adjustable parameter represented the unbiased NSG estimate.

More algorithmic and experimental studies are necessary to further emphasize
the effectiveness of NSG. The significant ones would be to establish an efficient
Monte-Carlo estimation way of NSG along with estimating the derivative of
the stationary state distribution [16], and then to clarify whether or not the
proposed NSG method can still be useful even when the gradient is computed
from samples. We will investigate them in future work.
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Appendix

A Derivation of eq.13
For simplicity, we denote π+t ≡ π(a+t|s+t;θ) and p+t ≡ p(s+t|s+t−1, a+t−1).
Since ξ+T is the system trajectory for T time steps from dθ(s), Fξ+T (θ) is cal-
culated to be

Fξ+T (θ) = −
∑

ξ+T ∈ΞT

Pr(ξ+T )∇2
θ

{
ln dθ(s) +

T−1∑

t=0

ln π(a+t|s+t;θ)
}

= −
∑

s∈S
dθ(s)

(
∇2

θ ln dθ(s) +
∑

a+0∈A
π+0

(
∇2

θ ln π+0+

∑

s+1∈S
p+1

∑

a+1∈A
π+1

(
∇2

θ ln π+1 + · · ·+

∑

s+T −1∈S
p+T−1

∑

a+T −1∈A
π+T−1 ∇2

θ ln π+T−1

)
· · ·

))
.

By using the balance equation of the dθ(s) in eq.1,

Fξ+T (θ) = Fs(θ) +
T−1∑

t=0

( ∑

s+t∈S
dθ(s+t)Fa(θ|s+t)

)

= Fs(θ) + TF a(θ). �

B Consistency of Fs,a(θ) and H(θ)
If the immediate reward is dependent on θ

r(s, a; θ) =
Pr(s, a|M(θ∗))
Pr(s, a|M(θ))

ln Pr(s, a|M(θ)), (19)
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then the average reward becomes the negative cross entropy,

R(θ) =
∑

s,a

Pr(s, a|M(θ∗)) ln Pr(s, a|M(θ)).

Hence, Pr(s, a|M(θ∗))=Pr(s, a|M(θ)) holds, if the average reward is maximized.
The Hessian matrix becomes H(θ)=

∑
s,aPr(s, a|M(θ∗))∇2

θ ln Pr(s, a|M(θ)). If
the policy parameter is nearly optimal θ ≈ θ∗, Pr(s, a|M(θ)) ≈ Pr(s, a|M(θ∗))
holds by the assumption of the smoothness of π(a|s;θ) with respect to θ. There-
fore, at this time, the Hessian matrix approximately equates the negative, pro-
posed FIM:

H(θ) ≈
∑

s∈S

∑

a∈A
Pr(s, a|M(θ))∇2

θ ln Pr(s, a|M(θ))

= −Fs,a(θ).

H(θ∗) = −Fs,a(θ∗) obviously holds. Therefore, when the reward function is in
eq.19 and the policy parameter is close to the optimal, NSG almost consists with
the Newton direction and the NSG learning attains quadratic convergence.
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Abstract. This paper discusses machine learning of grammars and com-
pilers of programming languages from samples of translation from source
programs into object codes. This work is an application of incremental
learning of definite clause grammars (DCGs) and syntax directed trans-
lation schema (SDTS), which is implemented in the Synapse system.
The main experimental result is that Synapse synthesized a set of SDTS
rules for translating extended arithmetic expressions with function calls
and assignment operators into object codes from positive and negative
samples of the translation. The object language is a simple intermediate
language based on inverse Polish notation. These rules contain an unam-
biguous context free grammar for the extended arithmetic expressions,
which specifies the precedence and associativity of the operators. This
approach can be used for designing and implementing a new program-
ming language by giving the syntax and semantics in the form of the
samples of the translation.

1 Introduction

This paper discusses machine learning of grammars and compilers of program-
ming languages from positive and negative samples of translation from source
programs into object codes. This work is an application of incremental learning
of definite clause grammars (DCGs) [16] and syntax-directed translation schema
(SDTS) [1]. The grammatical induction of these extended context free grammars
(CFGs) is implemented in the Synapse system [13,14].

The DCG can be converted to a logic program for parsing and generating
strings in the language of the grammar. The DCG is more powerful than the
CFG, as the DCG rules can have additional parameters for controlling deriva-
tions and for communicating parameters between separate nodes in the deriva-
tion tree.

This paper shows our experimental results of incremental learning of DCG
rules representing a restricted form of SDTS, which specify the translation by
compilers. We intend to apply this approach to design and implement a new
programming language by giving the syntax and semantics in the form of the
samples of the translation.
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1.1 Grammatical Induction of Extended CFG

Our approach to grammatical induction is characterized by rule generation based
on bottom-up parsing for positive sample strings, the search for rule sets and
incremental learning. In Synapse, the process called bridging generates the pro-
duction rules that bridge, or make up, any lacking parts of an incomplete deriva-
tion tree that is the result of bottom-up parsing of a positive string. The system
searches for a set of rules that satisfies all the samples by global search, in which
the system searches for the minimal set of rules that satisfies given sets of positive
and negative samples by iterative deepening.

Incremental learning is essential to this approach. In order to learn a grammar
from its sample strings, the positive samples are given to the rule generation
process in the order of their lengths. This process continues until the system
finds a set of rules that derives all the positive samples, but none of negative
samples. By incremental learning, a grammar can be synthesized by adding
rules to previously learned grammars of either similar languages or a subset
of the target language. This is a method to solve the fundamental problem of
computational complexity in learning CFG and more complex grammars [7,18].

An important feature of Synapse for the subject of this paper is that the
system synthesizes minimal or semi-minimal grammars based on a covering-
based approach. Many other grammatical inference systems for CFGs and their
extensions are classified into the generalization based approach, in which the
systems generate rules by analyzing the samples and generalizing and abstracting
the rules. This is a reason that there have been few publications on learning
small rule sets of both ambiguous and unambiguous CFGs and/or extended
CFGs. Learning SDTS was chosen as the subject of the Tenjinno competition
[20] at ICGI 2006. Clark [2] solved some of the problems of the competition.
Most participants to this competition, as well as the Omphalos competition [19]
at ICGI 2004 about learning CFG, did not intend to synthesize small grammars.

Learning DCG is closely related to inductive logic programming (ILP) [15].
Several studies dealt with learning grammars based on ILP [3,10]. Cussens and
Pulman [4] describes a method of learning missing rules using bottom-up ILP.
There have been, however, few publications focusing on learning DCG and its
applications based on ILP. Fredouille et. al. [6] describes a method for efficient
ILP-based learning of DCGs for biological pattern recognition. Ross [17] presents
learning of Definite Clause Translation Grammar, a logical version of attribute
grammar, by genetic programming.

1.2 Learning Grammars and Compilers

Processing of programming languages has been a key technology in computer sci-
ence. There has been much work in compiler theory, including reducing the cost
of implementing programming languages and optimizing object codes in compil-
ers. On the other hand, there have been few works on applying machine learning
of grammars and compilers. Dubey et. al. [5] describes a method of inferring
grammar rules of a programming language dialect based on the grammar of the
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original language for restoring the lost knowledge of the dialect. Other applica-
tions of machine learning to compilers are related to optimizing object codes.
Monsifrot et. al. [11] and Stephenson et. al. [21] showed methods of improv-
ing optimization heuristics in compilers by using machine learning technologies,
decision trees and genetic programming, respectively.

The grammars of programming languages need to not only be unambiguous,
but also reflect its semantics, i.e. how a program is computed. For example, any
grammar for arithmetic expressions should specify the precedence and left, or
right, associativity of the operators. Therefore, synthesizing grammars requires
some structural or semantic information other than positive and negative sam-
ples of source codes. To address this requirement, in our approach the samples
for the learning are pairs of source codes and corresponding object codes in an
intermediate language.

1.3 Organization of the Paper

Section 2 outlines CFG and SDTS, and defines Chomsky normal form of SDTS.
Section 3 briefly defines some basics of logic programming and DCG, and shows a
method of representing SDTS by DCG. Section 3 shows the bridging rule gener-
ation procedure for both CFGs and DCGs. Section 4 describes search strategies
for finding minimal or semi-minimal rule sets, and shows recent experimental
results of learning CFGs and DCGs. Section 6 describes learning DCG rules
that represent SDTS rules for translating extended arithmetic expressions into
object codes in a simple intermediate language, which is based on inverse Polish
notation. Section 7 presents the concluding remarks.

2 CFGs and SDTS

A context free grammar (CFG) is a system (N, T, P, s), where: N and T are
finite sets of nonterminal and terminal symbols, respectively; P is the set of
(production) rules of the form p → u, p ∈ N, u ∈ (N ∪ T )+; and s ∈ N is
the starting symbol. We write w ⇒G x for w, x ∈ (N ∪ T )+, if there are a rule
(p → u) ∈ P and strings z1, z2 ∈ (N ∪ T )∗ such that w = z1p z2 and x = z1u z2.
The language of G is the set L(G) = {w ∈ T + | s ⇒∗

G w}, where the relation ⇒∗
G

is the reflexive transitive closure of ⇒G. Nonterminal symbols are represented
by p, q, r, s, t, terminal symbols by a, b, c, d, e and either nonterminal or terminal
symbols by β, γ.

Chomsky normal form (CNF) rules are of the forms p → a and p → qr.
Synapse synthesizes rules of the extended CNF, p → β and p → βγ. A feature
of this normal form is that grammars can be made simpler than those in CNF.

A syntax-directed translation schema (SDTS) is a system T = (N, Σ, Δ, R, s),
where: Σ and Δ are sets of input terminal and output terminal symbols, respec-
tively; and R is a set of rules of the form

p → u, v. p ∈ N, u ∈ (N ∪ Σ)+, v ∈ (N ∪ Δ)+,
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such that the set of nonterminal symbols that occur in u is equal to that in v. If
a nonterminal symbol p appears more than once in u, we use symbols with the
subscripts p1, p2 to indicate the correspondence of the symbols in u and v. We
write w1, w2 ⇒T x1, x2 for w1, x1 ∈ (N ∪ Σ)∗ and w2, x2 ∈ (N ∪ Δ)∗, if there
is a rule (p → u, v) ∈ R and strings y1, y2 ∈ (N ∪ Σ)∗ and z1, z2 ∈ (N ∪ Δ)∗

such that w1 = y1 p y2, x1 = y1u y2, w2 = z1 p z2 and x2 = z1 v z2. The SDTS T
translates a string w ∈ Σ+, into x ∈ Δ+ and vice versa, if (s, s) ⇒∗

T (w, x).
The SDTS is regular, if and only if every rule is of the form of either p → a q, b r

or p → a, b. The regular SDTS is equivalent to a finite sequential transducer.
We restrict the form of SDTS to Chomsky normal form (CNF), in which

every string in the right hand side of the rule has at most two symbols, e.g.
(p → p q, p q), (p → p q, q p) or (p → a, b). Any SDTS T with rule(s) having
three symbols in the right hand side can be transformed into a SDTS in CNF,
which is equivalent to T . The SDTS in this paper is extended so that elements
of the strings may be not only constants but also lists of the constants. There
are, however, SDTS rules with more than three symbols in the right hand side,
that cannot be simply transformed to CNF.

Example 1: reversing strings The following SDTS in CNF translates any string
into its reversal, for example, aababb to bbabaa.

s → a, a s → b, b s → a s, s a s → b s, s b

This SDTS derives the set of pairs of strings,

(a, a), (b, b), (aa, aa), (ab, ba), (ba, ab), (bb, bb), (aaa, aaa), (aab, baa), · · · .

3 Definite Clause Grammars (DCG)

We use the notations and syntax of standard Prolog for constants, variables,
terms, lists and operators, except that the constants are called atoms in Prolog.
A constant (an atom in Prolog) is an identifier that starts with a lower-case
character, and a variable starts with an upper-case character, as in standard
Prolog. A subterm of a term T is either T , an argument of a complex term T
or recursively a subterm of an argument of a complex term T . As any list is a
special term, subterms of [a, b, c] are [a, b, c], a, [b, c], b, [c], c, [ ].

A substitution θ is a mapping from a set of variables into a set of terms. For
any term t, an instance tθ is a term in which each variable X defined in θ is
replaced by its value θ(X). For any terms s and t, we write s � t, and say that
s is more general than t, if and only if t is an instance of s. A unifier for two
terms s and t is a substitution θ, such that sθ = tθ. The unifier θ is the most
general unifier (mgu), if there is another unifier σ for s and t, then sθ � sσ and
tθ � tσ. We write s ≡θ t, if s is unifiable with t by an mgu θ. For any terms s
and t, a term u is the lgg: least general generalization, if and only if u � s, u � t
and there is no other term v such that v � s, v � t and u � v.

A DCG rule, also called grammar rule in the draft of the ISO standard [12],
is of the form P --> Q1, Q2, · · · , Qm, where:
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– P is a nonterminal term, which is either a symbol or a complex term of the
form p(T ) with a DCG term T ; and

– each of Q1, · · · , Qm is either a constant of the form [a] representing a ter-
minal symbol, or a nonterminal term.

The DCG terms are additional arguments in the Horn clause rules, which are
generally used for controlling the derivation and for returning results of the
derivation. The deduction by DCG is similar to that of CFG, except that each
of the DCG terms is unified with a corresponding term in the deduction. To
simplify the synthesis process, we restrict every atom for the nonterminal symbol
to have exactly one DCG term.

Most Prolog implementations have a functionality to transform the grammar
rules into Horn clauses, such that a string a1a2 · · · an is derived by the rule
set from the starting symbol s, if and only if the query s([a1, a2, · · · , an],[])
succeeds for the parsing program composed of the transformed clauses. Note
that the two arguments are used for representing strings by the difference lists.

Example 2: A DCG for non-context-free language The following set of rules is
a DCG for the language {anbncn | n ≥ 1}.

p(1) --> [a]. p(t(N)) --> [a],p(N).
q(1) --> [b]. q(t(N)) --> [b],q(N).
r(1) --> [c]. r(t(N)) --> [c],r(N).
s(N) --> p(N),q(N),r(N).

The Horn clauses transformed from these DCG rules are:

p(1,[a|X],X). p(t(N),[a|X],Y) :- p(N,X,Y).
q(1,[b|X],X). q(t(N),[b|X],Y) :- q(N,X,Y).
r(1,[c|X],X). r(t(N),[c|X],X) :- r(N,X,Y).
s(N,X0,X3) :- p(N,X0,X1),q(N,X1,X2),r(N,X2,X3).

For the query ?-s(N,[a,a,a,b,b,b,c,c,c],[]), the Prolog system returns the
computation result N = t(t(1)).

We can transform a SDTS in CNF into a DCG for translating strings by the
relations in Table 1. Each pair of the form X/Y represents an output side of a
string by a difference list. By this method, the problem of learning SDTS in CNF
from pairs of input and output strings can be transformed into that of learning
DCG.

Example 3: Reversal The following DCG corresponds to the example SDTS for
reversing strings in Section 2.

s([a|X]/X) --> [a]. s([b|X]/X) --> [b].
s([a|X]/[]) --> s(X/[]),[a]. s([b|X]/[]) --> s(X/[]),[b].

For a query ?-s(X,[b,b,a,b,a,a],[]), the transformed Prolog program re-
turns the value X = [a,a,b,a,b,b]/[] of the DCG term, and for a query
?-s([a,a,b,a,b,b]/[],X,[]), the solution X = [b,b,a,b,a,a].
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Table 1. Relations between SDTS rules and DCG rules

SDTS DCG
p → q p(X/Y ) --> q
p → a, b p([b|Y ]/Y ) --> [a]
p → ar, ra p(X/Y ) --> [a], r(X/[a|Y ])
p → qr, qr p(X/Z) --> q(X/Y ), r(Y/Z)
p → qr, rq p(X/Z) --> q(Y/Z), r(X/Y )

4 Rule Generation Based on Bottom-Up Parsing

Fig. 1 shows the rule generation procedure, which receives a string a1 · · · an, the
starting symbol with a DCG term s(T ), and a set of rules from the top-level
search procedure from global variable P , and returns a set of DCG rules that
derives the string from s(T ). This nondeterministic procedure is an extension of
that for learning CFG in extended CNF [14]. The extension is related to adding
DCG terms and generalization for the generated rules.

4.1 Rule Generation

The rule generation procedure includes a bottom-up parsing algorithm for pars-
ing an input string a1 · · ·an using the rules in the set P . If the parsing does not
succeed, the bridging process generates rules in extended CNF, which bridge any
lacking parts of the incomplete derivation tree.

The input string a1a2 · · · an is represented by a set of 3-tuples {(a1, 0, 1),
(a2, 1, 2), · · · , (an, n − 1, n)}, and the resulting derivation tree by a set D of 3-
tuples of the form (p(T ), i, j), each of which represents that the set of rules derives
ai · · · aj from p(T ). For the ambiguity check, each time a new term (p(T ), i, j) is
generated, it is tested whether it has been generated before.

Subprocedure Bridge(p(T ), i, k) generates additional rules that bridge missing
parts in the incomplete derivation tree represented by the set of terms in D.
The process nondeterministically chooses six operations, as shown in Fig. 2. In
operations 5 and 6, nonterminal symbols q and r are nondeterministically chosen
from either previously used symbols or new symbols. The DCG term U and V
of these symbols are also nondeterministically chosen from the subterms of the
term T of the parent node. Subprocedure AddRule(R) first searches for a rule
R′ in the set P that has the same form as R in the sense that R and R′ differ
only in the DCG terms. It then replaces R′ with the lgg of R and R′, or simply
adds R to P .

Synapse has a special mode to efficiently generate DCG rules for SDTS. When
this mode is selected, each DCG term is restricted to a difference list, and the
rules are restricted to forms in Table 1. The system uses these restrictions for
generating rules for SDTS in Operation 5 and 6 in Fig. 2 and in generalization
in subprocedure AddRule.
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Procedure RuleGeneration(w, s(T0), K) (Comment: w : an input string, s(T ) :
the starting symbol with a DCG term, K : the bound for the number of rules.
Global variable P holds a set of rules.)

Step 1 (Initialize variables.)
D ← ∅. (D is a set of 3-tuples (β(U), i, j).)
k ← |P |. (k holds the initial number of rules in P .)

Step 2: (Parsing by inverse derivation)
For each ai, 1 ≤ i ≤ n = |w| in w, call Derive(ai, i − 1, i) in order.
If (s(T ), 0, n) ∈ D and T0 � T then terminate (Success).

Step 3: (Bridging rule generation)
If |P | ≥ K then terminate (Failure).
Call procedure Bridge(s(T ),0, n).
Terminate (Success). (Return the set P of rules).

Procedure Derive(β, i, j) (β : either a terminal a nonterminal term, i, j : inte-
gers for representing the positions of a substring. )
1. Add (β, j, k) to D. If p(W ) → β′ ∈ P such that β ≡θ β′, then add

(p(Wθ), j, k) to D.
To synthesize an unambiguous grammar, check ambiguity.

2. If p(W ) → αβ ∈ P and (α′, i, j) ∈ D with α ≡θ α′ and β ≡θ β′, then add
(p(Wθ), i, k) to D, and call Derive(p(Wθ), i, j).

Procedure Bridge(p(T ), i, k) (p(T ) : a nonterminal term, i, k : integers.)
Nondetermistically choose one of the operations in Fig. 2.

Procedure AddRule(R) (R: a rule.)
Nondereminsitically choose one of the following process 1 or 2.
1. If P contains a rule R′ such that R differs from R′ only in DCG terms,

delete R′ from P and add the lgg of R and R′ to P . Else add R to P .
2. Add R to P .

Fig. 1. Procedure for Rule Generation by Bridging

5 Search for Rule Sets

The inputs to Synapse are ordered sets SP and SN of positive and negative
samples, respectively, and a set P0 of initial rules for incremental learning of the
grammars. Samples for learning a CFG are strings, whereas those for learning
DCGs are pairs of strings and atoms of the form s(T ) with DCG terms T . The
system searches for any set P of rules with P0 ⊆ P such that all the strings in
SP are derived from P but no string in SN is derived from P . Synapse has two
search strategies, global and serial search, for finding rule sets.

Fig. 3 shows the top-level procedure for the global search for finding mini-
mal rule sets. The system controls the search by the iterative deepening on the
number of rules to be generated. First, the number of initial rules is assigned to
the bound K of the number of rules. When the system fails to generate suffi-
cient rules to parse the samples within this bound, it increases the bound by one
and iterates the search. By this control, it is assured that the procedure finds
a grammar with the minimal number of rules at the expense that the system
repeats the same search each time the bound is increased.
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Op. 1 If (β, i, k) ∈ D, call AddRule(p(T ) → β).
Op. 2 If (β, i, j) ∈ D and (γ, j, k) ∈ D, call AddRule(p(T ) → βγ).
Op. 3 If p(T ) → q(S) ∈ Pwith T ≡θ T ′, call Bridge(q(Sθ), i, k).
Op. 4 If p(T ′) → β r(U) ∈ P with T ≡θ T ′, and (βθ, i, j) ∈ D with β ≡θ′ β′, call

Bridge(r(Uθ′), i, k).
Op. 5 If (β, i, j) ∈ D, call AddRule(p(T ) → β r(U)) and call Bridge(r(U), j, k).
Op. 6 For each j, i + 2 ≤ j ≤ k − 2, call AddRule(p(T ) → q(U) r(V )) and call

Bridge(q(U), i, j) and call Bridge(r(U), j, k).

– In Operations 5 and 6, each of U and V is a nondeterminstically chosen sub-
term of T , and the nonterminal symbols q and r are nondeterminstically chosen
among the symbols that occurs in P and a newly generated symbol.

– This figure only shows one side of the symmetrical operations 4 and 5.

Fig. 2. Rule Generation Operations

5.1 Serial Search and Search for Semi-minimal Rule Sets

In the serial search, the system generates additional rules for each positive sample
by iterative deepening. After the system finds a rule set satisfying a positive
sample and no negative samples, the process does not backtrack to redo the
search on the previous samples. By this search strategy, the system generally
finds semi-minimal rule sets in shorter computation time. Other methods for
finding semi-minimal rule sets include using non-minimal nonterminal symbols
in rule generation and restricting the form of the generated rules. These methods
generally increase the efficiency of searching for rule sets at the cost that the rule
sets found may not be minimal.

5.2 Experimental Results on Learning CFG and DCG

The experimental results in this paper were obtained with Synapse Version 4,
written in Prolog, using a Xeon processor with a 3.6 GHz clock and SWI-Prolog
for Linux.
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Procedure GlobalSearch(SP , SN , P0) (SP and SN are ordered sets of positive
and negative samples, respectively, each of which is a pair of a string and the
starting symbol with a DCG term. P0 is a set of optional initial rules.)

Step 1 (Initialize variables.)
P ← P0 (P is a global variable holding the set of rules).
K ← |P0| (the bound of the number of rules for iterative deepening).

Step 2: For each (w, s(T )) ∈ SP , iterate the following operations 1 and 2.
1. Call RuleGeneration(w, K).
2. For each (v, p(U)) ∈ SN , test whether P derives v from p(U) by the parsing

algorithm. If there is a string v derived from P , then terminate (Failure).
If no set of rules is obtained, then add 1 to K and iterate Step 2.

Step 3: Output the result P , and terminate (Success).
For finding multiple solutions, backtrack to the previous choice point.

Fig. 3. Top-Level Procedure for Global Search

Synapse recently synthesized all the CFGs of the problems in Hopcroft and
Ullman’s textbook [8] from only the samples1. The problems include not only
basic languages, such as parenthesis language and palindromes, but also non-
trivial languages such as the set of strings containing twice as many b’s as a’s,
strings not of the form ww, and the set {aibjck |i = j ≥ 1 or j = k ≥ 1}.

The experimental results show that the computation time by serial search is
much faster than by global search at the expense of 1.0 to 3 times larger sizes
of the rule sets in most cases. There are, however, rare cases where the learning
by serial search does not converge for large volume of samples. We are currently
working on solving this problem by introducing a more powerful search strategy.
The restrictions to the form of the rules are also effective in speeding up the
search, although the rules sets are slightly larger.

Example 4: Reversal The following pairs are some examples of positive samples
for learning a DCG for reversal.

[a] - [a]. [b] - [b]. [a,b] - [b,a].
[b,a] - [a,b]. [a,a,b] - [b,a,a]. [a,a,b,a]- [a,b,a,a].

Given these samples and no negative samples, Synapse synthesized the following
DCG rules after generating 12 rules in 0.13 sec.

s([a|X]/X) --> a. s([b|X]/X) --> b.
s(X/Y) --> s(Z/Y), s(X/Z).

By the serial search, the same rule sets are found after generating 21 rules in
less than 0.1 sec. This DCG of three rules is smaller than the DCG for reversing
strings in Example 3 in Section 2.

Synapse synthesized the DCG rules for the language {anbncn | n ≥ 1} in
Example 2 in Section 3 after generating 6.5 × 105 rules in 3200 sec. by giving
1 Detailed experimental results at the time 2006 are shown in [14].
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three initial rules p(1) --> [a], q(1) --> [b], r(1) --> [c] in addition to
the positive and negative samples.

6 Learning Translation in Simple Compiler

This section shows experimental results of learning translation of arithmetic ex-
pressions and assignment statements into an object language called SIL (Simple
Intermediate Language). This language is similar to P-code and byte-code, which
were originally designed for intermediate languages of Pascal and JAVA com-
pilers, respectively. In these languages, object codes for arithmetic and logical
expressions are based on the inverse Polish notation. The language SIL includes
the following instructions.

– load(T,V) pushes the value of variable (symbolic address) V of type T, which
is either i or f (float), to the top of the stack.

– push(T,C) pushes a constant C of type T to the top of the stack.
– store(T,V) stores the value at the top of the stack to variable (symbolic

address) V of type T.
– Arithmetic operations: fadd, fsubt, fmult, fdivide. These float type

operations are applied to two values on the stack and return the result at
the top of the stack instead of the two values.

– call(n,S) calls function S with n parameters, which are placed at the top
of the stack. The function returns the value at the top of the stack.

Note that although every instruction is typed, we deal with only object codes of
float type in this paper.

6.1 Step One: Learning Translation of Arithmetic Expression

For reducing the computation time, we divide the learning of translation into two
steps, and use incremental learning. In the first step, we gave Synapse positive
and negative samples as shown in Fig. 4 and the initial rules in Fig. 5 (a).
Each of the samples is a pair of an arithmetic expression and an object code in
SIL. The negative samples containing symbol X in the right hand side represent
restriction only on the source language. We assume that the rules for a and b
are generated by processing constants, and those for x and y by declarations of
the variables.

Synapse was made to search unambiguous DCGs with the starting symbol s1.
The system synthesized eight DCG rules in Fig. 6 (a) after generating 3.4 × 106

rules in approximately 2000 sec by the global search. Among the positive samples,
only the first nine samples were directly used for generating the grammar and
the other positive samples are used for checking of the translation; the system
parsed these samples without generating any additional rules. For the learning,
24 randomly chosen negative samples including Fig. 4 were sufficient.
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Positive samples

a : push(f,a). ( a ) : push(f,a).
a + a : push(f,a),push(f,a),fadd. a * a : push(f,a),push(f,a),fmult.
a / a : push(f,a),push(f,a),fdivide. a - a : push(f,a),push(f,a),fsubt.
a + a + a : push(f,a),push(f,a),fadd,push(f,a),fadd.
a * a + a : push(f,a),push(f,a),fmult,push(f,a),fadd.
a / a + a : push(f,a),push(f,a),fdivide,push(f,a),fadd.
a - a + a : push(f,a),push(f,a),fsubt,push(f,a),push(f,a),fadd.
( a ) + a : push(f,a),push(f,a),fadd.
a + a * a : push(f,a),push(f,a),push(f,a),fmult,fadd.
a * a * a : push(f,a),push(f,a),fmult,push(f,a),fmult.

Negative samples

( a : X. a ) : X. ( + a : X. ( * a : X.
+ a : X. * a : X. a + : X. a * : X.
a + a : push(f,a),fadd,push(f,a).
a * a : push(f,a),fmult,push(f,a).
a + a + a : push(f,a),push(f,a),push(f,a),fadd,fadd.
a * a + a : push(f,a),push(f,a),push(f,a),fmult,fadd.
a + a * a : push(f,a),push(f,a),fadd,push(f,a),fmult.

Fig. 4. Samples for translating arithmetic expressions into the object codes in SIL for
Step One

(a) Initial rules for Step One

n([push(f,a)|Y]/Y) --> a. n([push(f,b)|Y]/Y) --> b.
n([load(f,x)|Y]/Y) --> x. v([store(f,x)|Y]/Y) --> x.
n([load(f,y)|Y]/Y) --> y. v([store(f,y)|Y]/Y) --> y.
op1([fadd|Y]/Y) --> +. op1([fsubt|Y]/Y) --> -.
op2([fmult|Y]/Y) --> *. op2([fdivid|Y]/Y) --> /.
lp(Y/Y) --> ’(’. rp(Y/Y) -->’)’.

(b) Initial rules for Step Two
op3(Y/Y) --> =. s(X/Y) --> s1.
fn([call(1,sin)|Y]/Y) --> sin. fn([call(1,cos)|Y]/Y) --> cos.

Fig. 5. Initial DCG rules for translating arithmetic expressions and assignment state-
ments into object codes in SIL

6.2 Step Two: Learning Translation of Function Calls and
Assignment Operator

In the second step, we gave Synapse the samples including those in Fig. 7, and
made the system search for rules for translating function calls and assignment
operator (=), based on the result of the first step. The starting symbol was set
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(a) Rules for Arithmetic Expressions Synthesized in Step 1

s1(X/Y) --> e(X/Y). s → e, e
s1(X/Z) --> s1(X/Y), f(Y/Z). s → s f, f p
f(X/Z) --> op1(Y/Z), e(X/Y). p → op1 e, e op1
e(X/Y) --> n(X/Y). e → n, n
e(X/Z) --> e(X/Y), g(Y/Z). e → e g, e g
g(X/Z) --> op2(Y/Z), n(X/Y). r → op2 n, n op2
n(X/Z) --> lp(X/Y), p(Y/Z). s → lp p, lp p
p(X/Z) --> s1(X/Y), rp(Y/Z). p → s rp, s rp

(b) Rules for Function Calls and “=” Operator Synthesized in Step 2

n(X/Z) --> fn(Y/Z), q(X/Y). n → fn q, q fn
q(X/Z) --> lp(X/Y), p(Y/Z). n → lp p, lp p
s(X/Z) --> v(Y/Z), r(X/Y). s → v r, r v
r(X/Z) --> op3(Y/Z), s(X/Y). q → op3 s, op3 s

Fig. 6. Synthesized DCG rules and the corresponding SDTS rules for translating ex-
tended arithmetic expression into object codes in SIL

to s. The initial rules are composed of the synthesized rules in Step One in Fig.
6 (a) and all the initial rules in Fig. 5, which include s(X/Y) --> s1, (s → s1
in SDTS).

By incremental learning, Synapse synthesized the four additional rules in Fig.
6 (b) after generating 1.8 × 107 rules in 4400 sec. Only the first four positive
samples were directly used for generating the grammar and the other positive
samples are used for checking of the translation. In Step two, 24 randomly chosen
negative samples were also sufficient.

The synthesized DCG contains the CFG for the extended arithmetic expres-
sions, which specifies that:

1. The precedence of the operators in op2 (* and /) is higher than that of op1
(+ and -), which is higher than the assignment operator “=”; and

2. All arithmetic operators of op1 and op2 are left associative. The operator “=”
is right associative. (Note that this associativity is coincident with that of C
language. In many languages, the assignment operator is non-associative.)

The synthesized DCG rules can be converted to usual Prolog rules by adding
two arguments for the difference lists representing the input strings. Since the
DCG is left recursive, we needed to remove the left recursion by folding some of
the clauses. The obtained program is executed as follows.

?- s(X/[],[a,*,b,*,b,*,’(’,a,+,x,’)’],[]).
X = [push(f,a),push(f,b),fmult,push(f,b),fmult,push(f,a),

load(f,x),fadd,fmult]

?- s(X/[],[x,=,y,=,sin,’(’,a,+,b,*,y,’)’],[]).
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Positive samples

x = a : push(f,a), store(f,x). sin ( a ) : push(a),call(1,sin). x
= a + b : push(f,a), push(f,b),fadd, store(f,x). x = y = a :
push(f,a), store(f,y),store(f,x). sin ( a + b ) :
push(f,a),push(f,b),fadd,call(1,sin). sin ( a ) + b :
push(f,a),call(1,sin),push(f,b),fadd. sin ( a ) * b :
push(f,a),call(1,sin),push(f,b),fmult. sin ( a ) * cos ( b ) :
push(f,a),call(1,sin), push(f,b),

call(1,cos),fmul.
sin ( cos ( b ) ) : push(f,b),call(1,cos),call(1,sin). sin ( a + b
) : push(f,a),push(f,b),fadd,call(1,sin).

Negative samples

sin a : X. sin + a : X. sin * a : X. sin a ) : X.
sin ( a ) a : X. sin ) : X. sin sin : X. sin + : X.
sin * : X. = a a ) : X. = a : X. ( = a : X. (
a = a : X. a = x : X. = x ( a ) : X. a = b b : X. x
= a + b : push(f,a),store(f,x),push(f,b),fadd.

Fig. 7. Samples for learning DCG for translating extended arithmetic expressions with
function calls and assignment operators into the object codes in SIL

X = [push(f,a),push(f,b),load(f,y),fmult,fadd,call(1,sin),
store(f,y),store(f,x)] ;

The computation is deterministic, and each query has only one solution.

7 Concluding Remarks

We showed an approach for machine learning of grammars and compilers of
programming languages based on grammatical inference of DCG and SDTS,
and showed the experimental results. The results of this paper are summarized
as follows.

1. We extended the incremental learning of minimal, or semi-minimal, CFGs
in the Synapse system to those of DCG and of SDTS.

2. Synapse synthesized a set of rules in SDTS for translating arithmetic expres-
sions with function calls and assignment operators into object codes from
samples of the translation. This set of SDTS rules can be used as a compiler
in Prolog that outputs object codes in the intermediate language SIL.

3. The synthesized SDTS rules contain an unambiguous CFG for the extended
arithmetic expressions, which specifies the precedence and associativity of
the operators.

Although we showed learning of only a portion of compiling process of of the
existing language, the learning system synthesized an essential part of the com-
piler from samples of translation. This approach can be used for produce the
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grammar of a new language and at the same time implement the language from
the samples of source programs and object codes.

We are currently working to improve the methods of learning DCGs and
SDTSs, and extending the compiler to include type check and type conversion
and to translate other statements and declarations. For type checking, the non-
terminal symbols need to have additional parameters for the type. As the control
instructions in the object codes generally have labels, we need a non-context-free
language for the object codes. Other future subjects include:

– Theoretical analysis of learning DCG and SDTS.
– Clarifying the limitations of our methods in learning grammars and compilers

of programming languages.
– Applying our approach for learning DCG to syntactic pattern recognition.
– Applying our approach for learning DCG to general ILP, and inversely ap-

plying methods in ILP to learning DCG and SDTS.
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Abstract. In this paper, we address the semi-supervised learning prob-
lem when there is a small amount of labeled data augmented with pair-
wise constraints indicating whether a pair of examples belongs to a
same class or different classes. We introduce a discriminative learning
approach that incorporates pairwise constraints into the conventional
margin-based learning framework. We also present an efficient algorithm,
PCSVM, to solve the pairwise constraint learning problem. Experiments
with 15 data sets show that pairwise constraint information significantly
increases the performance of classification.

Keywords: classification, pairwise constraints, margin-based learning.

1 Introduction

Learning with partially labeled training data, also known as semi-supervised
learning, has received considerable attention, especially for classification and
clustering [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]. While labeled data is usu-
ally expensive, time consuming to collect, and sometimes requires human domain
experts to annotate, unlabeled data often is relatively easy to obtain. For this
reason, semi-supervised learning has mainly focused on using the large amount
of unlabeled data [18], together with a small amount of labeled data, to learn
better classifiers. Note that unlabeled data may not always help. For example,
[19] showed that unlabeled data can degrade classification performance even in
situations where additional labeled data would increase the performance. Hence,
partially labeled data is an attractive tradeoff between fully labeled data and
unlabeled data.

In this paper, we investigate the usefulness of partially labeled information
in the form of pairwise constraints. More specifically, a pairwise constraint be-
tween two items indicates whether they belong to the same class or not. Similar
to unlabeled data, in many applications pairwise constraints can be collected au-
tomatically, e.g. in [1], pairwise constraints are extracted from surveillance video.
Pairwise constraints also can be relatively easy to collect from human feedback:
unlike labels that would require users to have prior knowledge or experience
with a data set, pairwise constraints require often little effort from users. For
example, in face recognition, it is far easier for users to determine if two faces

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 113–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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belong to the same nationality, than it would be for the same users to classify
the faces into different nationalities.

In this paper, we propose a discriminative learning approach which incorpo-
rates pairwise constraints into the conventional margin-based learning frame-
work. In extensive experiments with a variety of data sets, pairwise constraints
significantly increase the performance of classification. The paper is structured
as follow: in section 2, we describe in detail our classification algorithm, PCSVM,
which incorporates pairwise constraints; in section 3, we review related work on
semi-supervised learning with pairwise constraints; the experimental results and
conclusion are given in section 4 and 5, respectively.

2 Classification with Pairwise Constraints

In the supervised setting, a learning algorithm typically takes a set of labeled
training examples, L = {(xi, yi)}n

i=1 as input, where xi ∈ X and yi belongs to
a finite set of classes called Y. For our learning framework, in addition to the
labeled data, there is additional partially labeled data in the form of pairwise
constraints C = {(xα

i , xβ
j , ỹi)}m

i=1 where xα
i , xβ

j ∈ X and ỹi ∈ {+1, −1} is the
indicator of whether xα

i and xβ
j belong to the same class (ỹi = +1), or not (ỹi =

−1). Ultimately, the goal of classification is to form a hypothesis h : X �→ Y.
First, we review the margin-based multiclass classification, also known as the

multiclass-SVM proposed by [20]. Consider a mapping Φ : X × Y �→ F which
projects each item-label pair (x, y) ∈ X × Y to Φ(x, y) in a new space F ,

Φ(x, y) =

⎡

⎣

x · I(y = 1)
. . .

x · I(y = |Y|)

⎤

⎦ ,

where I(·) is the indicator function. The multiclass-SVM learns a weight vector
w and slack variables ξ via the following quadratic optimization problem:

Optimization Problem I: Multiclass-SVM

min
w,ξ≥0

:
λ

2
‖w‖2 +

1
n

n
∑

i=1

ξi (1)

subject to:

∀(xi, yi) ∈ L, yi ∈ Y\yi : wT [Φ(xi, yi) − Φ(xi, yi)] ≥ 1 − ξi.

After we have learned w and ξ, the classification of a new example,x, is done by

h(x) = argmax
y∈Y

wT Φ(x, y).

In this margin-based learning framework, we observed that for a training
example (xi, yi) ∈ L the score associated with the correct label yi, wT Φ(xi, yi),
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Fig. 1. Illustration of how the relative positions of the scores associated with different
labels, wT Φ(xi, ·), change from before training to after training for a fully labeled
example

Fig. 2. Illustration of how the relative positions of the pairwise scores associated with
label-pairs, wT Φ(xα

i , xβ
i , ·, ·), change from before training to after training for a positive

pairwise constraint

is greater than the scores associated with any other labels yi �= yi, wT Φ(xi, yi),
by at least the amount, 1 − ξi. In Figure 1, we demonstrate how the relative
positions of the scores associated with different labels, wT Φ(xi, ·), change from
before training to after training for a fully labeled example, (xi, yi).

In a similar manner, we will incorporate the pairwise constraint information
into the margin-based learning framework. Specifically, given a positive pairwise
constraint (xα

i , xβ
i , +1), we want the maximum score associated with the same-

label pairs yα
i = yβ

i ,

max
yα

i =yβ
i

[

wT Φ(xα
i , xβ

i , yα
i , yβ

i )
]

,
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to be greater than the maximum score associated with any different-label pairs
yα

i �= yβ
i ,

max
yα

i �=yβ
i

[

wT Φ(xα
i , xβ

i , yα
i , yβ

i )
]

,

by a soft margin of at least 1 − νi. Similarly, for a negative pairwise constraint
(xα

j , xβ
j , −1) we have the following inequality,

max
yα

j �=yβ
j

[

wT Φ(xα
j , xβ

j , yα
j , yβ

j )
]

− max
yα

j =yβ
j

[

wT Φ(xα
j , xβ

j , yα
j , yβ

j )
]

≥ 1 − νj .

In Figure 2, we demonstrate how the relative positions of the pairwise scores
associated with label-pairs, wT Φ(xα

i , xβ
i , ·, ·), change from before training to after

training for a positive pairwise constraint, (xα
i , xβ

i , +1). In our framework, we
define the mapping of a pairwise constraint as the sum of the individual example-
label scores,

Φ(xα
i , xβ

i , yα
i , yβ

i ) = Φ(xα
i , yα

i ) + Φ(xβ
i , yβ

i ).

Formally, the pairwise constraint SVM classification (PCSVM) learns a weight
vector w and slack variables ξ, ν via the following margin-based quadratic opti-
mization problem:

Optimization Problem II: PCSVM

min
w,ξ≥0,ν≥0

:
λ

2
‖w‖2 +

1
n + m

(

n
∑

i=1

ξi +
m

∑

i=1

νi

)

(2)

subject to:

∀(xi, yi) ∈ L, yi ∈ Y\yi : wT [Φ(xi, yi) − Φ(xi, yi)] ≥ 1 − ξi,

∀(xα
i , xβ

j , ỹi) ∈ C+ :

max
yα

i =yβ
i

[

wT Φ(xα
i , xβ

i , yα
i , yβ

i )
]

− max
yα

i �=yβ
i

[

wT Φ(xα
i , xβ

i , yα
i , yβ

i )
]

≥ 1 − νi,

∀(xα
i , xβ

j , ỹi) ∈ C− :

max
yα

i �=yβ
i

[

wT Φ(xα
i , xβ

i , yα
i , yβ

i )
]

− max
yα

i =yβ
i

[

wT Φ(xα
i , xβ

i , yα
i , yβ

i )
]

≥ 1 − νi,

where C+ = {(xα
i , xβ

j , ỹi) ∈ C | ỹi = +1} and C− = {(xα
i , xβ

j , ỹi) ∈ C | ỹi =
−1} are the set of same/positive constraints and different/negative constraints
respectively. The classification of test examples is done in the same manner as
for the multiclass SVM classification.

In order to solve the pairwise constraint SVM classification, we extend the
Primal QP solver by [21]. The PCSVM is a simple and effective iterative algo-
rithm for solving the above QP and does not require transforming to the dual
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Algorithm 1. Pairwise Constraint SVM Classification (PCSVM)
Input: L - the labeled data, C - the pairwise constraint data

λ and T - parameters of the QP

Initialize: Choose w1 such that ‖w1‖ ≤ 1/
√

λ
for t = 1 to T do

Set A =
{

(xi, yi) ∈ L | wT
t Φ(xi, yi) − max

yi �=yi

wT
t Φ(xi, yi) < 1

}

Set A+ =

{

(xα
i , xβ

i , ỹi) ∈ C+ | max
yα

i =y
β
i

[

wT
t Φ(xα

i , xβ
i , yα

i , yβ
i )

]

− max
yα

i �=y
β
i

[

wT
t Φ(xα

i , xβ
i , yα

i , yβ
i )

]

< 1

}

Set A− =

{

(xα
i , xβ

i , ỹi) ∈ C− | max
yα

i �=y
β
i

[

wT
t Φ(xα

i , xβ
i , yα

i , yβ
i )

]

− max
yα

i =y
β
i

[

wT
t Φ(xα

i , xβ
i , yα

i , yβ
i )

]

< 1

}

Set ηt =
1
λt

Set wt+ 1
2

= (1 − ηtλ)wt +
ηt

n + m

⎧

⎨

⎩

∑

(xi,yi)∈A

[Φ(xi, yi) − Φ(xi, yi)]

+
∑

(xα
i ,x

β
i ,ỹi)∈A+

[

Φ(xα
i , xβ

i , yα
+, yβ

+) − Φ(xα
i , xβ

i , yα
−, yβ

−)
]

+
∑

(xα
i ,x

β
i ,ỹi)∈A−

[

Φ(xα
i , xβ

i , yα
−, yβ

−) − Φ(xα
i , xβ

i , yα
+, yβ

+)
]

⎫

⎪

⎬

⎪

⎭

where y = argmax
yi �=y

wT
t Φ(xi, yi),

(yα
+, yβ

+) = argmax
yα=yβ

wT
t Φ(xα

i , xβ
i , yα, yβ),

(yα
−, yβ

−) = argmax
yα �=yβ

wT
t Φ(xα

i , xβ
i , yα, yβ)

Set wt+1 = min

{

1,
1/

√
λ

‖wt+ 1
2
‖

}

wt+ 1
2

end for

Output: wT+1

formulation. The algorithm alternates between gradient descent steps and pro-
jection steps. In each iteration, the algorithm first computes a set of labeled
examples A ⊂ L, a set of positive pairwise constraints A+ ⊂ C+, and a set of
negative pairwise constraints A− ⊂ C− that contain violated examples and pair-
wise constraints. Then the weight vector w is updated according to the violated
sets A, A+, and A−. In the projection step, the weight vector w is projected to
the sphere of radius 1/

√
λ. The details of the PCSVM are given in Algorithm 1.
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We observed that if w1 = 0 then wt can be written as

wt =
∑

x,y

ϕxyΦ(x, y).

Hence, we can incorporate the usage of kernel when computing inner product
operations, i.e.:

〈w, Φ(x′, y′)〉 =
∑

x,y

ϕxyK(x, y, x′, y′)

‖w‖2 =
∑

x,y

∑

x′,y′

ϕxyϕx′y′K(x, y, x′, y′)

In our experiments, we use the polynomial kernel,

K(x, y, x′, y′) = 〈Φ(x, y), Φ(x′, y′)〉d,

where polynomial kernel degree d is chosen from the set {1, 2, 3, 4, 5}.
The efficiency and guaranteed performance of PCSVM in solving the quadratic

optimization problem is shown by the following theorem:

Theorem 1. Let

R = 2 max

⎧

⎨

⎩

max
x,y

‖Φ(x, y)‖,

max
xα,xβ ,yα,yβ

‖Φ(xα, xβ , yα, yβ)‖

⎫

⎬

⎭

then the number of iterations for Algorithm 1 to achieving a solution of accuracy
δ > 0 is Õ(R2/(λδ)).1

3 Related Work

For classification, pairwise constraints have been shown to improve the per-
formance of classifiers. In [3,4,5,6,7,8,9], pairwise constraints is used to learn a
Mahalanobis metric and then apply distance-based classifier such as KNN to the
transformed data. Unlike our proposed method, most metric learning algorithms
deal with labeled data indirectly by converting into pairwise constraints. In ad-
dition, the work of [1,2] is most related to our proposed algorithm. In [1], the
authors also presented a discriminative learning framework which can learn the
decision boundary with labeled data as well as additional pairwise constraints.
However, in the binary algorithm, PKLR proposed by [1], a logistic regression
loss function is used for binary classification instead of the hinge loss. In [2],
the authors proposed a binary classifier which also utilizes pairwise constraint
information. The proposed classifier, Linear-PC, is a sign-insensitive estimator
of the optimal linear decision boundary.

1 The proof of Theorem 1 is omitted since it is similar to the one given in [21].
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Similarly, pairwise constraints have also shown to be successful in the semi-
supervised clustering [10,11,12,13,14,15,16,17]. In particular, COPKmeans [11]
is a semi-supervised variant of Kmeans. COPKmeans follows the same clus-
tering procedure of Kmeans while avoiding violations of pairwise constraints.
In addition, MPCKmeans [17] utilized both metric learning and pairwise con-
straints in the clustering process. In MPCKmeans, a separate weight matrix for
each cluster is learned to minimize the distance between must-linked instances
and maximize the distance between cannot-link instances. Hence, the objective
function of MPCKmeans minimizes cluster dispersion under the learned metrics
while reducing constraint violations. However, most existing algorithms can only
find a local-optimal solution for the clustering problem with pairwise constraints
as users’ feedback.

4 Experiments

We evaluate our proposed algorithms on fifteen data sets from the UCI repository
[22] and the LIBSVM data [23]. A summary of the data sets is given in Table
1. For the PCSVM algorithm, we set the parameters used in the experiments as
follows: (i) the SVM λ parameter is chosen from {10i}3

i=−3; (ii) the kernel degree,
d, is selected from the set {1, 2, 3, 4, 5}; (iii) the number of pairwise constraints
is from the set {10, 20, 40, 80, 160}; (iv) the number of label examples is chosen
from the set {1, . . . , 5}2. The parameters, λ and d, are selected using two fold
cross validation on the training pairwise constraints.

Table 1. A summary of the data sets

Data sets Classes Size Features

australian 2 690 14

spambase 2 2300 57

ionosphere 2 351 34

german 2 1000 24

heart 2 270 13

diabetes 2 768 8

liver-disorder 2 345 6

splice 2 3175 60

mushroom 2 8124 112

svmguide2 3 391 20

vehicle 4 846 18

dermatology 6 179 34

satimage 6 6435 36

segment 7 2310 19

vowel 11 990 10

2 Both the pairwise constraints and label examples are randomly generated.



120 N. Nguyen and R. Caruana

Fig. 3. Classification Performance of 9 binary data sets using 5 label points per class:
PCSVM, Linear-PC, and PKLR

Fig. 4. Average classification performance of 9 binary data sets: PCSVM, Linear-PC,
and PKLR
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Fig. 5. Classification Performance of 15 data sets using 5 label points per class:
PCSVM, SVM, and SVM-All

In the first set of experiments, we compare the performance of the PCSVM
against the two other methods proposed by [1,2], called PKLR and Linear-PC re-
spectively, on 9 binary data sets. In Figure 3, we plot the performance of PCSVM,
Linear-PC, and PKLR versus the number of pairwise constraints when there are 5
fully labeled examples per class. To summarize the information, Figure 4 presents
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Fig. 6. Average classification performance of 15 data sets

the same information by averaging across 9 binary data sets. For different num-
bers of pairwise constraints and different numbers of fully labeled examples, we
observe that both PCSVM and PKLR show significant improvement over Linear-
PC. The inferior performance of Linear-PC is due to the fact that the estimator
only finds the optimal linear decision boundary. On the other hand, PCSVM and
PKLR are able to handle the non-linear separable case by utilizing the non-linear
kernel functions. In addition, we also observe that PKLR tends to produce bet-
ter performance than PCSVM when the number of training pairwise constraints
is small. As the number of pairwise constraints increases, PCSVM outperforms
PKLR. An explanation of this phenomenon is that the loss function of PCSVM is
not formulated specifically for binary classification.

In the second set of experiments, we compare the performance of the PCSVM
against SVM and SVM-All. SVM is only trained on the labeled data but ignores
the pairwise constraint information. On the other hand, SVM-All is not only
trained on the labeled data but also use the examples in the pairwise constraint
data where the true labels are revealed to the algorithm. In Figure 5, we plot the
performance of the PCSVM versus the number of pairwise constraints presented
in the training set when there are 5 labeled examples per class for all 15 data sets.
To summarize the information, Figure 6 shows the same information but aver-
aging across 15 data sets. Across all data sets, we observe that the performance
of the PCSVM is between that of SVM and SVM-All. This behavior is what we
should expect since pairwise constraint information helps to improve the perfor-
mance of PCSVM over SVM which does not use this information; and labeled
data should still provide more discriminative information to the SVM-All than
pairwise constraint information could do to the PCSVM. Note that PCSVM,
by learning from the pairwise constraints, on average yields half or more of the
error reduction that could be achieved by learning with labels. Hence, SVM and
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SVM-All can be viewed as the lower and upper bound on the performance of
PCSVM.

5 Conclusion

In this paper, we study the problem of classification in the presence of pairwise
constraints. We propose a discriminative learning approach which incorporates
pairwise constraints into the margin-based learning framework. We also present
an efficient algorithm, PCSVM, that integrates pairwise constraints into the
multiclass-SVM classification. In experiments with 15 data sets, pairwise con-
straints not only improves the performance of the binary classification in com-
parison with two other methods (Linear-PC and PKLR) but also significantly
increase the performance of the multiclass classification.

Acknowledgments. This work was supported by NSF CAREER Grant #
0347318.
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Abstract. In this paper, we address the metric learning problem uti-
lizing a margin-based approach. Our metric learning problem is formu-
lated as a quadratic semi-definite programming problem (QSDP) with
local neighborhood constraints, which is based on the Support Vector
Machine (SVM) framework. The local neighborhood constraints ensure
that examples of the same class are separated from examples of different
classes by a margin. In addition to providing an efficient algorithm to
solve the metric learning problem, extensive experiments on various data
sets show that our algorithm is able to produce a new distance metric to
improve the performance of the classical K-nearest neighbor (KNN) algo-
rithm on the classification task. Our performance is always competitive
and often significantly better than other state-of-the-art metric learning
algorithms.

Keywords: metric learning, K-nearest neighbor classification, SVM.

1 Introduction

The distance metric learning problem, i.e. learning a distance measure over an
input space, has received much attention in the machine learning community
recently [1,2,3,4,5,6,7,8,9,10]. This is because designing a good distance metric is
essential to many distance-based learning algorithms. For example, the K-nearest
neighbor (KNN) [11], which is a classical classification method and requires no
training effort, critically depends on the quality of the distance measures among
examples. The classification of a new example is determined by the class labels
of the K training examples with shortest distances. Traditionally the distance
measure between two examples is defined to be the Euclidean distance between
the features of the examples.

Although KNN is a simple method by nowadays standard, it is still an active
research area [12,13], widely used in real-world applications [14], and serves as
a basic component in more complex learning models [15,16]. Hence, improving
KNN prediction accuracy would have a significant impact on this part of the
machine learning community.

The performance of the KNN algorithm is influenced by three main factors: (i)
the distance function or distance metric used to determine the nearest neighbors;
(ii) the decision rule used to derive a classification from the K-nearest neighbors;
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and (iii) the number of neighbors used to classify the new example. Ideally
the distance function should bring examples with the same labels closer to one
another and push examples with different labels further apart. However, the
ideal distance metric is hard to achieve. On the other hand, it is clear that with
the right distance metric, KNN can perform exceptionally well using a simple
majority-voting decision rule and a fixed number of nearest neighbors. Hence,
in this paper we focus on the first main factor of KNN to derive a good distance
function utilizing the maximum-margin approach [17].

Our approach presented in this paper is to learn a Mahalanobis distance func-
tion by minimizing a quadratic objective function subject to local neighborhood
constraints. The goal of this optimization is, for every example, to bring exam-
ples of the same class close and to separate examples from other classes by a large
margin. This goal is very similar to the one proposed in [7]. However, in [7] the
authors solved a different optimization problem via semidefinite programming.
In our framework, similar to most other support vector machine approaches our
proposed algorithm is able to handle the non-linear separable cases by utilize
the kernel trick. Finally, our extensive experiments with various data sets from
the UCI repository show that our proposed metric learning algorithm is able to
produce a better distance function that helps improve the performance of KNN
classification in comparison to other state-of-the-art metric learning algorithms.

The paper is organized as follows: in section 2, we describe our metric learning
algorithm via the support vector machine approach in detail; in section 3, we
review other state-of-the-art metric learning algorithms; the experimental results
and conclusions are presented in section 4 and 5.

2 Metric Learning: A Margin-Based Approach

In this section, we consider the following supervised learning framework. The
learning algorithm takes a set of labeled training examples,L = {(x1, y1), (x2, y2),
..., (xn, yn)} as input, where xi ∈ X the input space and yi belongs to a finite set
of classes denoted by Y. The goal of the metric learning problem is to produce a
Mahalanobis distance function which can be used in computing nearest neighbors
for the KNN classifier. In most metric learning algorithms, a positive semidefi-
nite matrix A � 0, known as the Mahalanobis distance matrix, is learned as a
transformation matrix in computing the (squared) distance between examples xi

and xj :
dA(xi,xj) = (xi − xj)T A(xi − xj).

Alternatively, we rewrite the distance function as,

dA(xi,xj) = 〈A, (xi − xj)(xi − xj)T 〉,

where 〈·, ·〉 represents the matrix inner-product.
A desirable distance function preserves the local neighborhood property that

examples within the same class are separated from examples of different classes
by a large margin in the new distance space. This translates to the following
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local neighborhood constraint that, for each example its distance to all neigh-
boring examples of the same class is smaller than its distance to any neighboring
examples of different classes by at least a predefined margin, such as 1. Figure
1 demonstrates the idea how the neighborhood of a training example is trans-
formed after applying the new distance function. Formally, the above constraint
can be represented by the following inequalities,

∀(xi, yi) ∈ L :

min
xj ∈ N (xi)
yj �= yi

dA(xi,xj) ≥ max
xj ∈ N (xi)
yj = yi

dA(xi,xj) + 1, (1)

where N (xi) represents the set of neighbor examples of xi. In the absence of
prior knowledge, the neighborhood set for each example is determined by the
Euclidean distance. Along with the labeled training data L, our metric learning
algorithm also takes an integer K in the input which servers as the size of the
constructed neighborhood N (·), as well as the input to the KNN classification
algorithm.

In our learning framework, we seek the positive semidefinite matrix that min-
imizes a quadratic objective function subject to the above constraints presented
in inequality (1). Rather than using the hard margin constraints, we incor-
porate slack variables, ξ, to obtain the quadratic optimization problem with
the soft margin constraints. Formally, the metric learning algorithm we propose

Fig. 1. Illustration of the local neighborhood property for an example xi where before
applying the transformation (on the left) the neighborhood of xi contains both exam-
ples from the same and different classes; and after applying the transformation (on the
right), examples within the same class of xi cluster together and are separated from
examples from different classes by a large margin
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(MLSVM) learns a positive semidefinite matrix A and slack variables ξ via the
following quadratic semi-definite programming problem (QSDP):

Optimization Problem: MLSVM

min
A�0,ξ≥0

:
λ

2
‖A‖2

F +
1
n

n∑

i=1

ξi (2)

subject to:
∀(xi, yi) ∈ L :

min
xj ∈ N (xi)
yj �= yi

dA(xi,xj) ≥ max
xj ∈ N (xi)
yj = yi

dA(xi,xj) + 1 − ξi,

where ‖ · ‖F represents the Frobenius norm for matrices, ‖A‖2
F =

∑
i

∑
j A2

ij .
In order to solve MLSVM, we extend the Pegasos method from [18], which

is an effective iterative algorithm for solving the SVM QP via gradient descent
without the need to transform the formulation into its dual form as many other
SVM based methods do [19,20]. Our algorithm is called MLSVM, as from the
optimization problem. In each iteration, MLSVM follows three steps: gradient
descent, positive semidefinite approximation, and projection steps. In the first
step, the algorithm computes a set V ⊂ L that contains examples violating the
local neighborhood constraints. Then the matrix A is updated according to the
violated constraint set V. In the positive semidefinite approximation step, the
algorithm finds a positive semi-definite matrix Â that is closest to the current
matrix A in term of the Forbenius norm, i.e.

Â = argmin
Ã�0

‖A − Ã‖2
F . (3)

A solution to this problem is

Â =
m∑

i=1

max{λi, 0}vivT
i ,

where {λi}m
i=1 and {vi}m

i=1 represent the m eigenvalues and the corresponding
m eigenvectors of the matrix A respectively. In other words, to obtain a nearest
positive semidefinite matrix, we simply remove the terms in the eigenvector
expansion that correspond to negative eigenvalues. In the projection step, the
matrix A is projected to the sphere of radius 1/

√
λ. Details of MLSVM are

presented in Algorithm 1.

Kernelizing the Algorithm

We now consider kernelizing our metric learning algorithm. In Algorithm 1, if
we initialize A1 = 0 then At can be expressed as

At =
n∑

i=1

n∑

j=1

ϕijxixT
j .
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Algorithm 1. Metric Learning SVM (MLSVM)
Input: L - the labeled data

λ and T - parameters of the QP

Initialization: Choose A1 such that ‖A1‖F ≤ 1/
√

λ
for t = 1 to T do

Set V = {(xi, yi) ∈ L | min
xj ∈ N (xi)
yj �= yi

dA(xi,xj) − max
xj ∈ N (xi)
yj = yi

dA(xi,xj) < 1}

Set ηt =
1
λt

Set At+ 1
3

= (1 − ηtλ)At +
ηt

n

∑

(xi,yi)∈V

[(
xi − x−

i

) (
xi − x−

i

)T

-
(
xi − x+

i

) (
xi − x+

i

)T
]

where x−
i = argmin

x−
i ∈ N (xi)

y−
i �= yi

dA(xi,x−
i ),

x+
i = argmax

x+
i ∈ N (xi)

y+
i = yi

dA(xi,x+
i )

Set At+ 2
3

= argmin
A�0

‖At+ 1
3

− A‖2
F

Set At+1 = min

{
1,

1/
√

λ

‖At+ 2
3
‖F

}
At+ 2

3

end for

Output: AT+1

Hence, we can incorporate the use of kernels when computing the matrix inner-
product operation and the Frobenius norm:

〈A,xx′T 〉 =
n∑

i=1

n∑

j=1

ϕijκ(x,xi)κ(x′,xj)

‖A‖2
F =

∑

i,j

∑

i′,j′

ϕijϕi′j′κ(xi,xi′)κ(xj ,xj′),

where κ(xi,xj) = Φ(xi)T Φ(xj) is the kernel function and Φ : X �→ F projects
examples to a new space. In our experiment, we consider the polynomial kernel
function, i.e. κ(xi,xj) = 〈xi,xj〉d.

In the kernel space, the matrix A does not have an explicit form since A is
only expressed as A =

∑n
i=1

∑n
j=1 ϕijΦ(xi)Φ(xj)T where Φ(x) may have infinite

dimensions. Similar to the problem of Kernel Principal Component Analysis [21],
in order to carry out the semidefinite matrix approximation step, we now have
to find eigenvalues λ ≥ 0 and corresponding eigenvectors v ∈ F − {0} satisfying

λv = Av. (4)
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By taking the inner-product of each Φ(xk) with both sides of equation 4, we
obtain the set of equations

λ〈Φ(xk),v〉 = 〈Φ(xk),Av〉, ∀k ∈ {1, . . . , n}. (5)

In addition, all eigenvectors v that correspond with non-zero eigenvalues must
lie in the span of {Φ(x1), Φ(x2), ..., Φ(xn)}. Hence there exists a set of coefficients
{αi}n

i=1 such that

v =
n∑

i=1

αiΦ(xi) (6)

By substituting A =
∑

ij ϕijΦ(xi)Φ(xj)T and equation (6) into the set of equa-
tions (5), we obtain the following set of equations

λ

n∑

i=1

αi〈Φ(xk), Φ(xi)〉 =

n∑

i,j,l=1

ϕijαl〈Φ(xk), Φ(xi)〉〈Φ(xl), Φ(xj)〉, ∀k ∈ {1, . . . , n} (7)

By stacking the set of n equations (7), we get the simplified matrix equation,

λKα = KϕKα, (8)

where K is an n × n matrix whose elements Kij = 〈Φ(xi), Φ(xj)〉; α is the
column vector α = [α1, ..., αn]T ; and ϕ is an n × n matrix with ϕij = ϕij . To
find a solution of equation (8), we solve the eigenvalue problem

λα = (ϕK)α (9)

for nonzero eigenvalues. This will give us all solutions of equation (8) that we
are interested in.

Let λ1 ≤ λ2 ≤ ... ≤ λn and {α1, α2, ..., αn} denote the eigenvalues and the
corresponding eigenvectors of ϕK (i.e. the solutions of equation (9)), with λp

being the first positive eigenvalue. Since the solution eigenvectors of equation
(4) must be unit vectors, i.e 〈vk,vk〉 = 1 for all k ∈ {p, . . . , n}, we normalize vk:

vk =

n∑

i=1

αk
i Φ(xi)

n∑

i,j=1

αk
i αk

j 〈Φ(xi), Φ(xj)〉
. (10)

The nearest positive semidefinite matrix of A can be computed as

Â =
n∑

i=p

λivkvT
k . (11)
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In summary, to compute the nearest positive semidefinite matrix of A we fol-
low the three steps: first, compute the product matrix ϕK; second, compute its
eigenvalues and corresponding eigenvectors, after which normalize the eigenvec-
tors of A; finally, compute the nearest positive semidefinite matrix as shown in
equation (11).

3 Related Work

Metric learning has been an active research topic in the machine learning com-
munity. Here we briefly review some representative recent works on this topic.
The method proposed in [7] is the most related prior work to our learning method
since both methods aim to bring examples of the same class closer together and
to separate examples of different classes. The main difference between the two
methods is that we formulate our objective function as a quadratic semi-definite
programming problem (QSDP) instead of a semidefinite program described in
[7]. In addition, our proposed algorithm is able to incorporate many different
kernel functions easily for non-linearly separable cases.

An earlier work by [6] also used semidefinite programming based on similarity
and dissimilarity constraints to learn a Mahalanobis distance metric for cluster-
ing. The authors proposed a convex optimization model to minimize the sum
of squared distances between example pairs of similar labels subject to a lower
bound constraint on the sum of distances between example pairs of different
labels. While [6] focuses on a global constraint which brings all similar examples
closer together and separates dissimilar examples, our proposed method enforces
local neighborhood constraints to improve the KNN classification performance.

Most recently, [1] proposed an information-theoretic approach to learning a
Mahalanobis distance function. The authors formulate the metric learning prob-
lem as minimizing the LogDet divergence, subject to similarity and dissimilarity
constraints. In addition to the difference in the objective function formulation,
the number of constraints for our proposed optimization is only linear with re-
spect to the number of training labeled examples. In contrast, the number of
similarity and dissimilarity constraints of the optimization formulation in [1] is
potentially quadratic in the number of labeled training examples.

In [5], the authors proposed an online learning algorithm for learning a Ma-
halanobis distance function which is also based on similarity and dissimilarity
constraints on example pairs. The online metric learning algorithm is based on
successive projections onto the positive semi-definite cone subject to the con-
straint that all similarly labeled examples have small pairwise distances and
all differently labeled examples have large pairwise distances. Instead of using
global similarity and dissimilarity constraints, our proposed method enforces
local neighborhood constraints for each labeled training example.

In [2], Maximally Collapsing Metric Learning (MCML) algorithm is proposed
to learn a Mahalanobis distance metric based on similarity and dissimilarity
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constraints. The authors construct a convex optimization problem which aims
to collapse all examples in the same class into a single point and push examples
in other classes infinitely far apart. The main difference between our proposed
method and MCML is also the usage of the local neighborhood constraints ver-
sus the pairwise constraints between similarly labeled and differently labeled
examples.

In [3], the authors proposed Neighborhood Component Analysis (NCA) to
learn a distance metric specifically for the KNN classifier. The optimization
aims at improving the leave-one-out performance of the KNN algorithm on the
training data. The algorithm minimizes the probability of error under stochastic
neighborhood assignments using gradient descent. Although both NCA and our
method try to derive a distance function in order to improve the performance of
the KNN algorithm, we employed different optimization problem formulations.

In [8], the authors proposed a framework for similarity metric learning by
the energy-based model (EBM) from a pair of convolutional neural networks
that shared the same learning parameters. The cost function incorporated into
the EBM aimed at penalizing large distances among examples with the same
label, and small distance among example pairs of different classes. In our work,
the distance function is parameterized by a transformation matrix instead of a
convolutional neural network.

4 Experiments

In this section, we evaluate our metric learning algorithm (MLSVM) on a number
of data sets from the UCI repository [22] and the LIBSVM data [23]. A summary
of the data sets is given in Table 1.

In our experiments, we compare MLSVM against recent proposed metric
learning methods for KNN classification, namely the Large Margin Nearest
Neighbor [7] (LMNN) and Information-Theoretic Metric Learning (ITML) [1].
In addition, we also compare our method against a benchmark margin-based
multiclass classification method, i.e SVM [24]. All the compared methods learn
a new distance metric before applying KNN except SVM, which is directly used
as a classification method. The parameters of the MLSVM and SVM, λ and
the degree of the polynomial kernel, are selected from the sets {10i}3

i=−3 and
{1, 2, 3, 4, 5}, respectively. For ITML, the trade-off parameter γ is also chosen
from the set {10i}3

i=−3. For all metric learning algorithms, the K-nearest neigh-
bor value is set to 4 which is also used in [1]. The parameters are selected using
two fold cross validation on the training data. For all data sets, 50% of data is
randomly selected for the training phase and the rest is used for test. The ex-
periment is repeated for 10 random trials. The mean performance and standard
error of various methods are reported for each data set.

In Figure 2, we present the performance of KNN, LMNN, ITML, and SVM
against the new metric learning method MLSVM for the 9 data sets. From the
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Table 1. A summary of the data sets

Data sets Classes Size Features

australian 2 690 14

balance 3 625 4

dermatology 6 179 34

german 2 1000 24

heart 2 270 13

ionosphere 2 351 34

iris 3 150 4

spambase 2 2300 57

wine 3 178 13

Table 2. Performance summary by the three metric learning algorithms and SVM

Data sets Best Performance Best Models

australian 0.1683 MLSVM, ITML

balance 0.0047 MLSVM, SVM

dermatology 0.0244 MLSVM, SVM

german 0.2383 MLSVM, SVM

heart 0.1770 MLSVM, LMNN

ionosphere 0.0835 MLSVM

iris 0.0192 MLSVM, SVM

spambase 0.1023 MLSVM, LMNN, ITML

wine 0.0383 MLSVM, ITML

figure we clearly see that all three metric learning methods (MLSVM, ITML
and LMNN) significantly improved the KNN classification accuracy by compar-
ing with the first column, which is the raw KNN performance, with the only
exception for LMNN on the “german” dataset. SVM, as a non-metric-distance
based method also performed competitively. MLSVM is consistently among the
best performing methods across all datasets. We also present the significance
test results in Table 2. In Table 2, the second column is the best error rate
achieved by any method for a dataset, and column 3 shows all the methods
whose results are not statistically significantly different from the best result
by pair-wise t-test at the 95% level. It is interesting to notice that MLSVM
is the only model that always perform the best even comparing with the non-
metric-learning SVM classifier. This is an evidence that KNN, as a simple model,
can achieve competitive or superior classification performance compared with
SVM, if a proper distance metric can be learned. In comparison with the other
two metric-distance learning methods, namely LMNN and ITML, in our con-
ducted experiments MLSVM is more reliable in improving KNN’s performance,
as LMNN and ITML are only within the best models for 2 and 4 times respec-
tively among the 9 datasets.
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Fig. 2. Classification Error Rates of 6 different learning algorithms: KNN, LMNN,
ITML, SVM, MLSVM for 9 data sets: wine, heart, dermatology, ionosphere, balance,
iris, australian, german, and spambase

5 Conclusion

In this paper, we approached the metric learning problem utilizing the margin-
based framework with the proposed method MLSVM. The problem is formu-
lated as a quadratic semi-definite programming problem (QSDP) subject to
local neighborhood constraints. We solve the optimization problem by itera-
tively relaxing the semidefiniteness constraint of the distance matrix and only
approximate the closest semidefinite matrix after the gradient descent step. The
SVM-based formulation allows MLSVM to incorporate various kernels conve-
niently. From the conducted experiments, MLSVM is able to produce a distance
metric that helps improve this performance of the KNN classifier significantly.
Our experiments also show that our metric learning algorithm always performs
competitively and often better than the two other state-of-the-art metric learn-
ing approaches. Although KNN is arguably the most obvious application where
metric distance learning plays an important role, we plan to adapt MLSVM
to other interesting applications where a good distance metric is essential in
obtaining competitive performances.
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Abstract. The computational and/or communication constraints associated with
processing large-scale data sets using support vector machines (SVM) in con-
texts such as distributed networking systems are often prohibitively high, result-
ing in practitioners of SVM learning algorithms having to apply the algorithm
on approximate versions of the kernel matrix induced by a certain degree of data
reduction. In this paper, we study the tradeoffs between data reduction and the
loss in an algorithm’s classification performance. We introduce and analyze a
consistent estimator of the SVM’s achieved classification error, and then derive
approximate upper bounds on the perturbation on our estimator. The bound is
shown to be empirically tight in a wide range of domains, making it practical for
the practitioner to determine the amount of data reduction given a permissible
loss in the classification performance.1

Keywords: Support vector machines, kernel methods, approximate kernel ma-
trices, matrix perturbation, classification.

1 Introduction

The popularity of using support vector machines (SVM) for classification has led to
their application in a growing number of problem domains and to increasingly larger
data sets [1,2,3,4]. An appealing key feature of the SVM is that the only interface of
the learning algorithm to the data is through its kernel matrix. In many applications,
the communication-theoretic constraints imposed by limitations in the underlying dis-
tributed data collection infrastructure, or the computational bottleneck associated with a
large-scale kernel matrix, naturally requires some degree of data reduction. This means
that practitioners usually do not have the resources to train the SVM algorithm on the
original kernel matrix. Instead, they must rely on an approximate, often simplified, ver-
sion of the kernel matrix induced by data reduction.

Consider, for instance, the application of an SVM to a detection task in a distributed
networking system. Each dimension of the covariate X represents the data captured by a

1 The authors would like to thank Michael I. Jordan, Noureddine El Karoui and Ali Rahimi for
helpful discussions.
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monitoring device (e.g., network node or sensor), which continuously ships its data to a
coordinator for an aggregation analysis using the SVM algorithm. Due to the communi-
cation constraints between nodes within the network and the power constraints of each
node (e.g., for battery-powered sensors), the monitoring devices do not ship all of their
observations to the coordinator; rather, they must appropriately down-sample the data.
From the coordinator’s point of view, the data analysis (via the SVM or any other algo-
rithm) is not applied to the original data collected by the monitoring devices, but rather
to an approximate version. This type of in-network distributed processing protocol has
become increasingly popular in various fields, including systems and databases [5,6],
as well as in signal processing and machine learning [7,8,9]. In the case where the coor-
dinator uses an SVM for classification analysis, the SVM has access not to the original
data set, but rather to only an approximate version, which thus yields an approximate
kernel matrix. The amount of kernel approximation is dictated by the amount of data
reduction applied by the monitoring devices.

Within the machine learning field, the need for training with an approximate kernel
matrix has long been recognized, primarily due to the computational constraints asso-
ciated with large kernel matrices. As such, there are various methods that have been
developed for replacing an original kernel matrix K with a simplified version K̃: ma-
trices with favorable properties such as sparsity, low-rank, etc [10,11,12,13,14].

To our knowledge, there has been very little work focusing on the tradeoffs between
the amount of data reduction and the classification accuracy. This issue has only been
recently explored in the machine learning community; see [15] for a general theoretical
framework. Understanding this issue is important for learning algorithms in general,
and especially for SVM algorithms, as it will enable their application in distributed
systems, where large streams of data are generated in distributed devices, but not all
data can be centrally collected. Furthermore, the tradeoff analysis has to be achieved in
simple terms if it is to have impact on practitioners in applied fields.

The primary contribution of this paper is an analysis of the tradeoff between data
reduction and the SVM classification error. In particular, we aim to produce simple and
practically useful upper bounds that specify the amount of loss of classification accu-
racy for a given amount of data reduction (to be defined formally). To this end, the
contributions are two-fold: (i) First, we introduce a novel estimate, called the classifica-
tion error coefficient C, for the classification error produced by the SVM, and prove that
it is a consistent estimate under appropriate conditions. The derivation of this estimator
is drawn from the relationship between the hinge loss (used by the SVM) and the 0-1
loss [16]. (ii) Second, using the classification error coefficient C as a surrogate for the
classification accuracy, we introduce upper bounds on the change in C given an amount
of data reduction. Specifically, let K be the kernel matrix on the original data that we
don’t have access to, K̃ the kernel matrix induced by data reduction, and suppose that
each element of Δ = K̃ − K has variance bounded by σ2. Let C̃ be the classification
error coefficient associate to K̃. We express an upper bound of C̃ − C in terms of σ
and matrix K̃. The bound is empirically shown to be remarkably tight for a wide range
of data domains, making it practical for the practitioner of the SVM to determine the
amount of data reduction given a permissible loss in the classification performance.
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The remainder of the paper is organized as follows: in Section 2, we provide back-
ground information about the SVM algorithm, and describe the contexts that motivate
the need for data reduction and approximate kernel matrices; in Section 3, we describe
the main results of this paper, starting with a derivation and consistency analysis of the
classification error coefficient C, and then presenting upper bounds on the change of
C due to kernel approximation; in Section 4, we present an empirical evaluation of our
analyses; and in Section 5, we discuss our conclusions.

2 SVM, Data Reduction and Kernel Matrix Approximation

2.1 SVM Background

In a classification algorithm, we are given as our training data m i.i.d. samples (xi, yi)m
i=1

in X × {±1}, where X denotes a bounded subset of Rd. A classification algorithm in-
volves finding a discriminant function y = sign(f(x)) that minimizes the classification
error P (Y �= sign(f(X))).

Central to a kernel-based SVM classification algorithm is the notion of a kernel func-
tion K(x, x′) that provides a measure of similarity between two data points x and x′

in X . Technically, K is required to be a symmetric positive semidefinite kernel. For
such a function, Mercer’s theorem implies that there must exist a reproducing kernel
Hilbert space H = span{Φ(x)|x ∈ X} in which K acts as an inner product, i.e.,
K(x, x′) = 〈Φ(x), Φ(x′)〉. The SVM algorithm chooses a linear function in this fea-
ture space f(x) = 〈w, Φ(x)〉 for some w that minimizes the regularized training error:

min
w∈H

1
m

m∑

i=1

φ(yif(xi)) + λm‖w‖2/2. (1)

Here λm denotes a regularization parameter, and φ denotes an appropriate loss function
that is a convex surrogate to the 0-1 loss I(y �= sign(f(x))). In particular, the SVM
uses hinge loss φ(yf(x)) = (1 − yf(x))+ [3]. It turns out that the above optimization
has the following dual formulation in quadratic programming:

max
0≤α≤1

1
m

∑

i

αi − 1
2m2λm

∑

i,j

αiαjyiyjK(xi, xj). (2)

For notational convenience, we define matrix Q such that Qij = K(xi, xj)yiyj . The
solution α of the above dual formulation defines the optimal f and w of the primal
formulation via the following:

w =
1

mλm

m∑

i=1

αiΦ(xi) (3)

f(x) =
1

mλm

m∑

i=1

αiK(xi, x). (4)
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2.2 In-Network Data Reduction and Approximate Kernel Matrices

As seen from the dual formulation (2), the kernel matrix K = {K(xi, xj)i,j} and the
label vector y = [y1, . . . , ym] form sufficient statistics of the SVM. However, there is
substantial previous work that focuses on the application of an SVM to an approximate
version K̃ of the kernel matrix from data reduction. We extend this work to focus in
particular on the application of SVM in distributed system environments.

Suppression of data streams and data quantization in distributed systems. A primary
motivation regarding this work is the application of SVM-based classification analysis
to distributed settings in a number of fields, including databases, distributed systems,
and sensor networks [5,6,9]. In a distributed system setting, there are d monitoring de-
vices which receive streams of raw data represented by a d-dimensional covariate X and
send the data to a central coordinator for classification analysis. Because of communi-
cation constraints, each monitoring devices cannot send all its received data; instead,
they must send as little data as possible. An ε-suppression algorithm is frequently used:
each monitoring devices j, j = 1, . . . , d, send the i-th data point to the coordinator only
if: |Xj

i − Xj
i−1| > ε. Using these values, the coordinator reconstructs an approximate

view X̃ of the true data X , such that ‖X − X̃‖∞ ≤ ε. A key question in the design of
such systems is how to determine the data reduction parameter ε, given a permissible
level of loss in the classification accuracy.

In signal processing, data reduction is achieved by quantization or binning: each
dimension of X is discretized into a given number of bins before being sent to the
central coordinator [7,8]. The bin size is determined by the number of bits available
for transmission: for bins of equal size ε, the number of bins is proportional to 1/ε,
corresponding to using log(1/ε) number of bits. As before, the coordinator receives
an approximate version X̃ , such that ‖X − X̃‖∞ ≤ ε. Once X̃ is received by the
coordinator, one obtains an approximate kernel matrix by applying the kernel function
K to X̃ . Suppose that a Gaussian kernel with width parameter ω > 0 is used, then we

obtain the approximate kernel K̃ as K̃(X̃i, X̃j) = exp
(
− ‖X̃i−X̃j‖2

2ω2

)
.

Kernel matrix sparsification and approximation. Beside applications in in-network and
distributed data processing, a variety of methods have been devised to approximate a
large kernel matrix by a more simplified version with desirable properties, such as spar-
sity and low-rank (e.g., [10,11,12,13,14]). For instance, [17] proposes a simple method
to approximate K by randomly zeroing out its entries:

K̃ij = K̃ji =
{ 0 with probability 1 − 1/δ,

δKij with probability 1/δ,

where δ ≥ 1 controls the degree of sparsification on the kernel.2 This sparsification was
shown to greatly speed up the construction and significantly reduce the space required

2 This method may not retain the positive definiteness of the kernel matrix, in which case positive
values have to be added to the matrix diagonal.
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to store the matrix. Our analysis can also be applied to analyze the tradeoff of kernel
approximation error and the change in classification error.

3 Classification Error Coefficient and Effects of Data Reduction

We begin by describing the set-up of our analysis. Let K̃ be a (random) kernel matrix
that is an approximate version of kernel matrix K induced by a data reduction scheme
described above (e.g., quantization or suppression). Let C0 and C̃0 be the (population)
classification error associated with the SVM classifier trained with kernel matrix K and
K̃, respectively. We wish to bound |C̃0 − C0| in terms of the “magnitude” of the error
matrix Δ = K̃ − K , which we now define. For a simplified analysis, we make the
following assumption about the error matrix Δ:

A0. Conditioned on K̃ and y, all elements eij (i, j = 1, . . . , m; i �= j) of Δ are uncor-
related, have zero mean, and the variance bounded by σ2.

We use σ to control the degree of our kernel matrix approximation scheme, abstracting
away from further detail. It is worth noting that certain kernel matrix approximation
schemes may not satisfy the independence assumption. On the one hand, it is possible
to incorporate the correlation of elements of Δ into our analysis. On the other hand, we
find that the correlation is typically small, such that elaboration does not significantly
improve our bounds in most cases.

Our ultimate goal is to produce practically useful bounds on C̃0 − C0 in terms of σ
and kernel matrix K̃. This is a highly nontrivial task, especially since we have access
only to approximate data (through K̃ , but not K).

3.1 Classification Error Coefficient

In order to quantify the effect on the population SVM classification error C0, we first
introduce a simple estimate of C0 from empirical data. In a nutshell, our estimator relies
on the following intuitions:

1. The SVM algorithm involves minimizing over a surrogate loss (the hinge loss),
while we are interested in the performance in terms of 0-1 loss. Thus, we need to
be able to compare between these two losses.

2. We are given only empirical data, and we replace the risk (population expectation
of a loss function) by its empirical version.

3. We avoid terms that are “nonstable” for the choice of learning parameters, which is
important for our subsequent perturbation analysis.

The first key observation comes from the fact that the optimal expected φ-risk using the
hinge loss is shown to be twice the optimal Bayes error (i.e., using 0-1 loss) (cf. [16],
Sec. 2.1):

min
f∈F

P (Y �= f(X)) =
1
2

min
f∈F

Eφ(Y f(X)), (5)

where F denotes an arbitrary class of measurable functions that contains the optimal
Bayes classifier.
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Note that we can estimate the optimal expected φ-risk by its empirical version de-
fined in Eqn. (1), which equals its dual formulation (2). Let ŵ be the solution of (1).
As shown in the proof of Theorem 1, if λm → 0 sufficiently slowly as m → ∞, the
penalty term λm‖ŵ‖2 vanishes as m → ∞. Due to (3), the second quantity in the dual
formulation (2) satisfies

1
2m2λm

∑

i,j

αiαjyiyjK(xi, xj) = λm‖ŵ‖2/2 → 0.

As a result, we have:

inf
w∈H

Êφ(Y f(X)) + λm‖w‖2/2 =
1
m

m∑

i=1

αi − λm‖ŵ‖2/2. (6)

Approximating the optimal φ-risk in (5) by its empirical version over H, and drop-
ping off the vanishing term λm‖ŵ‖2 from Eqn. (6), we obtain the following estimate:

Definition 1. Let α be the solution of the SVM’s dual formulation (2), the following
quantity is called the classification error coefficient:

C =
1

2m

m∑

i=1

αi. (7)

An appealing feature of C is that C ∈ [0, 1/2]. Furthermore, it is a simple function of α.
As we show in the next section, this simplicity significantly facilitates our analysis of the
effect of kernel approximation error. Applying consistency results of SVM classifiers
(e.g., [18]) we can show that C is also a universally consistent estimate for the optimal
classification error under appropriate assumptions. These assumptions are:

A1. K is a universal kernel on X , i.e., the function class {〈w, Φ(·)|w ∈ H〉} is dense in
the space of continuous functions on X with respect to the sup-norm (see [18] for
more details). Examples of such kernels include the Gaussian kernel K(x, x′) =
exp

(
− ‖x−x′‖2

2ω2

)
, among others.

A2. λm → 0 such that mλm → ∞.

Theorem 1. Suppose that (Xi, Yi)m
i=1 are drawn i.i.d. from a Borel probability mea-

sure P . Under assumptions A1 and A2, there holds as m → ∞:

C − inf
f∈F

P (Y �= f(X)) → 0 in probability.

See the appendix for a proof. It is worth noting that this result is kernel-independent.
Let K̃, α̃, f̃ , C̃ denote the corresponding counterparts for kernel matrix K , the dual

formulation’s solutions α, classifier f , and the classification coefficient C, respectively.
For the data suppression and quantization setting described in Section 2, suppose that a
universal kernel (such as Gaussian kernel) is applied to both original and approximate
data. By Theorem 1, both C and C̃ are consistent estimates of the classification error
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applied on original and approximate data, respectively. Thus, the difference C̃ − C can
be used to evaluate the loss of classification accuracy of the SVM. This is the focus of
the next section. 3

3.2 Effects of Data Reduction on Classification Error Coefficient

In this section, we analyze the effects of the approximation of the kernel matrix K − K̃
on the classification error coefficient difference C − C̃ .

Let r = #{i : αi �= α̃i}. From Eqn. (7), the difference of the classification coeffi-
cients is bounded via Cauchy-Schwarz inequality:

|C̃ − C| ≤ 1
2m

‖α̃ − α‖1 ≤ 1
2m

√
r‖α̃ − α‖, (8)

from which we can see the key point lies in deriving a tight bound on the L2 norm
‖α̃ − α‖. Define two quantities:

R1 =
‖α̃ − α‖2

(α̃ − α)T Q(α̃ − α)
, R2 =

(α̃ − α)T (Q − Q̃)α̃
‖α̃ − α‖ .

Proposition 1. If α and α̃ are the optimal solution of the program (2) using kernel
matrix K and K̃ respectively, then:

|C̃ − C| ≤
√

r

2m
‖α̃ − α‖ ≤

√
r

2m
R1R2.

For a proof, see the Appendix. Although it is simple to derive rigorous absolute bounds
on R1 and R2, such bounds are not practically useful. Indeed, R1 is upper bounded by
the inverse of the smallest eigenvalue of Q, which tends to be very large. An alternative
solution is to obtain probabilistic bounds that hold with high probability, using Prop. 1
as a starting point. Note that given a data reduction scheme, there is an induced joint
distribution generating kernel matrix K , its approximate version K̃, as well as the label
vector y. Matrix Q = K ◦yyT determines the value of vector α through an optimization
problem (2). Likewise, Q̃ = K̃ ◦ yyT determines α̃. Thus, α and α̃ are random under
the distribution that marginalizes over random matrices Q and Q̃, respectively.

The difficult aspect of our analysis lies in the fact that we do not have closed forms
of either α or α̃, which are solutions of quadratic programs parameterized by Q and

3 We make several remarks: (i) The rates at which C and C̃ converge to the respective mis-
classification rate may not be the same. To understand this issue one has to take into account
additional assumptions on both the kernel function, and the underlying distribution P . (ii)
Although quantization of data does not affect the consistency of the classification error co-
efficient since one can apply the same universal kernel function to quantized data, quantiz-
ing/approximating directly the kernel matrix (such as those proposed in [17] and described in
Sec. 2) may affect both consistency and convergence rates in a nontrivial manner. An investi-
gation of approximation rates of the quantized/sparsified kernel function class is an interesting
open direction.
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g1

g2

F

x0

Fig. 1. Illustration of upper bounds via perturbation analysis: Linear approximation g1 and upper
bound g2 via second-order perturbation analysis of a concave function F around a point x0 in the
domain. The bounds continue to hold for large perturbation around x0.

Q̃, respectively. We know a useful fact, however, regarding the distributions of vector
α and α̃. Since the training data are i.i.d., the roles of αi and α̃i for i = 1, . . . , m are
equivalent. Thus (αi, α̃i) have marginally identical distributions for i = 1, . . . , m.

We first motivate our subsequent perturbation analysis by an observation that the
optimal classification error defined by Eq. (5), for which C is an estimate, is a con-
cave function with respect jointly to the class probability distributions (P (X |Y =
1), P (X |Y = −1)) (cf. [16], Sec. 2). When the data is perturbed (e.g., via quanti-
zation/suppression) the joint distribution (P (X |Y = 1), P (X |Y = −1)) is also per-
turbed. Intuitively, upper bounds for a concave functional via either linear or second-
order approximation under a small perturbation on its variables should also hold under
larger perturbations, even if such bounds tend to be less tight in the latter situation. See
Fig. 3.2 for an illustration. Thus, to obtain useful probabilistic bounds on C̃ − C, we
restrict our analysis to the situation where K̃ is a small perturbation from the original
matrix K . Under a small perturbation, the following assumptions can be made:

B1. The random variables α̃i − αi for i = 1, . . . , n are non-correlated.
B2. The random variables α̃i − αi have zero means.

Given Assumption B1, coupled with the fact that (α̃i − αi) have identical distributions
for i = 1, . . . , m, by the central limit theorem, as m gets large, a rescaled version of
C̃ − C behaves like a standard normal distribution. Using a result for standard normal
random variables, for any constant t > 0, we obtain that with probability at least 1 −

1√
2πt

e−t2/2:

C̃−C � t

√
Var(C̃ − C)+E(C̃ − C)

Ass.(B1)
=

t

2m

√√√√
m∑

i=1

Var(α̃i − αi) + E(C̃ − C)

≤ t

2m

√
E‖α − α̃‖2 + E(C̃ − C)

Prop. 1
≤ t

2m

√
ER2

1R
2
2 + E(C̃ − C).

Our next step involves an observation that under certain assumptions to be described
below, random variable R1 is tightly concentrated around a constant, and that ER2

2 can
be easily bounded.
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R1 ≈ m

tr(K)
by Lemma 2 (9)

ER2
2 ≤ σ2mE‖α̃‖2 by Lemma 1. (10)

As a result, we obtain the following approximate bound:

C̃ − C � t
σ
√

mE‖α̃‖2

2tr(K)
+ E(C̃ − C) Ass.B2= t

σ
√

mE‖α̃‖2

2tr(K)
, (11)

where Eqn. (11) is obtained by invoking Assumption B2.
Suppose that in practice we do not have access to K , then tr(K) can be approximated

by tr(K̃). In fact, for a Gaussian kernel tr(K) = tr(K̃) = m. One slight complication
is estimating E‖α̃‖2. Since we have only one training sample for K̃, which induces a
single sample for α̃, this expectation is simply estimated by ‖α̃‖2.

When we choose t = 1 in bound (11), the probability that the bound is correct
is approximately 1 − e−1/2/

√
2π = 75%. For t = 2, the probability improves to

1 − e−2/2
√

2π = 97%. While t = 1 yields relatively tighter bound, we choose t = 2
in practice. In summary, we have obtained an approximate bound:

classif. coeff. (approx. data) ≤ classif. coeff. (original data) +
σ
√

m‖α̃‖2

tr(K̃)
(12)

Remark. (i) Even though our analysis is motivated by the context of small perturbations
to the kernel matrix, bound (12) appears to hold up well in practice when σ is large. This
agrees with our intuition on the concavity of (5) discussed earlier. (ii) Our analysis is
essentially that of second-order matrix perturbation which requires the perturbation be
small so that both Assumptions B1 and B2 hold. Regarding B1, for i = 1, . . . , m, each
pair (αi, α̃i) corresponds to the i-th training data point, which is drawn i.i.d. As a result,
(αi − α̃i) are very weakly correlated with each other. We show that this is empirically
true through a large number of simulations. (ii) Assumption B2 is much more stringent
by comparison. When K̃ is only a small perturbation of matrix K , we have also found
through simulations that this assumption is very reasonable, especially in the contexts
of the data quantization and kernel sparsification methods described earlier.

3.3 Technical Issues

Probabilistic bounds of R1 and R2. Here we elaborate on the assumptions under
which the probabilistic bounds for R1 and R2 are obtained, which motivate the approx-
imation method given above. Starting with R2, it is simple to obtain:

Lemma 1. Under Assumption A0, ER2 ≤
√

ER2
2 ≤ σ

√
mE[‖α̃‖2|].

See the Appendix for a proof. Turning to the inverse of Raleigh quotient term R1, our
approximation is motivated by the following fact, which is a direct consequence of Thm
2.2. of [19]:
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Lemma 2. Let A be fixed m × m symmetric positive definite matrix with bounded
eigenvalues λ1, . . . , λm, and z be an m-dim random vector drawn from any spherically
symmetric distribution,

E[zT Az/‖z‖2] = tr(A)/m

Var[zT Az/‖z‖2] =
2

m + 2

( m∑

i=1

λ2
i /m − (

m∑

i=1

λi/m)2
)

.

By this result, zT Az/‖z‖2 has vanishing variance as m → ∞. Thus, this quantity is
tightly concentrated around its mean. Note that if tr(A)/m is bounded away from 0,
we can also approximate 1/zTAz by m/tr(A). This is indeed the situation with most
kernels in practice: As m becomes large, tr(K̃)/m → EK̃(X, X) > 0. As a result, we
obtain approximation (9).

It is worth noting that the “goodness” of this heuristic approximation relies on the
assumption that α − α̃ follows an approximately spectrally symmetric distribution. On
the other hand, the concentration of the Raleigh quotient term also holds under more
general conditions (cf. [20]). An in-depth analysis of such conditions on α and α̃ is
beyond the scope of this paper.

3.4 Practical Issues

The bound we derived in Eqn. (12) is readily applicable to practical applications. Re-
call from Section 2 the example of the detection task in a distributed networking system
using a SVM. Each monitoring device independently applies a quantization scheme on
their data before sending to the coordinator. The size of the quantized bin is ε. Equiv-
alently, one could use an ε-suppression scheme similar to [9]. The coordinator (e.g.,
network operation center) has access only to approximate data X̃ , based on which it
can compute C̃, K̃, α̃ by applying a SVM on X̃ . Given ε, one can estimate the amount
of kernel matrix approximation error σ and vice versa (see, e.g., [9]). Thus, Eqn. (12)
gives the maximum possible loss in the classification accuracy due to data reduction.
The tightness of bound (12) is crucial: it allows the practitioner to tune the data reduc-
tion with good a confidence on the detection performance of the system. Conversely,
suppose that the practitioner is willing to incur a loss of classification accuracy due to
data reduction by an amount at most δ. Then, the appropriate amount of kernel approx-
imation due to data reduction is:

σ∗ =
δ · tr(K̃)√

m‖α̃‖2
. (13)

4 Evaluation

In this section, we present an empirical evaluation of our analysis on both synthetic
and real-life data sets. For exhaustive evaluation of the behavior of the classification
error coefficient C and the tradeoff analysis captured by bound (12), we replicate our
experiments on a large number of of synthetic data sets of different types in moderate
dimensions; for illustration in two dimensions, see Fig 2. To demonstrate the practical
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Fig. 2. Synthetic data sets illustrated in two dimensions
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Fig. 3. Comparison between C and the test error under varying conditions: (a–b) varying amount
of overlap between two classes (both training and test data sets have 2,000 sample points. Error
bars are derived from 25 replications); (c–d) varying sample sizes; (e–f) varying amount of data
reduction via scatter plots (each path in the scatter plots connects points corresponding to varying
number of quantization bits ranging from 8 in low-left corner to 2 bits in upper-right corner); (g–
i) varying amount of data reduction via error bar plots. All plots show C remains a good estimate
of the test error even with data reduction. We use Gaussian kernels for all experiments.
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Fig. 4. Upper bounds of test error on approximate data due to quantization using bound (12).
(a–c) Simulated data sets with 2, 5, 10 features, respectively; (d) Landsat satellite data (6435
sample size, 36 features); (e) Wisconsin breast cancer data (569 sample size, 30 features); (f)
Waveform data (5000 sample size, 21 features); (g) Pen-Based recognition of digits data (10992
sample size, 16 features); (h) Ecoli data (336 sample size, 8 features). (i) Iris data (150 sample
size, 4 features); (j) Wine data (178 sample size, 13 features); (k) KDD04 Bio data (145K sample
size, 74 features); (l) Intel Lab light sensor data (81 sample size, 25 features). We use Gaussian
kernels for (a–i), and linear kernels for (j–l). The x-axis shows increased bit numbers and the
correspondingly decreasing matrix error σ.
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Fig. 5. Upper bounds of test error based on bound (12) using approximate Gaussian kernel ma-
trices obtained from kernel sparsification sampling. (a–c) Simulated data sets; (d) KDD04 Bio
data; (e) Wisconsin breast cancer data; (f) Intel Lab light sensor data. We use Gaussian kernels
for all experiments. The x-axis shows the increasing matrix error σ due to down sampling on the
kernel matrix.

usefulness of our analysis, we have tested (12) on nine real-life data sets (from the UCI
repository [21] and one light sensor data set from the IRB Laboratory [7]), which are
subject to varying degrees of data reduction (quantization bits). The data domains are
diverse, including satellite images, medicine, biology, agriculture, handwritten digits,
and sensor network data, demonstrating the wide applicability of our analysis.

Evaluation of estimate C. The first set of results in Fig. 3 verify the relationship be-
tween the classification error coefficient C and test error on held-out data under varying
conditions on: (i) overlap between classification classes (subfigs (a–b)), (ii) sample sizes
(subfigs (c–d)) and (iii) amount of data reduction (subfigs (e–i)). It is observed that
C estimates the test error very well in all such situations for both simulated and real
data sets, and even when the misclassification rate is high (i.e. noisy data). In particu-
lar, Fig. 3 (e)(f) show scatter plots comparing C against test error. Each path connects
points corresponding to varying amount of data reduction on the same data set. They
are very closely parallel to the y = x line, with the points in the upper-right corner
corresponding to the most severe data reduction.

Effects of data reduction on test error. Next, we evaluate the effect of data reduction via
quantization (suppression). Fig. 4 plots the misclassification rate for data sets subject to
varying degree of quantization, and the upper bound developed in this paper. Our bound
is defined as a sum of test error on original (non-quantized) data set plus the upper
bound of C̃ − C provided by (12). As expected, the misclassification rate increases as
one decreases the number of quantization bits. What is remarkable is that our upper
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bound on the approximate data set is very tight in most cases. The effectiveness of our
bound should allow the practitioner to determine the right amount of quantization bits
given a desired loss in classification accuracy.

It is worth highlighting that although our bound was derived using the viewpoint of
(small) stochastic perturbation analysis (i.e., σ is small, and number of quantization bits
is large), in most cases the bound continues to hold up for large σ (and small number of
bits), even if it becomes less tight. This strengthens our intuition based on the concavity
of the optimal Bayes error. Note also that under small perturbation (small σ) the mean
of difference of test error in original data and approximate data is very close to 0. This
provides a strong empirical evidence for the validity of Assumption B2.

We also applied our analysis to study the tradeoff between kernel approximation
and classification error in the context of kernel sparsification sampling described in
Section 2. The bounds are still quite good, although they are not as tight as in data
quantization (see Fig. 5). Note that in one case (subfig (c)), the classification error actu-
ally decreases as the kernel becomes sparser, but our upper bound fails to capture such
phenomenon. This is because in contrast to data reduction methods, direct approxima-
tion schemes on the kernel matrix may influence the approximation error rate of the
induced kernel function class in a nontrivial manner. This aspect is not accounted for
by our classification error coefficient C (see remarks following Theorem 1).

5 Conclusion

In this paper, we studied the tradeoff of data reduction and classification error in the
context of the SVM algorithm. We introduced and analyzed an estimate of the test er-
ror for the SVM, and by adopting a viewpoint of stochastic matrix perturbation theory,
we derived approximate upper bounds on the test error for the SVM in the presence
of data reduction. The bound’s effectiveness is demonstrated in a large number of syn-
thetic and real-world data sets, and thus can be used to determine the right amount of
data reduction given a permissible loss in classification accuracy in applications. Our
present analysis focuses mainly on the effect of data reduction on the classification error
estimate C while ignoring the its effect on approximability and the approximation rate
of the quantized (or sparsified) kernel function class. Accounting for the latter is likely
to improve the analysis further, and is an interesting open research direction.
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Appendix

Proof sketch of Theorem 1: Let Rm(f) := 1
m

∑m
i=1 φ(Y f(X)), R(f) := Eφ(Y f(X)),

and let I(f) = ‖f‖H for any f ∈ H. To signify the dependence on sample size m
we shall use fm in this proof to denote the SVM classifier defined by (4). The primal
form (1) can be re-written as

fm = argminf∈HRm(f) + λmI(f)2/2.

The classification error coefficient can be expressed by:

C =
1
2
(Rm(f) + λmI(fm)2).
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K being a universal kernel implies that infw∈H R(f) = minf∈F R(f) (cf. [18],
Prop. 3.2). For arbitrary ε > 0, let f0 ∈ H such that R(f0) ≤ minf∈F R(f) + ε.

By the definition of fm, we obtain that Rm(fm) + λmI(fm)2/2 ≤ Rm(0) +
λmI(0)2/2 = Rm(0) = φ(0), implying that I(fm) = O(1/

√
λm). We also have:

Rm(fm) + λmI(fm)2/2 ≤ Rm(f0) + λmI(f0)2/2.

Rearranging gives:

R(fm)−R(f0) ≤ (R(fm)−Rm(fm))+(Rm(f0)−R(f0))+λm(I(f0)2 −I(fm)2/2.

Now, note that for any B > 0, if I(f) ≤ B, then f(x) = 〈w, Φ(x)〉 ≤ ‖w‖
√

K(x, x) ≤
M · B, where M := supx∈X

√
K(x, x). Note also that the hinge loss φ is a Lipschitz

function with unit constant. We can now apply a result on the concentration of the supre-
mum of empirical processes to bound R(·)−Rm(·). Indeed, applying Thm. 8 of [22] to
function class { 1

MB f |I(f) ≤ B} (using their Thm. 12 to bound the Rademacher com-
plexity of the kernel function class), we obtain that for any δ > 0, with probability at
least 1 − δ:

R(fm) − Rm(fm) ≤ 4MI(fm)√
m

+ MI(fm)

√
8 ln(2/δ)

m
.

We obtain with probability at least 1 − 2δ:

R(fm)+λmI(fm)2/2 ≤ R(f0)+
4M(I(fm) + I(f0))√

m
+M(I(fm)+I(f0))

√
8 ln(2/δ)

m
+

λmI(f0)2/2 ≤ min
f∈F

R(f) + ε +
4M(I(fm) + I(f0))√

m
+ M(I(fm) + I(f0))

√
8 ln(2/δ)

m
+

λm(I(f0)2/2.

Combining Assumption A2 with the fact that I(fm) = O(1/
√

λm), the RHS tends to
minf∈F R(f) + ε as m → ∞. But R(fm) ≥ minf∈F R(f) by definition, so R(fm) −
minf∈F R(f) → 0 and λmI(fm)2/2 → 0 in probability.

Thus we obtain that

C =
1
2
(Rm(fm) + λmI(fm)2)

p→ 1
2

min
f∈F

R(f) = min
f∈F

P (Y �= f(X)),

where the last equality is due to (5).
Before completing the proof, it is worth noting that to the rate of convergence also

depends on the rate that λmI(f0)2 → 0 as ε → 0. This requires additional knowledge of
the approximating kernel class H driven by kernel function K , and additional properties
of the optimal Bayes classifier that f0 tends to.

Proof sketch of Proposition 1: If x0 is a minimizer of a differentiable function F :
Rd → R over a convex domain, then for any z in the domain, (z − x0)T ∇F (x0) ≥ 0.
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Applying this fact to both α and α̃ which are the optimizers of Eqn. (2) using Q and Q̃,
respectively:

(α̃ − α)T (
1

2m2λm
Qα − 1

m
Im) ≥ 0

(α − α̃)T (
1

2m2λm
Q̃α̃ − 1

m
Im) ≥ 0,

where Im = [1 . . . 1]T . Adding up the two inequalities yields

(α − α̃)T (Q̃α̃ − Qα) ≥ 0.

A minor rearrangement yields

(α̃ − α)T (Q − Q̃)α̃ ≥ (α̃ − α)T Q(α̃ − α),

from which the proposition follows immediately.

Proof of Lemma 1: By Cauchy-Schwarz, R2 ≤ ‖(Q̃ − Q)α̃‖. The i-th element of the
vector inside ‖.‖ in the RHS is ai = yi

∑m
j=1 eijyjα̃j . Note that K̃, y determines the

value of α̃. Thus, by Assumption A0, we have:

E[a2
i |K̃, y] =

m∑

j=1

E[e2
ij |K̃, y]E[α̃2

j |K̃, y] ≤ σ2E[‖α̃‖2|K̃, y].

Marginalizing over (K̃, y)givesEa2
i ≤σ2E‖α̃‖2. Thus,ER2≤(ER2

2)
1/2≤σ

√
mE‖α̃‖2.
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Abstract. Two recent breakthroughs have dramatically improved the
scope and performance of k-means clustering: squared Euclidean seeding
for the initialization step, and Bregman clustering for the iterative step.
In this paper, we first unite the two frameworks by generalizing the for-
mer improvement to Bregman seeding — a biased randomized seeding
technique using Bregman divergences — while generalizing its important
theoretical approximation guarantees as well. We end up with a complete
Bregman hard clustering algorithm integrating the distortion at hand in
both the initialization and iterative steps. Our second contribution is to
further generalize this algorithm to handle mixed Bregman distortions,
which smooth out the asymetricity of Bregman divergences. In contrast
to some other symmetrization approaches, our approach keeps the al-
gorithm simple and allows us to generalize theoretical guarantees from
regular Bregman clustering. Preliminary experiments show that using
the proposed seeding with a suitable Bregman divergence can help us
discover the underlying structure of the data.

1 Introduction

Intuitively, the goal of clustering is to partition a set of data points into clusters
so that similar points end up in the same cluster while points in different clusters
are dissimilar. (This is sometimes called hard clustering, since each data point
is assigned to a unique cluster. In this paper we do not consider so-called soft
clustering.) One of the most influential contributions to the field has been Lloyd’s
k-means algorithm [Llo82]. It is beyond our scope to survey the vast literature
on the theory and applications of the k-means algorithm. For our purposes, it
is sufficient to note three key features of the basic algorithm that can serve
as starting points for further development: (i) Each cluster is represented by
its centroid. (ii) Initial seeding chooses random data points as centroids. (iii)
Subsequently the algorithm improves the quality of the clustering by locally
optimizing its potential, defined as the sum of the squared Euclidean distances
between each data point and its nearest centroid.

Our starting points are two recent major improvements that address points (ii)
and (iii) above. First, Banerjee et al. [BMDG05] have generalized the k-means
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algorithm to allow, instead of just squared Euclidean distance, any Bregman
divergence [Bre67] as a distortion measure in computing the potential. Bregman
divergences are closely associated with exponential families of distributions and
include such popular distortion measures as Kullback-Leibler divergence and
Itakura-Saito divergence. As these divergences are in general not symmetrical,
they introduce nontrivial technical problems. On the other hand, they give us
a lot of freedom in fitting the performance measure of our algorithm to the
nature of the data (say, an exponential family of distributions we feel might
be appropriate) which should lead to qualitatively better clusterings. Bregman
divergences have found many applications in other types of machine learning
(see e.g. [AW01]) and in other fields such as computational geometry [NBN07],
as well.
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Fig. 1. Clusterings obtained by minimizing Euclidean (left) and Kullback-Leibler
(right) potential. The centroids are shown as black dots.

To appreciate the effect of the distortion measure on clustering results, con-
sider the exaggerated toy example in Figure 1. Visually, the data consists of
four clusters. The first one is centered around the origin and spreads along the
x and y axes. It can be seen as an approximate Itakura-Saito ball [NN05]. The
other three clusters come from isotropic Gaussian distributions with different
variances and centers at (2, 2), (4, 4) and (11, 11). The cluster around (11, 11)
has 600 data points, while the other three clusters have 200 data points each. For
k = 4, a Euclidean distortion measure favors clusterings that use a single cen-
troid to cover the two small clusters close to the origin and uses two centroids to
cover the one big cluster. In contrast, Kullback-Leibler divergence gives a better
score to solutions that correspond to the visually distinguishable clusters.

A second recent improvement to k-means clustering is D2 seeding by Arthur
and Vassilvitskii [AV07]. Instead of choosing the k initial cluster centroids uni-
formly from all the data points, we choose them in sequence so that in choosing
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the next initial centroid we give a higher probability to points that are not close
to any of the already chosen centroids. Intuitively, this helps to get centroids
that cover the data set better; in particular, if the data does consist of several
clearly separated clusters, we are more likely to get at least one representative
from each cluster. Surprisingly, this simple change in the seeding guarantees
that the squared Euclidean potential of the resulting clustering is in expectation
within O(log k) of optimal. For another recent result that obtains approximation
guarantees by modifying the seeding of the k-means algorithm, see [ORSS06].

The first contribution in this paper is to combine the previous two advances by
replacing squared Euclidean distance in the D2 seeding by an arbitrary Bregman
divergence. The resulting Bregman seeding gives a similar approximation guar-
antee as the original D2 seeding, except that the approximation factor contains
an extra factor ρψ ≥ 1 that depends on the chosen Bregman divergence and the
location of the data in the divergence domain. For Mahalanobis divergence this
factor is always 1; for others, such as Itakura-Saito, it can be quite large or quite
close to 1 depending on the data. The key technique allowing this generalization
is a relaxed form of the triangle inequality that holds for Bregman divergences;
this inequality is a sharper form of a recent bound by Crammer et al. [CKW07].
Empirically, for different artificial data sets we have found that choosing the ap-
propriate Bregman divergence can noticeably improve the chances of the seeding
including a centroid from each actual cluster. Again, for an exaggerated example
consider that data in Figure 1. Experimentally, Kullback-Leibler seeding picks
exactly one point from each of the four visible clusters about 15% of the time,
while the original D2 seeding achieves a rate of only 2%. It should be noted,
however, that while the proof of the approximation guarantee in [AV07] relies
crucially on a successful seeding, in practice it seems that the iteration phase of
the algorithm can quite often recover from a bad seeding.

Our second contribution concerns point (i) above, the representation of clus-
ters by a centroid. Since Bregman divergences are asymmetric, it is very signif-
icant whether our potential function considers divergence from a data point to
the centroid, or from the centroid to a data point. One choice keeps the arith-
metic mean of the data points in a cluster as its optimal centroid, the other does
not [BMDG05, BGW05]. The strong asymmetricity of Bregman divergences may
seem undesirable in some situations, so a natural thought is to symmetrize the
divergence by considering the average of the divergences in the two different
directions. However, this makes finding the optimal centroid quite a nontrivial
optimization problem [Vel02] and makes the statistical interpretation of the cen-
troid less clear. As a solution, we suggest using two centroids per cluster, one
for each direction of the Bregman divergence. This makes the centroid computa-
tions easy and allows a nice statistical interpretation. We call this symmetrized
version with two centroids a mixed Bregman divergence.

Previously, approximation bounds for Bregman clustering algorithms have
been given by [CM08] and [ABS08]. Chadhuri and McGregor [CM08] consider
the KL divergence, which is a particularly interesting case as the KL divergence
between two members of the same exponential family is a Bregman divergence
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between their natural parameters [BMDG05]. Ackermann et al. [ABS08] con-
sider a statistically defined class of distortion measures which includes the KL
divergence and other Bregman divergences. In both of these cases, the algorithms
achieve (1 + ε)-approximation for arbitrary ε > 0. This is a much stronger guar-
antee than the logarithmic factor achieved here using the technique of [AV07].
On the other hand, the (1 + ε)-approximation algorithms are fairly complex,
whereas our algorithm based on [AV07] is quite easy to implement and runs in
time O(nkd).

Section 2 presents definitions; Section 3 presents our seeding and clustering
algorithm. Section 4 discusses some results. Section 5 provides experiments, and
Section 6 concludes the paper with open problems.

2 Definitions

Divergences. Let ψ : X → R be a strictly convex function defined on a convex set
X ⊆ R

d, with the gradient ∇ψ defined in the interior of X. (Hereafter, for the sake
of simplicity, we do not make the difference between a set and its interior.) We
denote by ψ�(x) .= 〈x, (∇ψ)−1(x)〉 − ψ((∇ψ)−1(x)) its convex conjugate. The
Bregman divergence Δψ(x‖y) between any two point x and y of X is [Bre67]:

Δψ(x‖y) .= ψ(x) − ψ(y) − 〈x − y, ∇ψ(y)〉 .

Popular examples of Bregman divergences include Mahalanobis divergence with
DM(x‖y) .= (x − y)�M(x − y) (X = R

d, M symmetric positive definite),
Kullback-Leibler divergence, DKL(x‖y) .=

∑d
i=1(xi log(xi/yi) − xi + yi) (X =

R
d
+∗), Itakura-Saito divergence, DIS(x‖y) .=

∑d
i=1((xi/yi) − log(xi/yi) − 1)

(X = R
d
+∗), and many others [NBN07, BMDG05]. It is not hard to prove that

Mahalanobis divergence is the only symmetric Bregman divergence. This general
asymmetry, which arises naturally from the links with the exponential families
of distributions [BMDG05], is not really convenient for clustering. Thus, we let:

	ψ,α(x‖y‖z) .= (1 − α)Δψ(x‖y) + αΔψ(y‖z) (1)

denote the mixed Bregman divergence of parameters (ψ, α), with 0 ≤ α ≤ 1.
When α = 0, 1, this is just a regular Bregman divergence. The special case
α = 1/2 and x = z is known as a symmetric Bregman divergence [Vel02].

Clustering. We are given a set S ⊆ X. For some A ⊆ S and y ∈ X, let

ψα(A, y) .=
∑

x∈A
	ψ,α(y‖x‖y) ,

ψ�
α(A, y) .= ψ1−α(A, y) =

∑

x∈A
	ψ,α(x‖y‖x) . (2)

Let C ⊂ X
2. The potential for Bregman clustering with the centroids of C is:

ψα(C) .=
∑

x∈S
min

(c,c�)∈C
	ψ,α(c�‖x‖c) . (3)
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When α = 0 or α = 1, we can pick C ⊂ X, and we return to regular Bregman
clustering [BMDG05]. The contribution to this potential of some subset A, not
necessarily defining a cluster, is noted ψα(A), omitting the clustering that shall
be implicit and clear from context. An optimal clustering, Copt, can be defined
either as its set of centroids, or the partition of S induced. It achieves:

ψopt,α
.= min

C⊂X2,|C|=k
ψα(C) . (4)

In this clustering, the contribution of some cluster A is:

ψopt,α(A) .=
∑

x∈A
	ψ,α(c�

A‖x‖cA) ,

where (cA, c�
A) ∈ Copt is the pair of centroids which minimizes ψα(A) over all

possible choices of (c, c�) in (3). It turns out that these two centroids are always
respectively the arithmetic and Bregman averages of A:

cA
.=

1
|A|

∑

x∈A
x , (5)

c�
A

.= (∇ψ)−1

(
1

|A|
∑

x∈A
∇ψ(x)

)

. (6)

To see that it holds for the arithmetic average, we may write:

∀c ∈ A,
∑

x∈A
Δψ(x‖c) −

∑

x∈A
Δψ(x‖cA) = |A|Δψ(cA‖c) . (7)

Since the right hand side is not negative and zero only when c = cA, (5) is the
best choice for c. On the other hand, if we compute (7) on ψ� and then use the
following well-known dual symmetry relationship which holds for any Bregman
divergence,

Δψ(x‖y) = Δψ�(∇ψ(y)‖∇ψ(x)) ,

then we obtain:

∀c ∈ A,
∑

x∈A
Δψ(c‖x) −

∑

x∈A
Δψ(c�

A‖x) = |A|Δψ(c‖c�
A) , (8)

and we conclude that (6) is the best choice for c�. Since c�
A �= cA except when

	ψ,α is proportional to Mahalanobis divergence, the mixed divergence (1) is only
a partial symmetrization of the Bregman divergence with respect to approaches
like e.g. [Vel02] that enforce c�

A = cA. There are at least two good reasons for
this symmetrization to remain partial for Bregman divergences. The first is sta-
tistical: up to additive and multiplicative factors that would play no role in its
optimization, (1) is an exponential family’s log-likelihood in which α tempers
the probability to fit in the expectation parameter’s space versus the natural
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Algorithm 1. MBS(S, k, α, ψ)
Input: Dataset S , integer k > 0, real α ∈ [0, 1], strictly convex ψ;
Let C ← {(x, x)};
//where x is chosen uniformly at random in S ;
for i = 1, 2, ..., k − 1 do

Pick at random point x ∈ S with probability:

πS(x) .=
�ψ,α(cx‖x‖cx)

∑
y∈S �ψ,α(cy‖y‖cy )

, (9)

//where (cx, cx) .= arg min(z,z)∈C �ψ,α(z‖x‖z);
C ← C ∪ {(x, x)};

Output: Set of initial centroids C;

parameter’s space [BMDG05]. This adds a twist in the likelihood for the uncer-
tainty of the data to model which is, in the context of clustering, desirable even
against regular Bregman divergences. However, it does not hold for approaches
like [Vel02]. The second reason is algorithmic: mixed divergences incur no com-
plexity counterpart if we except the computation of the inverse gradient for c�

A;
in the complete symmetric approaches, there is no known general expression for
the centroid, and it may be time consuming to get approximations even when
it is trivial to compute c�

A [Vel02]. Finally, we define a dual potential for the
optimal clustering, obtained by permuting the parameters of the divergences:

ψ�
opt,α(A) .=

∑

x∈A
	ψ,1−α(cA‖x‖c�

A) =
∑

x∈A
(αΔψ(cA‖x) + (1 − α)Δψ(x‖c�

A)) .

3 Mixed Bregman Clustering

3.1 Mixed Bregman Seeding

Algorithm 1 (Mixed Bregman Seeding) shows how we seed the initial cluster
centroids. It is generalizes the approach of [AV07] and gives their D2 seeding as
a special case when using the squared Euclidean distance as distortion measure.
Since the Bregman divergence between two points can usually be computed
in the same O(d) time as the Euclidean distance, our algorithm has the same
O(nkd) running time as the original one by [AV07]. The main result of [AV07]
is an approximation bound for the squared Euclidean case:

Theorem 1. [AV07] The average initial potential resulting from D2 seeding sat-
isfies E[ψ] ≤ 8(2 + log k)ψopt, where ψopt is the smallest squared Euclidean po-
tential possible by partitioning S in k clusters.

We prove a generalization of Theorem 1 by generalizing each of the lemmas used
by [AV07] in their proof.
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Lemma 1. Let A be an arbitrary cluster of Copt. Then:

Ec∼UA [ψα(A, c)] = ψopt,α(A) + ψ�
opt,α(A)) , (10)

Ec∼UA [ψ�
α(A, c)] = ψopt,1−α(A) + ψ�

opt,1−α(A)) , (11)

where UA is the uniform distribution over A.

Proof. We use (7) and (8) in (13) below and obtain:

Ec∼UA [ψα(A, c)] =
1

|A|
∑

c∈A

∑

x∈A
{αΔψ(x‖c) + (1 − α)Δψ(c‖x)} (12)

=
1

|A|
∑

c∈A

{

α

(
∑

x∈A
Δψ(x‖cA) + |A|Δψ(cA‖c)

)

+ (1 − α)

(
∑

x∈A
Δψ(c�

A‖x) + |A|Δψ(c‖c�
A)

)}

(13)

= α
∑

x∈A
Δψ(x‖cA) + α

∑

x∈A
Δψ(cA‖x)

+(1 − α)
∑

x∈A
Δψ(c�

A‖x) + (1 − α)
∑

x∈A
Δψ(x‖c�

A)

= αψopt,1(A) + (1 − α)ψopt,0(A) + αψ�
opt,1(A) (14)

+(1 − α)ψ�
opt,0(A)

= ψopt,α(A) + ψ�
opt,α(A) .

This gives (10). Applying (2) to (10) gives (11).

Analyzing the biased distribution case requires a triangle inequality for Bregman
divergences, stated below. For any positive semidefinite matrix M, M1/2 denotes
the positive semidefinite matrix such that M1/2M1/2 = M.

Lemma 2. For any three points x, y, z of co(S), the convex closure of S,

Δψ(x, z) ≤ 2ρ2
ψ(Δψ(x, y) + Δψ(y, z)) , (15)

where ρψ is defined as:

ρψ
.= sup

s,t,u,v∈co(S)

‖H
1/2
s (u − v)‖2

‖H
1/2

t (u − v)‖2

, (16)

where Hs denotes the Hessian of ψ in s.

Proof. The key to the proof is the Bregman triangle equality:

Δψ(x‖z) = Δψ(x‖y) + Δψ(y‖z) + (∇ψ(z) − ∇ψ(y))�(y − x) . (17)

A Taylor-Lagrange expansion on Bregman divergence Δψ yields:

Δψ(a‖b) =
1
2
(a − b)�Hab(a − b) =

1
2
‖H

1/2

ab(a − b)‖2
2 , (18)
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for some value Hab of the Hessian of ψ in the segment ab ⊆ co(S). Another
expansion on the gradient part of (17) yields:

∇ψ(z) − ∇ψ(y) = Hzy(z − y) . (19)

Putting this altogether, (17) becomes:

Δψ(x‖z)
(19)
= Δψ(x‖y) + Δψ(y‖z) + (H1/2

zy(z − y))�(H1/2
zy(y − x))

≤ Δψ(x‖y) + Δψ(y‖z) + ‖H1/2
zy(z − y)‖2‖H1/2

zy(y − x)‖2 (20)

≤ Δψ(x‖y) + Δψ(y‖z) + ρ2
ψ

(
‖H1/2

yz(z − y)‖2‖H1/2
xy(y − x)‖2

)

(18)
= Δψ(x‖y) + Δψ(y‖z) + 2ρ2

ψ

√
Δψ(x‖y)Δψ(y‖z)

where (20) makes use of Cauchy-Schwartz inequality. Since ρψ ≥ 1, the right-
hand side of the last inequality is of the form a+b+2ρ2

ψ

√
ab ≤ ρ2

ψ(a+b+2
√

ab) ≤
ρ2

ψ(2a + 2b) = 2ρ2
ψ(a + b). Since a = Δψ(x‖y) and b = Δψ(y‖z), we obtain the

statement of the Lemma.

Lemma 2 is a sharper version of the bound used by [CKW07]. The improvement
is basically that we use the same vector u−v in the numerator and denominator
in (16), so we are not automatically hurt by anisotropy in the divergence. In
particular, we have ρψ = 1 for any Mahalanobis distance.

The following lemma generalizes [AV07, Lemma 3.2]. We use Lemmas 1 and
2 instead of special properties of the squared Euclidean distance. Otherwise the
proof is essentially the same.

Lemma 3. Let A be an arbitrary cluster of Copt, and C an arbitrary clustering.
If we add a random pair (y, y) from A2 to C in Algorithm 1, then

Ey∼πS [ψα(A, y)|y ∈ A] = Ey∼πA [ψα(A, y)] ≤ 4ρ2
ψ(ψopt,α(A) + ψ�

opt,α(A)) .

Proof. The equality comes from the fact that the expectation is constrained to
the choice of y in A. The contribution of A to the potential is thus:

Ey∼πA [ψα(A, y)]

=
∑

y∈A

{
	ψ,α(cy‖y‖cy)

∑
x∈A 	ψ,α(cx‖x‖cx)

∑

x∈A
min {	ψ,α(cx‖x‖cx), 	ψ,α(y‖x‖y)}

}

.(21)

We also have:

	ψ,α(cy‖y‖cy)
= αΔψ(y‖cy) + (1 − α)Δψ(cy‖y)
≤ αΔψ(y‖cx) + (1 − α)Δψ(cx‖y)
≤ 2ρ2

ψ(αΔψ(y‖x) + αΔψ(x‖cx) + (1 − α)Δψ(cx‖x) + (1 − α)Δψ(x‖y))

= 2ρ2
ψ(	ψ,α(cx‖x‖cx) + 	ψ,α(x‖y‖x)) ,
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where we have used Lemma 2 on the last inequality. Summing over x ∈ A yields:

	ψ,α(cy‖y‖cy) ≤ 2ρ2
ψ

(
1

|A|
∑

x∈A
	ψ,α(cx‖x‖cx) +

1
|A|

∑

x∈A
	ψ,α(x‖y‖x)

)

;

plugging this into (21) and replacing the min by its left or right member in the
two sums yields:

Ey∼πA [ψα(A, y)] ≤ 4ρ2
ψ

1
|A|

∑

y∈A

∑

x∈A
	ψ,α(x‖y‖x)

= 4ρ2
ψ(ψopt,α(A) + ψ�

opt,α(A)) ,

where we have used (12).

For any subset of clusters A of some optimal clustering Copt, let ψ̃opt,α(A) .=
(1/2)(ψopt,α(A) + ψ�

opt,α(A)). We remark that:

Ey∼πA [ψα(A, y)] ≤ 8ρ2
ψψ̃opt,α(A) , (22)

∀A, B : A ∩ B = ∅, ψ̃opt,α(A ∪ B) = ψ̃opt,α(A) + ψ̃opt,α(B) . (23)

Lemma 4. Let C be an arbitrary clustering. Choose u > 0 clusters from Copt
that are still not covered by C, and let Su denote the set of points in these clusters.
Also, let Sc

.= S −Su. Now suppose that we add t ≤ u random pairs of centroids,
chosen according to πS as in Algorithm 1. Let C′ denote the resulting clustering.
Define Ht

.= 1 + (1/2) + ... + (1/t). Then

Ec∼πS [ψα(C′)] ≤ (1 + Ht)
(
ψα(Sc) + 8ρ2

ψψ̃opt,α(Su)
)

+
(

u − t

u

)

ψα(Su) .

Again, the proof is obtained from the proof of [AV07, Lemma 3.3] by just apply-
ing (22) and (23) to handle ψ̃. We omit the details. As in [AV07] we now obtain
the main approximation bound as a special case of Lemma 4.

Theorem 2. The average initial potential obtained by Mixed Bregman Seeding
(Algorithm 1) satisfies E[ψα] ≤ 8ρ2

ψ(2+log k)ψ̃opt,α, where ψ̃opt,α is the minimal
mixed Bregman divergence possible by partitioning S into k clusters as defined
in (4).

When the Hessian of ψ satisfies H. = σI for σ > 0, we return to regular k-means
and the bound of Theorem 1 [AV07]. Interestingly, the bound remains the same
for general Mahalanobis divergence (ρψ = 1, ψopt,α(S) = ψ�

opt,α(S) = ψ̃opt(S)).

3.2 Integrating Mixed Bregman Seeding into Clustering

Bregman seeding in the special case α = 1 can be integrated with Bregman
clustering [BMDG05] to provide a complete clustering algorithm in which the
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Algorithm 2. MBC(S, k, α, ψ)
Input: Dataset S , integer k > 0, real α ∈ [0, 1], strictly convex ψ;
Let C = {(cAi , c

�
Ai

)}k
i=1 ← MBS(S , k, α, ψ);

repeat
//Assignment
for i = 1, 2, ..., k do

Ai ← {s ∈ S : i = arg minj �ψ,α(c�
Aj

‖s‖cAj )};
//Re-estimation
for i = 1, 2, ..., k do

cAi ← 1
|Ai|

∑
s∈Ai

s;

c�
Ai

← (∇ψ)−1
(

1
|Ai|

∑
s∈Ai

∇ψ(s)
)
;

until convergence ;
Output: Partition of S in k clusters following C;

divergence at hand is integrated in all steps of clustering. What remains to
do is take this algorithm as a whole and lift it further to handle mixed Breg-
man divergences, that is, generalize the Bregman clustering of [BMDG05] to
hold for any 0 ≤ α ≤ 1. This is presented in Algorithm 2 (Mixed Bregman
Clustering). This algorithm is conceptually as simple as Bregman clustering
[BMDG05], and departs from the complexity of approaches that would be in-
spired by fully symmetrized Bregman divergences [Vel02]. However, for this al-
gorithm to be a suitable generalization of Bregman clustering, we have to ensure
that it monotonously achieves a local minimum of the mixed potential in finite
time. This is done in the following Lemma, whose proof, omitted to save space,
follows similar steps as in [BMDG05] while making use of (7) and (8).

Lemma 5. Algorithm 2 monotonically decreases the function in (3). Further-
more, it terminates in a finite number of steps at a locally optimal partition.

4 Discussion

One question arises on such a scheme, namely how the choice of the main free
parameter, the generator ψ, impacts on the final output. This question is less
relevant to the clustering phase, where the optimization is local and all that
may be required is explicitly given in Lemma 5, independently of ψ. It is more
relevant to the seeding phase, and all the more interesting as the upper bound
in Theorem 2 exhibits two additional penalties that depend on ψ: one relies on
the way we measure the potential and seed centroids (ψ̃), the other relies on
convexity (ρψ). The analysis of D2 seeding by [AV07] is tight on average, as
they show that for some clusterings the upper bound of 1 is within a constant
factor of the actual performance of the algorithm.

Beyond D2 seeding, it is not hard to show that the analysis of [AV07] is in fact
tight for Mahalanobis divergence. To see this, we only have to make a variable
change, and set x̃

.= M−1/2x for any point x in the lower bound proof of [AV07].
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Mahalanobis divergence on the new points equals the k-means potential on the
initial points, the optimal centroids do not change, and the proof remains as
is. For arbitrary divergences, the upper bound of Theorem 2 gets unfastened
in stronger convex regimes of the generator, that is when ρψ increases. Some
non-metric analysis of seeding that would avoid the use of a triangle inequality
might keep it tighter, as stronger convex regimes do not necessarily penalize
that much seeding. Sometimes, artificial improvements are even possible. The
following Lemma, whose proofsketch is available in an appendix at the end of the
paper, gives a lower bound for the uniform approximation that seeding achieves
in some cluster.

Lemma 6. Let A be an arbitrary cluster. Then:

Ec∼UA [ψα(A, c)] ≥
2ρ2

ψ

2ρ2
ψ − 1

ψα(A) . (24)

(24) matches ratio 2 that follows from Lemma 1 for Mahalanobis divergence. The
average participation of the seeds in (24) hides large discrepancies, as there do
exist seeds whose clustering potential come arbitrarily close to the lower bound
(24) as ρψ increases. In other words, since this lower bound is decreasing with
ρψ, increasing ρψ may make seeding artificially more efficient if we manage to
catch these seeds, a fact that Theorem 2 cannot show. A toy example shows
that we can indeed catch such seeds with high probability: we consider k = 2
clusters on n > 2 points with α = 1. The first cluster contains two points p and
q as in Figure 2, with p located at abscissa 0 and q at abscissa δ (for the sake of
simplicity, ψ is assumed defined on [0, +∞)). Add n − 2 points x1, x2, ..., xn−2,
all at abscissa Δ > δ, and pick Δ sufficiently large to ensure that these n − 2
points define a single cluster, while p and q are grouped altogether in cluster A.
It follows that ψopt,1 = 2BRψ({0, δ}) = ψopt,1(A). The probability to seed one of
the xi in the two centers is at least (n−2)/n+(2/n) · (n−2)/(n−1) > 1−4/n2,
which makes that the expected potential is driven by the event that we seed
exactly one of the xi. The associated potential is then either Δψ(δ‖0) (we seed
p with xi) or Δψ(0‖δ) (we seed q with xi). Take ψ(x) = (x + 1)K for K �∈ [0, 1].
Then the ratio between these seeding potentials and ψopt,1 respectively satisfy
ρp ≤ 2K−1/(2K−1 − 1) and ρq = θ(K), while ρ2

ψ = (1 + Δ)K . When K → +∞,
we have (i) ρp → 1, and so seeding p rapidly approaches the lower bound (24);
(ii) ρq → +∞, and so seeding q drives E[ψ1]; (iii) ratio ρ2

ψ is extremely large
compared to ρq.

5 Experiments

Empirical tests were made with synthetic point sets which had a distinctive
structure with high probability. The number of clusters was always 20 and every
cluster had 100 points in R

50
+∗. Each of the 20 distributions for the clusters

was generated in two phases. In the first phase, for each coordinate lots were
drawn independently with a fixed probability p whether the coordinate value is a
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Table 1. Percentage of seeding runs in which one center was picked from every original
cluster. Numbers in the labels KL-0, KL-0.25 etc. refer to different values of α.

p unif. D2 KL-0 KL-0.25 KL-0.5 KL-0.75 KL-1 IS-0 IS-0.25 IS-0.5 IS-0.75 IS 1
0.1 0 9.70 56.8 75.5 77.1 76.1 57.2 34.4 94.3 95.4 96.0 48.4
0.5 0 24.0 77.8 83.1 81.8 80.7 79.3 94.9 95.9 96.5 95.8 94.4
0.9 0 7.10 34.6 38.8 42.2 39.4 29.5 28.1 72.6 75.8 68.6 20.5
1.0 0 4.10 7.20 10.0 7.90 9.30 5.90 0 0 0 0 0.100

Table 2. Percentage of original clusters from which no point was picked in the seeding
phase. Average over 1000 runs.

p unif. D2 KL-0 KL-0.25 KL-0.5 KL-0.75 KL-1 IS-0 IS-0.25 IS-0.5 IS-0.75 IS-1
0.1 35.8 7.60 2.48 1.32 1.19 1.24 2.32 5.50 0.285 0.230 0.200 3.39
0.5 35.5 5.47 1.18 0.880 0.945 0.975 1.09 0.260 0.205 0.180 0.210 0.285
0.9 35.8 8.54 4.15 3.75 3.45 3.74 4.68 4.42 1.46 1.31 1.67 6.45
1.0 35.9 9.81 8.27 7.86 8.27 8.27 9.00 27.8 23.1 23.4 25.1 21.7

Table 3. Bregman clustering potentials with Kullback-Leibler divergence (α = 0.25)

p unif. D2 KL-0 KL-0.25 KL-0.5 KL-0.75 KL-1 IS-0 IS-0.25 IS-0.5 IS-0.75 IS-1
0.1 31.2 4.59 2.64 1.59 1.46 1.46 1.85 6.45 1.10 1.09 1.06 2.33
0.5 19.5 4.55 1.74 1.59 1.50 1.66 1.74 1.14 1.14 1.08 1.10 1.15
0.9 7.29 2.92 1.97 1.82 1.73 1.92 2.05 1.90 1.34 1.29 1.39 2.57
1.0 4.13 2.21 1.97 1.99 2.01 2.05 2.11 3.93 3.64 3.69 3.89 3.54

Poisson distributed random variable or the constant 0. Then in the second phase
the expectations of the Poisson random variables were chosen independently and
uniformly from range ]0, 100[. 100 points were generated from each distribution
and after that the value ε = 10−6 was added to every coordinate of every point
in order to move the points to the domain of Kullback-Leibler and Itakura-
Saito divergences. Because not only the seeding methods but also the datasets
were random, 10 datasets were generated for each value of p. The seeding and
clustering test were repeated 100 times for each dataset.

When p was less than 1, each cluster was characterized with high probability
by the position of coordinates whose value was not ε. That made the mixed
Itakura-Saito divergences between two points belonging to different clusters very
high, and picking one point from every original cluster was strikingly easy using
those distortion measures (Tables 1 and 2). However, when all the coordinates
were Poisson distributed, the task of finding a center candidate from every cluster
was far more difficult. In that case the Kullback-Leibler seeding performed best.

In the clustering tests uniform, D2, Kullback-Leibler and Itakura-Saito seed-
ing (α ∈ {0, 0.25, . . . , 1}) were used with KL-divergences (same set of values for
α as in the seeding) in the iterative phase and by evaluation of the clustering
potential. Table 3 illustrates the situation when value α = 0.25 is used in the
iterative phase. All the values in the table were normalized using the clustering
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potentials which were achieved by refining the known centers of the distribu-
tions with Bregman clustering. When p was 0.1 uniform seeding brought an over
twenty-eight times and D2 seeding over four times larger average potential than
the mixed versions of Itakura-Saito seeding.

In general, there was a clear correlation between the quality of the seeding and
the final clustering potential, even if the relative differences in the final potentials
tended to diminish gradually when p increased. That means the mixed versions of
Bregman seeding algorithms led to low clustering potentials also when a regular
Bregman divergence was used in the clustering phase. Additional tests were run
with Poisson random variables replaced by Binomial(n, r) distributed variables,
so that n = 100 and r was taken uniformly at random from range ]0, 1[. The
results were quite similar to those shown here.

6 Conclusions and Open Problems

We have seen that the D2 seeding of [AV07] can be generalized for Bregman
clustering while maintaining some form of approximation guarantee. Our other
main contribution was symmetrization of Bregman clustering by using pairs of
centroids. Experiments suggest that the resulting new algorithm can significantly
improve the quality of both the seeding and the final clustering. The experiments
are somewhat preliminary, though, and should be extended to cover more real-
istic data sets. We also need a better understanding of how much the seeding
affects the end result in practice.

On theoretical side, it is not clear if the factor ρψ really is necessary in the
bounds. Conceivably, some proof technique not relying on the triangle inequality
could give a sharper bound. Alternatively, one could perhaps prove a lower bound
that shows the ρψ factor necessary. It would also be interesting to consider other
divergences. One possibility would be the p-norm divergences [Gen03] which in
some other learning context give results similar to Kullback-Leibler divergence
but do not have similar extreme behavior at the boundary of the domain.
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Appendix: Proofsketch of Lemma 6

Fix A = {x1, x2, ..., xK} and let

BRψ(A) .=
∑K

i=1 ψ(xi)
K

− ψ

(∑K
i=1 xi

K

)

be the Burbea-Rao divergence generated by ψ on A, that is, the non negative
remainder of Jensen’s inequality [DD06]. It shall be convenient to abbreviate the
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a
b

c

d

e

p (p + q)/2 q

ψ

Δψ(q‖p)Δψ((p + q)/2‖p)

BRψ({p, q})

Fig. 2. Plot of some convex function ψ defined on some segment [p, q]. Here, a =
(p,ψ(p)), b = (q, ψ(q)) and segment ae is tangent to ψ in a. Thales theorem in triangles
(a, b, c) and (a, d, e) proves (29), as it gives indeed |de|/|bc| = |ad|/|ab| = |ae|/|ac| (here,
|.| denotes the Euclidean length).

arithmetic and Bregman averages of A as c and c� respectively. Then we want
to estimate the ratio between the uniform seeding potential and the optimal
potential for A:

ρA
.=

1
K

K∑

i=1

∑
x∈A 	ψ,α(xi‖x‖xi)

∑
x∈A 	ψ,α(c�‖x‖c)

. (25)

Fix i ∈ {1, 2, ..., K}. First, it comes from (7) that∑
x∈A Δψ(x‖xi) −

∑
x∈A Δψ(x‖c) = KΔψ(c‖xi), and we also get from (8)

that
∑

x∈A Δψ(xi‖x) −
∑

x∈A Δψ(c�‖x) = KΔψ(xi‖c�). The numerator of
(25) becomes:

∑

x∈A
	ψ,α(xi‖x‖xi) = α

(
∑

x∈A
Δψ(x‖c) + KΔψ(c‖xi)

)

+(1 − α)

(
∑

x∈A
Δψ(c�‖xi) + KΔψ(xi‖c�)

)

(26)

=
∑

x∈A
	ψ,α(c�‖x‖c) + K	ψ,1−α(c‖xi‖c�) . (27)

The left summand in (27) is the optimal potential for the cluster. Finally, the
denominator of (25) can be rewritten as

∑K
i=1 	ψ,α(c�‖xi‖c) = K(αBRψ(A) +

(1 − α)BRψ�(∇ψA)), where ∇ψA is the set of gradient images of the elements
of A. We get:

ρA = 1 +
1
K

K∑

i=1

	ψ,1−α(c‖xi‖c�)
αBRψ(A) + (1 − α)BRψ�(∇ψA)

. (28)

For the sake of simplicity, let ci,j denote the weighted arithmetic average of A in
which the weight of each xk is 1

2jK for k �= i, and the weight of xi is 1
2jK +1− 1

2j
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(∀j ≥ 0). We also let c�
i,j denote the weighted Bregman average of A under this

same distribution. Thus, as j increases, the averages get progressively close to
xi. Then, we have ∀j ≥ 0:

Δψ(ci,j‖xi) = 2(BRψ({ci,j , xi}) + Δψ((ci,j + xi)/2‖xi)) (29)
= 2(BRψ({ci,j , xi}) + Δψ(ci,j+1‖xi)) .

Δψ(xi‖c�
i,j) = Δψ�(∇ψ(c�

i,j)‖∇ψ(xi)) (30)
= 2(BRψ�({∇ψ(c�

i,j), ∇ψ(xi)}) (31)
+Δψ�((∇ψ(c�

i,j) + ∇ψ(xi))/2‖∇ψ(xi))) (32)
= 2(BRψ�({∇ψ(c�

i,j), ∇ψ(xi)}) + Δψ(xi‖c�
i,j+1)) .

While (30) is just stating the convex conjugate, Thales Theorem proves both
(29) and (32). Figure 2 presents a simple graphical view to state this result in
the context of Bregman and Burbea-Rao divergences. We get:

	ψ,1−α(ci,j‖xi‖c�
i,j) = αΔψ(ci,j‖xi) + (1 − α)Δψ(xi‖c�

i,j)
= 2(αBRψ({ci,j , xi}) (33)

+(1 − α)BRψ�({∇ψ(c�
i,j), ∇ψ(xi)}))

+	ψ,1−α(ci,j+1‖xi‖c�
i,j+1) . (34)

Note that c = ci,0 and c� = c�
i,0, ∀i = 1, 2, ..., K. We let:

b0
.=

2
K

·
∑K

i=1

{
αBRψ({ci,0, xi}) + (1 − α)BRψ�({∇ψ(c�

i,0), ∇ψ(xi)})
}

αBRψ(A) + (1 − α)BRψ�(∇ψA)

and for all j > 0

bj
.= 2 ·

∑K
i=1

{
αBRψ({ci,j , xi}) + (1 − α)BRψ�({∇ψ(c�

i,j), ∇ψ(xi)})
}

∑K
i=1

{
αBRψ({ci,j−1, xi}) + (1 − α)BRψ�({∇ψ(c�

i,j−1), ∇ψ(xi)})
} .

Furthermore, ∀j ≥ 0, we let:

rj
.=

∑K
i=1 	ψ,1−α(ci,j‖xi‖c�

i,j)

2
∑K

i=1

{
αBRψ({ci,j , xi}) + (1 − α)BRψ�({∇ψ(c�

i,j), ∇ψ(xi)})
} .

Plugging (34) into (28) and using the last notations yields:

ρA = 1 + b0(1 + b1(...(1 + bJrJ )))
≥ 1 + b0(1 + b1(...(1 + bJ−1)))

≥
J−1∑

j=0

(
1

2ρ2
ψ

)j

=
(2ρ2

ψ)J − 1
(2ρ2

ψ)J
·

2ρ2
ψ

2ρ2
ψ − 1

, ∀J ≥ 0 .

The last inequality is obtained after various suitable Taylor expansions of ψ are
used for bi, i ≥ 0, which gives bi ≥ 1/(2ρ2

ψ) (not shown to save space).
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Abstract. Given a large bipartite graph (like document-term, or user-
product graph), how can we find meaningful communities, quickly, and
automatically? We propose to look for community hierarchies, with com-
munities-within-communities. Our proposed method, the Context-specific
Cluster Tree (CCT) finds such communities at multiple levels, with no
user intervention, based on information theoretic principles (MDL). More
specifically, it partitions the graph into progressively more refined sub-
graphs, allowing users to quickly navigate from the global, coarse struc-
ture of a graph to more focused and local patterns. As a fringe benefit,
and also as an additional indication of its quality, it also achieves better
compression than typical, non-hierarchical methods. We demonstrate its
scalability and effectiveness on real, large graphs.

1 Introduction

Bipartite graphs (or, equivalently, sparse binary matrices) are natural represen-
tations of relations between two sets of nodes, namely source and destination
nodes. Such large bipartite graphs arise naturally in many applications, like in-
formation retrieval (document-term graphs), collaborative filtering and recom-
mendation systems (person-product graphs), social networks, and many more.

Graph mining aims at discovering the useful patterns hidden in the graphs.
Various tools geared towards large graphs have been proposed in the literature.
All of those techniques usually examine the graph at two extreme levels: 1)
global, i.e., patterns present in the entire graph such as power law distribution
on graphs [9], graph partitioning [4, 8, 16], community evolution [25, 27]; or,
2) local, i.e, patterns related to a subgraph such as center-piece graph [28],
neighborhood formation [26], quasi-cliques [21].

In this paper, we aim to fill the gap between global and local patterns, by
proposing a technique that allows users to effectively discover and explore com-
munities in large graphs at multiple levels, starting from a global view and
narrowing down to more local information. More specifically, we study ways
to quickly and automatically construct a recursive community structure of a
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Fig. 1. Hierarchy and context

large bipartite graph at multiple levels, namely, a Context-specific Cluster Tree
(CCT). The resulting CCT can identify relevant context-specific clusters. It also
provides an efficient data summarization scheme and facilitates visualization of
large graphs, which is a difficult, open problem itself [13, 14]. Intuitively, a con-
text is a subgraph which is implicitly defined by a pair of source and destination
node groups (and, thus, includes exactly those edges that connect nodes of those
groups)—see Definition 8. The entire graph and a single edge are the two extreme
contexts, at the global and local level, respectively.

Our approach allows users to start from groups of nodes and edges at the
global, coarse level and quickly focus on the appropriate context to discover more
focused and fine-grained patterns. We shall illustrate the insight and intuition
behind our proposed framework with an example. Consider a set of authors (blue
nodes, top of Figure 1) and a set of conferences (red nodes, bottom of Figure 1),
with edges indicating that the author published in that conference.

At first blush, one might discover a natural partitioning of the graph at the
global level as follows:

– Node groups: Assume there are predominantly two groups of authors, com-
puter scientists and medical researchers. Further assume there are two cor-
responding predominant conference groups. In matrix form, they correspond
to the two row and column partitions, respectively, shown in Figure 2a.

– Contexts: The above node grouping leads to four contexts (i.e., edge groups,
or subgraphs), one for each possible combination of the two node groups
of each type (authors and conferences). In matrix form, they correspond
to the four submatrices in Figure 1b. The dominant contexts are the two
submatrices on the diagonal of Figure 2a corresponding to computer sci-
ence (intersection of computer scientists and CS conferences) and medicine
(intersection of of doctors and medical conferences), respectively.

This first-level decomposition already reveals much information about the struc-
ture of the data and answers the question: “given the mutual associations be-
tween all authors and all conferences, which are the groups of nodes that are
most closely associated.” Each of those group associations reveals a new con-
text, which is a subgraph of the original graph. Thus, it can be likewise analyzed
recursively, to reveal further contexts of finer granularity. In fact, if we stop at
the first level and consider the computer science and medicine contexts, we may
miss bioinformatics which will likely appear as associations between a subset
of computer scientists and medical conferences (see Figure 2). To realize this
intuition, we proceed to explain the two key concepts of hierarchy and context.
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Hierarchy. Graphs often exhibit such community-within-community structure,
leading to a natural recursive decomposition of their structure, which is a hier-
archy. How can we find the appropriate number of levels, as well as the node
groups within each level? These two questions bring in additional challenges to
the design of the algorithm.

For example, let us consider the context induced by the “computer science”
author and the “computer science” conference group (see Figure 1b, or the top-
left part of Figure 2b). Performing a similar analysis as before, we may discover
additional structure in terms of node groups and contexts in the second level.
The computer science field may be further subdivided into systems and theory
authors, with a corresponding division in computer science conferences.

Context. In our example, the dominant contexts are those of “computer sci-
ence” and “medicine,” as explained above. However, there is nothing special
about those “diagonal” contexts. In fact, we argue that one need also examine
“off-diagonal” contexts. For example, the context defined by the intersection
of “computer science” authors and “medical” conferences (see Figure 1c) may
also be further partitioned into multiple lower-level contexts, with one of them
corresponding to “bioinformatics”.

In general, a particular choice of subgraph during the recursive decomposi-
tion consists of a pair of node groups and the context provided by the edges
that associate them. Different contexts may reveal different aspects of the data.
Taking this idea to its logical conclusion, the overall result is a rich hierarchy,
CCT, that captures the graph structure at multiple levels.
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Fig. 2. Adjacency matrix
view (cf. Figure 1)
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Fig. 3. Cluster tree (CCT) corresponding to Figure 2.
Unfilled nodes correspond to non-leaves (subgraphs for
which the partitioned model was best) and filled nodes
correspond to leaves (subgraphs for which the random
graph model was best). The two popups show examples
of information represented at each type of node, with
dark blue representing parts of the model and light green
parts of the code, given the model.
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Our goal is to automatically find this hierarchy and allow users to quickly nav-
igate it. For example, given a theoretician, there are multiple relevant contexts
at different levels. Depending on the conferences, the most relevant context for
her could be “computer theory” if the relevant conference is FOCS, SODA, or
maybe “bioinformatics” if relevant conference is RECOMB or ISMB (see exper-
iments for details). In general, the most relevant context can be automatically
identified given the set of query nodes through a simple tree reversal.

Contributions. The main contributions of this paper are the following:

– We employ a parameter-free scheme based on minimum description language
(MDL) that automatically finds the best context-specific cluster tree (CCT)
to summarize the graph.

– The method is linear on the number of edges, and thus scalable for large,
possibly disk-resident, graphs.

– We provide a scheme for users to navigate from global, coarse structure to
more focused and local patterns.

Because our method is based on sound, information theoretic principles, it also
leads to better compression as a fringe benefit. Moreover, we develop a GUI
prototype that allow users to visualize and explore large graphs in an intuitive
manner. We demonstrate the efficiency and effectiveness of our framework on a
number of datasets. In particular, a number of interesting clusters are identified
in different levels.

The rest of the paper is organized as follows: Section 2 presents the neces-
sary background and Section 3 introduces the fundamental definitions. Section 4
presents our proposed method and Section 5 evaluates it on a number of datasets.
Finally, Section 6 briefly discusses related work and Section 7 concludes.

2 Background

In this section we give a brief overview of a practical formulation of the minimum
description length (MDL) principle. For further information see, e.g., [7, 10].
Intuitively, the main idea behind MDL is the following: Let us assume that we
have a family M of models with varying degrees of complexity. More complex
models M ∈ M involve more parameters but, given these parameters (i.e., the
model M ∈ M), we can describe the observed data more concisely.

As a simple, concrete example, consider a binary sequence A :=[a(1), a(2), . . . ,
a(n)] of n coin tosses. A simple model M (1) might consist of specifying the
number h of heads. Given this model M (1) ≡ {h/n}, we can encode the dataset
A using C(A|M (1)) := nH(h/n) bits [22], where H(·) is the Shannon entropy
function. However, in order to be fair, we should also include the number C(M (1))
of bits to transmit the fraction h/n, which can be done using log�n bits for the
denominator and �log(n+1)� bits for the numerator h ∈ {0, 1, . . . , n}, for a total
of C(M (1)) := log�n + �log(n + 1)� bits.
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Table 1. Symbols and definitions

Symbol Definition
A Binary adjacency matrix.
m,n Dimensions of A.
k, � No. of source and dest. partitions.
Ap,q Submatrix for intersection of p-th

source and q-th dest. partitions.

Symbol Definition
mp, nq Dimensions of Ap,q.
|A| Number of elements |A| := mn.
ρ(A) Edge density in ρ(A) = e(A)/|A|.
H(·) Shannon entropy function.
C(A) Codelength for A.

Definition 1. (Code length and description complexity) C(A|M (1)) is
code length for A, given the model M (1). C(M (1)) is the model description
complexity and C(A, M (1)) := C(A|M (1)) + C(M (1)) is the total code length.

A slightly more complex model might consist of segmenting the sequence in two
pieces of length n1 ≥ 1 and n2 = n − n1 and describing each one independently.
Let h1 and h2 be the number of heads in each segment. Then, to describe the
model M (2) ≡ {h1/n1, h2/n2}, we need C(M (2)) := log�n + �log n� + �log(n −
n1)�+ �log(n1 +1)�+ �log(n2 +1)� bits. Given this information, we can describe
the sequence using C(A|M (2)) := n1H(h1/n1) + n2H(h2/n2) bits.

Now, assume that our family of models is M := {M (1), M (2)} and we wish to
choose the “best” one for a particular sequence A. We will examine two sequences
of length n = 16, both with 8 zeros and 8 ones, to illustrate the intuition.

Let A1 := {0, 1, 0, 1, · · · , 0, 1}, with alternating values. We have C(A1|M (1)
1 ) =

16H(1/2) = 16 and C(M (1)
1 ) = log�16 + �log(16 + 1)� = 10 + 5 = 15. However,

for M
(2)
1 the best choice is n1 = 15, with C(A1|M (2)

1 ) ≈ 15 and C(M (2)
1 ) ≈ 19.

The total code lengths are C(A1, M
(1)
1 ) ≈ 16 + 15 = 31 and C(A1, M

(2)
1 ) ≈

15 + 19 = 34. Thus, based on total code length, the simpler model is better1.
The more complex model may give us a lower code length, but that benefit is not
enough to overcome the increase in description complexity: A1 does not exhibit
a pattern that can be exploited by a two-segment model to describe the data.

Let A2 := {0, · · · , 0, 1, · · · , 1} with all similar values contiguous. We have
again C(A2|M (1)

2 ) = 16 and C(M (1)
2 ) = 15. But, for M

(2)
2 the best choice is

n1 = n2 = 8 so that C(A2|M (2)
2 ) = 8H(0) + 8H(1) = 0 and C(M (2)

2 ) ≈ 24.
The total code lengths are C(A2, M

(1)
2 ) ≈ 16 + 15 = 31 and C(A2, M

(2)
2 ) ≈

0 + 24 = 24. Thus, based on total code length, the two-segment model is better.
Intuitively, it is clear that A2 exhibits a pattern that can help reduce the total
code length. This intuitive fact is precisely captured by the total code length.

3 CCT: Encoding and Partitioning

We want to subdivide the adjacency matrix in tiles (or “contexts”), with possible
reordering of rows and columns, and compress them, either as-is (if they are
1 The absolute codelengths are not important; the bit overhead compared to the

straight transmission of A tends to zero, as n grows to infinity.
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homogeneous enough) or by further subdividing. First, we formalize the problem
and set the stage, by defining a lossless hierarchical encoding. As we shall see,
the cluster-tree structure corresponds to the model, whereas the code for the
data given the model is associated only with leaf nodes. This encoding allows us
to apply MDL for automatically finding the desired progressive decomposition.
In this section we define the codelength, assuming that a tree structure is given.
Next, in Section 4, we present a practical algorithm to find the structure.

3.1 Problem Definition

Assume we are given a set of m source nodes, I := {1, 2, . . . , m} and a set of
n destination nodes, J := {1, 2, . . . , n}. Each node pair (i, j), for 1 ≤ i ≤ m
and 1 ≤ j ≤ n, may be linked with an edge. Let A = [a(i, j)] denote the
corresponding m × n (m, n ≥ 1) binary adjacency matrix.

Definition 2 (Bipartite graph and subgraph). The bipartite graph G is the
triple G ≡ (I, J , A). A subgraph of this graph is a triple G′ ≡ (I ′, J ′, A′), where
I ′ ⊆ I, J ′ ⊆ J and A′ := [a(i′, j′)] for all i′ ∈ I′ and j′ ∈ J ′.

Our goal is to discover groups of edges that closely link groups of source nodes
and destination nodes.

Definition 3 (Subgraph partitioning). Given a graph G ≡ (I, J , A), we will
partition it into a set of subgraphs {G1, G2, . . . , GT } such that their union equals
the original graph G.

More specifically, we seek to decompose the original graph into a set of subgraphs,
which should have the following properties:

– Connectedness: Each of the subgraphs should ideally be either fully con-
nected or fully disconnected, i.e., it should be as homogeneous as possible.

– Flexible: The structure of the decomposition into subgraphs should be rich
enough, without imposing too many constraints. On the other hand, it should
lead to tractable and practical algorithms to find the decomposition.

– Progressive: The decomposition should allow users to navigate from global,
coarse structure to more focused and local patterns, in the form of progres-
sively more dense subgraphs.

Furthermore, we seek to automatically find such a decomposition, without requir-
ing any parameters from the user. To that end, we employ MDL on an encoding
of the bipartite adjacency matrix. The encoding we choose is hierarchical, so as
to satisfy the last two properties.

3.2 Hierarchical Encoding

In order to achieve the previously stated goals, we employ a top-down approach.
Consider an m × n adjacency matrix A, which may correspond to any bipartite
subgraph (including the entire graph). We proceed to explain how we can build
a code for a given hierarchical partitioning.
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Base case. Our first and simplest option is that no patterns are present in the
data. In this case, we may safely model the data by simply assuming that each
edge is independently drawn with probability ρ(A), where ρ(A) is the density of
edges (or, of ones in the adjacency matrix A).

Definition 4 (Random graph model). In this case, we may encode the entire
matrix using

C0(A) := �log(|A| + 1)� + �|A|H(ρ(A))� bits. (1)

More specifically, we use �log(|A| + 1)� bits to transmit ρ(A) and finally �|A|
H(ρ(A))� bits to transmit the individual edges. This assumes that we already
know the graph size (i.e., m and n). For the initial graph G, we may safely
assume this. For its subgraphs, this information is provided by our model, as
will be explained shortly.

Recursive case. The second option is to try to find joint groups of nodes and
edges, as described before, which partition the original graph into subgraphs.
Note that the partitioning (see Definition 3) is equivalent to a tiling of the
adjacency matrix with T tiles, allowing for row and column reordering and, in the
most general case, possibly overlapping tiles. Although we can allow arbitrary
tilings, this leads to significant penalty in terms of complexity. Therefore, we
impose certain constraints on the structure of the partitioning, so as to make
the problem more tractable, while still allowing enough flexibility in the model
to capture interesting patterns.

First, we require that the tiling is exclusive (i.e., no two tiles overlap) and
complete (i.e., the tiles completely cover the entire adjacency matrix, with-
out “gaps”). Next, we proceed to construct the tiling in a hierarchical fash-
ion. We constrain the tiling to follow a checkerboard structure only within a
single level of the hierarchy. The first-level decomposition of Figures 2a and 3
follows such a structure, consisting of G1 = (I1, J1, A1,1), G2 = (I1, J2, A1,2),
G3 = (I2, J1, A2,1), and G4 = (I2, J2, A2,2), where I1 is the set of “computer
science researchers” and I2 the set of “medical researchers” and similarly for
the conference sets J1 and J2. Formally, the checkerboard structure means that
set of source-destination group pairs, {(I1, J1), (I1, J2), (I2, J1), (I2, J2)}, can
be written as a Cartesian product of individual sets of source and destination
groups, {I1, I2} × {J1, J2}.

In general, we can define a checkerboard decomposition into T = k·� subgraph
tiles, using k source groups Ip, for 1 ≤ p ≤ k, and � destination groups Jq, for
1 ≤ q ≤ �. We denote the sizes of Ip and Jq by mp := |Ip| and nq := |Jq|,
respectively, and the corresponding adjacency submatrices by Ap,q := [a(Ip, Jq)],
for 1 ≤ p ≤ k and 1 ≤ q ≤ �.

Definition 5 (Partitioned graph model). The cost of encoding the parti-
tioned graph is

C1(A) := �log m� + �log n� +
⌈
log

(
m

m1 ··· mk

)⌉
+

+
⌈
log

(
n

n1 ··· n�

)⌉
+

∑k
p=1

∑�
q=1 C(Ap,q). (2)
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We need �log m� bits to transmit k and �log n� bits to transmit �. Furthermore,
if we assume each mapping of m source nodes into k source groups equally
likely, then we need �log

(
m

m1 ··· mk

)
� bits to transmit the source partitioning

{I1, . . . , Ik}, and similarly for the destination partitioning. Note that this parti-
tioning implicitly determines the size mp×nq of each subgraph (which is assumed
known by the random graph model). Finally, we need to recursively encode each
of the k · � adjacency submatrices, one for each subgraph, which is represented
by the last term in Equation (2).

Using Stirling’s approximation lnn! ≈ n ln n−n and the fact that
∑

i mi = m,
we can easily derive that

log
(

m
m1 ··· mk

)
≈ mH

(
m1
m , . . . , mk

m

)
,

where H(·) denotes the Shannon entropy. Now we are ready to define the overall
codelength cost C(A).

Definition 6 (Total hierarchical codelength). Given a hierarchical decom-
position, the total codelength cost for transmitting the graph (I, J , A) is

C(A) := 1 + min{C0(A), C1(A)}. (3)

We choose the best of the two options, (i) pure random graph, or (ii) partitioned
graph. Additionally, we need one bit to transmit which of these two options was
the best. Ties are broken in favor of the simpler, random graph model. Note that
the definition of the total cost is recursive, since C(Ap,q) appears in Equation (2).

Final result. To summarize, we have recursively built a hierarchical encoding
based on a tiling of the adjacency matrix, each tile uniquely corresponding to a
subgraph of the original bipartite graph. At each level of the hierarchy, we use
checkerboard tiles. Each of those may be further subdivided in the same manner
(such as all three tiles except the bottom left one from Figure 2a).

Definition 7 (Context-specific Cluster Tree). The set of all subgraphs in
the progressive, hierarchical decomposition consists the context-specific cluster
tree (CCT). The leaf nodes correspond to subgraphs for which the best choice is
the random graph model. These subgraphs comprise the leaf-level partitioning.
The code for the data given the model consists of the information for individual
edges within subgraphs only at the leaf level.

For example, in Figure 3, the root node would encode the partitioning {I1, I2}
and {J1, J2}; this is part of the model. The node corresponding to G3 ≡ (I2, J1,
A2,1) would encode the density ρ(A2,1)—which is also part of the model—and
subsequently, the individual edges of G3 using entropy coding—which is part of
the code given the model. In addition to the root G, the CCT consists of all
16 nodes corresponding to subgraphs G1 through G16. The leaf-level partition
consists of 13 graphs {G3, G5, G6, . . . , G16}, which are represented by filled nodes.

It is clear from the construction that the leaf-level partitioning is also an
exclusive and complete tiling, but with a richer structure than the per-level
checkerboard tiles.

Finally, we can define the context for a set of nodes.
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Definition 8 (Context). Given as input a pair of source and destination node
sets (Ii, Ji) of interest, a context of (Ii, Ji) is any pair (Ic, Jc) such that Ii ⊆ Ic

and Ji ⊆ Jc.

In other words, a context for (Ii, Ij) is any subgraph of the original graph that
fully includes Ii and Ji. We will typically constrain (Ic, Jc) to be only those
pairs that appear in some node of our hierarchical decomposition. Given that
constraint, we can give the next definition.

Definition 9 (Minimal hierarchical context). The minimal hierarchical
context among a set of contexts is the context (Imc , Jmc) such that no other
context (Ic, Jc) exists with Imc ⊆ Ic and Jmc ⊆ Jc

Intuitively, the minimal hierarchical context is the deepest-level tree node in
CCT that fully contains the input context. Note that, if Ii 
= ∅ 
= Ji, then the
minimal hierarchical context of (Ii, Ji) is unique. If one of Ii or Ji is empty,
then there may be multiple overlapping minimal contexts and, if both are empty,
then all leaf nodes are trivially minimal contexts.

4 Finding the CCT

In the previous section we described the cost objective function that determines
how “good” a given CCT partitioning is. However, if we don’t know the parti-
tioning we need a way to find it. The total codelength provides a yardstick to
compare different hierarchical encodings with different number of partitions at
each level of the hierarchy, but we need a practical search strategy to find such
an encoding given only the initial graph.

In order to build a scalable and practical algorithm, we choose to employ a
top-down strategy for building the hierarchy, rather than a bottom-up approach.
Starting with the original graph, we try to find a good “checkerboard” tiling for
the first level of the decomposition. Then, we fix this tiling and we recursively
attempt the same procedure on each of the tiles.

However, there are two problems that need to be addressed. First, the re-
cursive definition of Equation (2) is too expensive to evaluate for each possible
assignment of nodes into partitions, so we use the following equation instead,

C′
1(A) := �log m� + �log n� +

⌈
log

(
m

m1 ··· mk

)⌉
+

+
⌈
log

(
n

n1 ··· n�

)⌉
+

∑k
p=1

∑�
q=1 C0(Ap,q), (4)

where we have substituted C0 for C in the summation at the end. This surrogate
cost heuristic is fairly effective in practice, as we shall also see in the experiments.

Even with this simplification, finding the optimal checkerboard tiling (i.e.,
assignment of nodes into partitions) is NP-hard [4], even if the number of tiles
(or, equivalently, source and destination node partitions) is known. Addition-
ally, we also seek the number of tiles. Therefore, we will employ an alternating
minimization [4] scheme that converges towards a local minimum.
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Algorithm Shuffle:
Start with an arbitrary partitioning of the matrix A into k source partitions I(0)

p and �

column partitions J (0)
q . Subsequently, at each iteration t perform the following steps:

1. For this step, we will hold destination partitions, i.e., J (t)
q , for all 1 ≤ q ≤ �, fixed.

We start with I(t+1)
p := I(t)

p for all 1 ≤ p ≤ k. Then, we consider each source
node i, 1 ≤ i ≤ n and move it into the p∗-th partition I(t+1)

p∗ so that the choice
maximizes the “surrogate cost gain” C′

1(A) of Equation (4).
2. Similar to step 1, but swapping destination nodes instead to find new partitions

J (t+2)
q for 1 ≤ q ≤ �.

3. If there is no decrease in surrogate cost C′
1(A), stop. Otherwise, set t ← t + 2, go

to step 1, and iterate.

Fig. 4. Source and destination node partitioning, given the number of partitions

Algorithm Split:
Start with k0 = �0 = 1 and at each iteration τ :
1. Try to increase the number of source partitions, holding the number of destination

partitions fixed. We choose to split the source partition p∗ with maximum per-node
entropy, i.e.,

p∗ := arg max1≤p≤k

∑
1≤q≤� |Ap,q|H(ρ(Ap,q))/mp.

Increase the number of row partitions, kτ+1 = kτ + 1 and construct a partitioning
{I(τ+1)

1 , . . . , I(τ+1)
kT+1 } by moving each node i of the partition I(τ)

p∗ that will be split

into the new source partition I(τ+1)
kT+1 , if and only if this decreases the per-node

entropy of the p∗-th partition.
2. Apply algorithm Shuffle with initial state {I(τ+1)

p | 1 ≤ p ≤ kτ+1} and {J (τ)
p |

1 ≤ p ≤ �τ}, to find better assignments of nodes into partitions.
3. If there is no decrease in total cost, stop and return (k, �) = (kτ , �τ ) with corre-

sponding partitions. Otherwise, set τ ← τ + 1 and continue.
4–6. Similar to steps 1–3, but trying to increase destination partitions instead.

Fig. 5. Algorithm to find number of source and destination partitions

We recursively search for the best checkerboard partitions and stop when
partitioned graph model is worse than the random graph model, which indicates
the subgraph is sufficiently homogeneous. The search algorithm then proceeds in
two steps: (i) an outer step, Split, that attempts to progressively increase the
number of source and destination partitions; and (ii) an inner step, Shuffle,
that, given a fixed number of partitions, tries to find the best assignment of
nodes into partitions. The pseudocode in Figures 4, 5, and 6 shows the steps of
the overall process in detail.

Complexity. Algorithm Shuffle is linear with respect to the number of edges
and the number of iterations. Algorithm Split invokes Shuffle for each split,
for a worst-case total of 2(k + � + 1) splits. For each level of the recursion in
Hierarchical, the total number of edges among all partitions of one level is at
most equal to the number of edges in the original graph. Thus, the total time
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Algorithm Hierarchical:

1. Try Split to find the best partitioned graph model.
2. Compare its codelength C′

1(A) with that of the random graph model, C0(A).
3. If the partitioned graph model is better then, for each subgraph (Ip,Jq, Ap,q), for

all 1 ≤ p ≤ k and 1 ≤ q ≤ �, apply Hierarchical recursively.

Fig. 6. Algorithm to find the cluster tree

is proportional to the total number of edges, as well as the average leaf depth
and number of partitions. Section 5 presents wall-clock time comparisons of the
single-level and hierarchical algorithms.

5 Experimental Evaluation

In this section we demonstrate our method on a number of real datasets. We
compare against previous non-hierarchical/flat node partitioning schemes [4] and
demonstrate that our proposed hierarchical graph decomposition provides sig-
nificant benefits—in terms of revealing meaningful, interesting contexts and fa-
cilitating data exploration, summarization and compression—while still being
scalable to large graphs and suitable for interactive visualization.

We implemented our algorithms in Matlab 7, with certain crucial parts (in
particular, the main loop of Shuffle which iterates over all nodes) written
in C as Matlab extensions (MEX). We have also developed a Matlab GUI2 to
facilitate navigation of the results and allow easy exploration of the clustering
results.

The goal of the experiments is to show that CCT discovers intuitively mean-
ingful subgraphs of various degrees of coarseness. We provide the evaluation from
three aspects: navigation case-study, cluster quality, and method scalability. In
particular we show that

– The hierarchical decomposition improves subgraph uniformity, with a rea-
sonable number of subgraphs and an easy-to-navigate structure.

– The hierarchical decomposition achieves significantly lower total codelengths.
– Our approach is scalable to large datasets, with results progressively reported

within very reasonable time.

5.1 Datasets

The first dataset, DBLP, consists of 8,539 source nodes representing authors that
have published at least 20 papers and 3,092 destination nodes representing con-
ferences. An edge represents that an author has published in the corresponding
conference. The graph has 157,262 edges, or 0.60% non-zero entries in the ad-
jacency matrix. The second dataset, CLASSIC, is from an information retrieval

2 http://www.cs.cmu.edu/∼spapadim/dist/hcc/
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Table 2. All authors in the most dense “theory” context (see text). The conferences
of this context are SODA, STOC, FOCS, and ICALP.

Theory authors
Dhalia Malkhi Nancy M. Amato Yossi Matias Monika R. Henzinger Ronald L. Rivest
Joan Feigenbaum Robert Endre Tarjan Moni Naor Michael T. Goodrich David P. Dobkin
Thomas Lengauer Frank T. Leighton Jon M. Kleinberg Ravi Kumar Madhu Sudan
Nikhil Bansal Eli Upfal Lars Arge Edith Cohen Noga Alon
Richard Cole Yishay Mansour Randeep Bhatia Sanjeev Khanna Rajeev Motwani
Yonatan Aumann Amit Kumar Avi Widgerson Arne Andersson Vijaya Ramachandran
Micah Adler Stefano Leonardi Arnold Rosenberg Gianfranco Bilardi Ivan Hal Sudborough
Haim Kaplan Jeffrey Scott Vitter Cynthia Dwork Bhaskar Dasgupta Avrim Blum
Michael Mitzenmacher Mihalis Yannakakis Anne Condon David R. Karger Vwani P. Roychowdhuri
Richard E. Ladner Wojiciech Szpankowski Amihood Amir Sampath Kannan Tandy Warnow

setting, with 3,893 source nodes representing documents and 4,303 destination
nodes representing terms. The collection consists of papers from three different
disciplines, medicine (MEDLINE), information retrieval (CISI) and aerodynam-
ics (CRANFIELD), and has 176,347 edges, or 1.05% non-zero entries. The last
dataset, ENRON, is from a social network setting, with 37,335 email addresses.
Source nodes correspond to senders and destination nodes to recipients, with an
edge representing the fact that the corresponding parties exchanged an email at
some point in time. The graph has 367,660 edges, or 0.03% non-zero entries.

5.2 Navigating the Results—Case Study

We focus our intuitive explanation of results on the DBLP dataset, due to space
constraints and also better familiarity with the domain. The dataset consists of
author-conference associations from DBLP. We have kept authors with at least
20 publications. In this setting, homogeneous subgraphs consist of authors that
publish in similar venues. One should also keep in mind that most researchers
have worked in more than one areas over the years and thus the venues they
publish in differ over time.

We start our navigation by seeking the most specific theory context. For this
purpose, we choose SODA, STOC and FOCS as representative of “theory” and
we seek the densest leaf subgraph that contains at least these three conferences.
This leaf is three levels deep in our decomposition. Table 2 shows the complete list
of 50 authors in that subgraph, which indeed consists mostly of well-known the-
ory researchers. Additionally, our method automatically included ICALP (Intl.
Colloq. on Automata, Lang. and Programming) in the set of conferences for that
subgraph. The density of this cluster is approximately 90%.

Table 3. Theory authors in most specific context w.r.t. RECOMB. Authors common
with Table 2 are highlighted in bold.

Theory/bioinformatics authors
Robert Endre Tarjan Xin He Francis Y.L. Chin Frank T. Leighton Haim Kaplan
Frank Hoffmann Bhaskar Dasgupta Tandy Warnow Mihalis Yannakakis Anne Condon
Tao Jiang Christos H. Papadimitriou Michael Mitzenmacher Richard M. Karp Piotr Berman
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Table 4. Pair contexts

(Rakesh Agrawal, SIGMOD) – 3rd level, 100%
Authors (35) Conf. (3)

Rakesh Agrawal Joseph M. Hellerstein Bruce G. Lindsay Daniel M. Dias SIGMOD
Peter J. Haas Soumen Chakrabarti Kenneth C. Sevcik Luis Gravano VLDB
Johannes Gehrke Jim Gray S. Muthukrishnan Bettina Kemme ICDE
Anastassia Ailamaki Samuel Madden S. Sheshadri . . .

(Hari Balakrishnan, SIGCOMM) – 4th level, 58%
Authors (17) Conf. (3)

Hari Balakrishnan Ion Stoica Srinivasan Sheshan Leonard Kleinrock SIGCOMM
M. Frans Kaashoek Ramesh Govindan Mario Gerla J.J. Garcia-Luna-Aceves MOBICOM
Christophe Diot . . . ICNP

Next, we navigate up to the top-level subgraph that contains the same the-
ory authors and seek the most specific context with respect to bioinformatics
conferences. First, we chose RECOMB, which is more theory-oriented. Table 3
shows those 15 authors from that subgraph, which is also at the third level and
has a density of about 40%. This leaf subgraph also includes the IEEE Conf. on
Comp. Complexity, the Structure in Compl. Th. Conf. and CPM, as well as an
additional 18 authors that have published in these conferences only. In general,
the subgraph of theory people publishing in bioinformatics is far less dense than
those subgraphs in their core areas, but still exhibits structure. Note that, since
the (“theory”, RECOMB) node is a sibling of the SODA-STOC-FOCS node, the
list of authors in Table 3 is not a subset of the list in Table 2; authors common
in both are highlighted in bold. Certain authors who have recently focused on
bioinformatics are now included.

We also chose ISMB, another bioinformatics conference with less theoretical
focus—hence it is in a different top-level partition than RECOMB. By navigating
to the most dense leaf subgraph for the same set of theory authors, we quickly
find that its density is merely 5%, with almost no theory people publishing
there.

Finally, in Table 4 we show the most specific contexts for two author-conference
pairs from different disciplines. We show a partial list of authors in the most spe-
cific context, due to space. The headings list the total number of author and con-
ference nodes, as well as the level and density of the most specific subgraph.

First, from data management and mining we chose (Rakesh Agrawal, SIG-
MOD). Note that the the conference list automatically includes VLDB and
ICDE, which are the other two main database conferences. The author list in-
cludes many previous collaborators or coworkers of Rakesh Agrawal, mostly se-
nior, who have (co-)published in similar venues over time. Some junior people
with similar publishing records are also included.

Next, from networking we chose (Hari Balakrishnan, SIGCOMM). The con-
ference list automatically includes MOBICOM and ICNP (Intl. Conf. on Net.
Protocols), as well as well-known networking researchers that have published in
similar venues. Interestingly, INFOCOM is placed in a different subgraph from
the highest level of the decomposition, since it has a much broader set of authors,
who have also published in other areas.
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Fig. 7. Subgraph density distribution:CCT gives more high-density clusters close to 1

5.3 Quantitative Evaluation

In this section we compare “Flat,” which is the non-hierarchical, context-free
approach in [4], and “Hier,” which is our proposed CCT method, in terms of (i)
subgraph uniformity, (ii) compression ratios, and (iii) computation time.

Subgraph uniformity. Figures 7(a1–c1) shows the distribution of subgraph edge
densities ρ of the non-hierarchical approach, whereas Figures 7(a2–c2) show the
same for the leaf-level subgraphs of our CCT decomposition. As expected, the
leaf-level decomposition consists of more homogeneous subgraphs. The distribu-
tion of densities is clearly more concentrated towards either zero or one. The flat
decomposition occasionally fails to produce any fully connected (or even close
to fully connected) subgraphs. At the same time, the number of subgraphs in
CCT is still fairly reasonable, typically at most 6–7% of the number of individ-
ual edges. The increased homogeneity of the subgraphs in conjunction with the
appropriate complexity of the overall decomposition also leads to good compres-
sion, as we shall see later. Finally, as the level of the decomposition increases,
subgraph sizes become small in comparison to the size of the original graph, at
a rate that is roughly exponential with respect to the depth. In almost all cases,
the average depth is close to three, with the maximum ranging from eight to
nine. As we shall see later, this is significant to allow progressive reporting of
results in interactive graph exploration.

Compression. Figure 8a shows the compression achieved by the non-hierarchical
approach and by CCT. We estimate the number of bits needed to store the
original, “raw” matrix as �mnH(ρ(A))�, i.e., we use the random graph model
for the entire matrix. One can get very close to this estimate in practice by
using techniques such as arithmetic coding [22]. Similarly, for the hierarchical
decomposition we use the cost C(A), from Equation (3). For the non-hierarchical
approach, we use the cost formula from [4]. The figure shows the compression
ratios for each method. It is clear from Figure 8a that CCT achieves significantly
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Fig. 8. (a) Compression ratios. CCT is significantly better, due to better balance be-
tween number of clusters and their homogeneity. (b,c) Wall-clock times. In (b) we see
that, if users can tolerate a 1 sec navigation delay, the precomputation cost for our
hierarchical approach (CCT) is almost as cheap as the context-free approach.

better compression, since it produces much more homogeneous subgraphs (see
also Figure 7), while maintaining an appropriate number of partitions.

Scalability and progressive result reporting. Figures 8(b,c) shows measurements
of wall-clock time for our prototype implementation in Matlab 7. The experi-
ments were measured on a Pentium 4 running at 3GHz, with 2GB of memory.
Figure 8b shows the total wall-clock time divided by the number of subgraphs
produced by each method (previous non-hierarchical approach and CCT). As
discussed before, subgraph sizes decrease quickly with respect to node depth.
Thus, the processing time required to further decompose them decreases dra-
matically. Figure 8c shows the total wall-clock time if we were to compute: (i)
just the first level of the decomposition, (ii) all nodes in the decomposition that
require at least 5, 2, or 1 seconds, and (iii) all nodes at all levels of the de-
composition. In an interactive graph exploration scheme, this effectively means
that if we are willing to tolerate a delay of at most 5, 2 or 1 seconds when we
wish to drill down a subgraph context, then the time required to pre-compute
all other results would be equal to the corresponding y-axis value in Figure 8c.
For example, if we are willing to tolerate at most 2 seconds “click lag,” then
DBLP requires 221 seconds (3.5 minutes) of pre-computation, ENRON 717 seconds
(or, 12 minutes), versus 1609 seconds (27 minutes) and 3996 seconds (1 hour 7
minutes), respectively, for pre-computing everything.

6 Related Work

We now survey related work beyond graph mining mentioned in Section 1 [9,
16, 21, 25, 26, 27, 28].

Biclustering. Biclustering/co-clustering [19] simultaneously clusters both rows
and columns into coherent submatrices (biclusters). Cheng and Church [5]
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proposed a biclustering algorithm for gene expression data analysis, using a
greedy algorithm that identifies one bicluster at a time by minimizing the sum
squared residue. Cho et al. [6] use a similar measure of coherence but find all
the biclusters simultaneously by alternating K-means. Information-theoretic Co-
clustering [8] uses an alternating minimization algorithm for KL-divergence be-
tween the biclusters and the original matrix. The work in [4] formulates the
biclustering problem as a binary matrix compression problem and also employs
a local search scheme based on alternating minimization. However, it does not
study hierarchical decomposition schemes or context-specific graph analysis and
exploration. More recently, streaming extensions of biclustering has been pro-
posed in [1, 25].

There are two main distinctions between our proposed method and existing
work: 1) Most existing methods require a number of parameters to be set, such as
number of biclusters or minimum support. 2) Existing methods are context-free
approaches, which find biclusters global to the entire dataset, while our approach
is context-specific and finds communities at multiple levels. Liu et al. [18] have
leveraged the existing ontology for biclustering, which assumes the hierarchy is
given, while our method automatically learns hierarchy from the data.

Hierarchical clustering. Hierarchical clustering builds a cluster hierarchy over
the data points. The basic methods are agglomerative (bottom-up) or divisive
(top-down) approaches through linkage metrics [12]. Following that spirit, a
number of more sophisticated methods are developed, such as CURE that takes
special care of outliers [11], CHAMELEON that relies on partitioning the k-
NN graph of the data [15], and BIRCH that constructs a Cluster-Feature (CF)
tree to achieve good scalability [30]. All these methods are one-dimensional, in
the sense that all records (rows) are clustered based on all features (columns),
while our proposed method clusters both records (rows) and features (columns)
into coherent and context-specific groups. Another difference is that all these
methods require a number of ad-hoc parameters, while our method is completely
parameter-free.

Multilevel or multigrid methods for graph clustering [2, 16] and, more re-
motely related, local mesh refinement techniques pioneered in [3] also employ
hierarchical schemes, but still require a few parameters (e.g., density thresholds).
Finally, Yang et al develop techniques for 2D image compression via hierarchical,
quadtree-like partitionings, which employ heuristics that are more powerful but
still require a few parameters (e.g., for deciding when to stop recursion) and,
more importantly, are less scalable [29].

Parameter-free mining. Recently, “parameter-free” as a desirable property has
received more and more attention in many places. Keogh et al. [17] developed
a simple and effective scheme for mining time-series data through compression.
Actually, compression or Minimum Description Language (MDL) have become
the workhorse of many parameter-free algorithms: frequent itemsets [24], biclus-
tering [4, 23], time-evolving graph clustering [25], and spatial-clustering [20].
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7 Conclusion

In this paper we develop the Context-specific Cluster Tree (CCT) for community
exploration on large bipartite graphs. CCT has the following desirable proper-
ties: (1) Parameter-free: CCT is automatically constructed without any user
intervention, using the MDL principle. (2) Context-Specific: Communities
are detected at multiple levels and presented depending upon what contexts are
being examined. (3) Efficiency: CCT construction is scalable to large graphs,
and the resulting CCT can provide a compressed representation of the graph
and facilitate visualization. Experiments showed that both space and computa-
tional efficiency are achieved in several large real graphs. Additionally, interesting
context-specific clusters are identified in the DBLP graph. Future work could fo-
cus on parallelizing the CCT computation in order to speed up the construction.
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Abstract. This paper presents a Genetic Algorithm, called Olex-GA,
for the induction of rule-based text classifiers of the form “classify doc-
ument d under category c if t1 ∈ d or ... or tn ∈ d and not (tn+1 ∈ d
or ... or tn+m ∈ d) holds”, where each ti is a term. Olex-GA relies on
an efficient several-rules-per-individual binary representation and uses
the F -measure as the fitness function. The proposed approach is tested
over the standard test sets Reuters-21578 and Ohsumed and compared
against several classification algorithms (namely, Naive Bayes, Ripper,
C4.5, SVM). Experimental results demonstrate that it achieves very good
performance on both data collections, showing to be competitive with
(and indeed outperforming in some cases) the evaluated classifiers.

1 Introduction

Text Classification is the task of assigning natural language texts to one or more
thematic categories on the basis of their contents.

A number of machine learning methods have been proposed in the last few
years, including k -nearest neighbors (k -NN), probabilistic Bayesian, neural net-
works and SVMs. Overviews of these techniques can be found in [13, 20].

In a different line, rule learning algorithms, such as [2, 3, 18], have become
a successful strategy for classifier induction. Rule-based classifiers provide the
desirable property of being readable and, thus, easy for people to understand
(and, possibly, modify).

Genetic Algorithms (GA’s) are stochastic search methods inspired to the bi-
ological evolution [7, 14]. Their capability to provide good solutions for classical
optimization tasks has been demonstrated by various applications, including
TSP [9, 17] and Knapsack [10]. Rule induction is also one of the application
fields of GA’s [1, 5, 15, 16]. The basic idea is that each individual encodes a
candidate solution (i.e., a classification rule or a classifier), and that its fitness
is evaluated in terms of predictive accuracy.
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In this paper we address the problem of inducing propositional text classifiers
of the form

c ← (t1 ∈ d ∨ · · · ∨ tn ∈ d) ∧ ¬(tn+1 ∈ d ∨ · · · ∨ tn+m ∈ d)

where c is a category, d a document and each ti a term (n-gram) taken from a
given vocabulary. We denote a classifier for c as above by Hc(Pos, Neg), where
Pos = {t1, · · · , tn} and Neg = {tn+1 · · · tn+m}. Positive terms in Pos are used to
cover the training set of c, while negative terms in Neg are used to take precision
under control.

The problem of learning Hc(Pos, Neg) is formulated as an optimization task
(hereafter referred to as MAX-F) aimed at finding the sets Pos and Neg which
maximize the F -measure when Hc(Pos, Neg) is applied to the training set.
MAX-F can be represented as a 0-1 combinatorial problem and, thus, the GA ap-
proach turns out to be a natural candidate resolution method. We call Olex-GA
the genetic algorithm designed for the task of solving problem MAX-F.

Thanks to the simplicity of the hypothesis language, in Olex-GA an individ-
ual represents a candidate classifier (instead of a single rule). The fitness of an
individual is expressed in terms of the F -measure attained by the correspond-
ing classifier when applied to the training set. This several-rules-per-individual
approach (as opposed to the single-rule-per-individual approach) provides the
advantage that the fitness of an individual reliably indicates its quality, as it is
a measure of the predictive accuracy of the encoded classifier rather than of a
single rule.

Once the population of individuals has been suitably initialized, evolution
takes place by iterating elitism, selection, crossover and mutation, until a pre-
defined number of generations is created.

Unlike other rule-based systems (such as Ripper) or decision tree systems
(like C4.5) the proposed method is a one-step learning algorithm which does
not need any post-induction optimization to refine the induced rule set. This is
clearly a notable advantage, as rule set-refinement algorithms are rather complex
and time-consuming tasks.

The experimentation over the standard test sets Reuters-21578 and Ohsu-

med confirms the goodness of the proposed approach: on both data collections,
Olex-GA showed to be highly competitive with some of the top-performing
learning algorithms for text categorization, notably, Naive Bayes, C4.5, Ripper
and SVM (both polynomial and rbf). Furthermore, it consistently defeated the
greedy approach to problem MAX-F we reported in [19]. In addition, Olex-GA
turned out to be an efficient rule induction method (e.g., faster than both C4.5
and Ripper).

In the rest of the paper, after providing a formulation of the learning op-
timization problem (Section 2) and proving its NP-hardness, we describe the
GA approach proposed to solve it (Section 3). Then, we present the experi-
mental results (Section 5) and provide a performance comparison with some of
the top-performing learning approaches (Section 6). Finally, we briefly discuss
the relation to other rule induction systems (Sections 7 and 8) and give the
conclusions.
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2 Basic Definitions and Problem Statement

In the following we assume the existence of:

1. a finite set C of categories, called classification scheme;
2. a finite set D of documents, called corpus ; D is partitioned into a training set

TS, a validation set and a test set ; the training set, along with the validation
set, represents the so-called seen data, used to induce the model, while the
test set represents the unseen data, used to asses performance of the induced
model;

3. a binary relationship which assigns each document d ∈ D to a number of
categories in C (ideal classification). We denote by TSc the subset of TS
whose documents belong to category c (the training set of c);

4. a set Φ = {f1, · · · , fk} of scoring functions (or feature selection functions),
such as Information Gain, Chi Square, etc. [4, 22], used for vocabulary re-
duction (we will hereafter often refer to them simply as “functions”).

A vocabulary V (k, f) over the training set TS is a set of terms (n-grams)
defined as follows: let Vc(k, f) be the set of the k terms occurring in the docu-
ments of TSc that score highest according to the scoring function f ∈ Φ; then,
V (k, f) = ∪c∈CVc(k, f), that is, V (k, f) is the union of the k best terms, accord-
ing to f , of each category of the classification scheme.

We consider a hypothesis language of the form

c ← (t1 ∈ d ∨ · · · ∨ tn ∈ d) ∧ ¬(tn+1 ∈ d ∨ · · · ∨ tn+m ∈ d) (1)

where each ti is a term taken from a given vocabulary. In particular, each term in
Pos = {t1, · · · , tn} is a positive term, while each term in Neg = {tn+1 · · · tn+m}
is a negative term. A classifier as above, denoted Hc(Pos, Neg), states the
condition “if any of the terms t1, · · · , tn occurs in d and none of the terms
tn+1, · · · , tn+m occurs in d then classify d under category c”1. That is, the oc-
currence of a positive term in a document d requires the contextual absence of
the (possibly empty) set of negative terms in order for d be classified under c2.

To assess the accuracy of a classifier for c, we use the classical notions of
Precision Prc, Recall Rec and F -measure Fc,α, defined as follows:

Prc =
a

a + b
; Rec =

a

a + e
; Fc,α =

Prc · Rec

(1 − α)Prc + αRec
(2)

Here a is the number of true positive documents w.r.t. c (i.e., the number of
documents of the test set that have correctly been classified under c), b the
number of false positive documents w.r.t. c and e the number of false negative
documents w.r.t. c. Further, in the definition of Fc,α, the parameter α ∈ [0 · · · 1]

1 It is immediate to recognize that c ← (t1 ∈ d∨· · ·∨tn ∈ d)∧¬(tn+1 ∈ d∨· · ·∨tn+m ∈
d) is equivalent to the following set of classification rules: {c ← t1 ∈ d ∧ ¬(tn+1 ∈
d) ∧ · · · ∧ ¬(tn+m ∈ d), · · · , c ← tn ∈ d ∧ ¬(tn+1 ∈ d) ∧ · · · ∧ ¬(tn+m ∈ d)}.

2 d may “satisfy” more then one; thus, it may be assigned to multiple categories.
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is the relative degree of importance given to Precision and Recall; notably, if
α = 1 then Fc,α coincides with Prc, and if α = 0 then Fc,α coincides with Rec

(a value of α = 0.5 attributes the same importance to Prc and Rec)3.
Now we are in a position to state the following optimization problem:

PROBLEM MAX-F. Let a category c ∈ C and a vocabulary V (k, f) over
the training set TS be given. Then, find two subsets of V (k, f), namely, Pos =
{t1, · · · , tn} and Neg = {tn+1, · · · , tn+m}, with Pos �= ∅, such that Hc(Pos, Neg)
applied to TS yields a maximum value of Fc,α (over TS), for a given α.

Proposition 1. Problem MAX-F is NP-hard.

Proof. We next show that the decision version of problem MAX-F is NP-
complete (i.e., it requires time exponential in the size of the vocabulary, unless
P = NP ). To this end, we restrict our attention to the subset of the hypothesis
language where each rule consists of only positive terms, i.e, c ← t1 ∈ d∨· · ·∨tn ∈
d (that is, classifiers are of the form Hc(Pos, ∅)). Let us call MAX-F+ this special
case of problem MAX-F.

Given a generic set Pos ⊆ V (k, f), we denote by S ⊆ {1, · · · , p} the set of
indices of the elements of V (k, f) = {t1, · · · , tq} that are in Pos, and by Δ(ti)
the set of documents of the training set TS where ti occurs. Thus, the set of
documents classifiable under c by Hc(Pos, ∅) is D(Pos) = ∪i∈SΔ(ti). The F -
measure of this classification is

Fc,α(Pos) =
|D(Pos) ∩ TSc|

(1 − α)|TSc| + α|D(Pos)| . (3)

Now, problem MAX-F+, in its decision version, can be formulated as follows:
“∃ Pos ⊆ V (k, f) such that Fc,α(Pos) ≥ K?”, where K is a constant (let us call
it MAX-F+(D)).

Membership. Since Pos ⊆ V (k, f), we can clearly verify a YES answer of MAX-
F+(D), using equation 3, in time polynomial in the size |V (k, f)| of the vocab-
ulary.

Hardness. We define a partition of D(Pos) into the following subsets: (1) Ψ(Pos)
= D(Pos)∩TSc, i.e., the set of documents classifiable under c by Hc(Pos, ∅) that
belong to the training set TSc (true classifiable); (2) Ω(Pos) = D(Pos) \ TSc,
i.e., the set of documents classifiable under c by Hc(Pos, ∅) that do not belong
to TSc (false classifiable).

Now, it is straightforward to see that the F -measure, given by equation 3, is
proportional to the size ψ(Pos) of Ψ(Pos) and inversely proportional to the size
ω(Pos) of Ω(Pos) (just replace in equation 3 the quantities |D(Pos) ∩ TSc| by
ψ(Pos) and |D(Pos)| by ψ(Pos) + ω(Pos)). Therefore, problem MAX-F+(D)
can equivalently be stated as follows: “∃ Pos ⊆ V (k, f) such that ψ(Pos) ≥ V
and ω(Pos) ≤ C?”, where V and C are constants.
3 Since α ∈ [0 · · · 1] is a parameter of our model, we find convenient using Fc,α rather

than the equivalent Fβ = (β2+1)Prc·Rec

β2Prc+Rec
, where β ∈ [0 · · · ∞] has no upper bound.
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Now, let us restrict MAX-F+(D) to the simpler case in which terms in Pos
are pairwise disjoint, i.e., Δ(ti) ∩ Δ(tj) = ∅ for all ti, tj ∈ V (k, f) (let us call
DSJ this assumption). Next we show that, under DSJ , MAX-F+(D) coincides
with the Knapsack problem. To this end, we associate with each ti ∈ V (k, f)
two constants, vi (the value of ti) and a ci (the cost of ti) as follows:

vi = |Δ(ti) ∩ TSc|, ci = |Δ(ti) \ TSc|.

That is, the value vi (resp. cost ci) of a term ti is the number of documents
containing ti that are true classifiable (resp., false classifiable).

Now we prove that, under DSJ , the equality Σi∈Svi = ψ(Pos) holds, for any
Pos ⊆ V (k, f). Indeed:

Σi∈Svi = Σi∈S |Δ(ti)∩TSc| = |(∪i∈SΔ(ti))∩TSc| = |(D(Pos)∩TSc| = ψ(Pos).

To get the first equality above we apply the definition of vi; for the second, we
exploit assumption DSJ ; for the third and the fourth we apply the definitions
of D(Pos) and ψ(Pos), respectively.

In the same way as for vi, the equality Σi∈Sci = ω(Pos) can be easily drawn.
Therefore, by replacing ψ(Pos) and ω(Pos) in our decision problem, we get

the following new formulation, valid under DSJ : “∃ Pos ⊆ V (k, f) such that
Σi∈Svi ≥ V and Σi∈Sci ≤ C?”. That is, under DSJ , MAX-F+(D) is the Knap-
sack problem – a well known NP-complete problem. Therefore, MAX-F+(D)
under DSJ is NP-complete. It turns out that (the general case of) MAX-F+(D)
(which is at least as complex as MAX-F+(D) under DSJ ) is NP-hard and, thus,
the decision version of problem MAX-F+ is NP-hard as well. It turns out that
the decision version of problem MAX-F is NP-hard.

Having proved both membership (in NP) and hardness, we conclude that the
decision version of problem MAX-F is NP-complete.

A solution of problem MAX-F is a best classifier for c over the training set TS,
for a given vocabulary V (f, k). We assume that categories in C are mutually
independent, i.e., the classification results of a given category are not affected
by the results of any other. It turns out that we can solve problem MAX-F for
that category independently on the others. For this reason, in the following, we
will concentrate on a single category c ∈ C.

3 Olex-GA: A Genetic Algorithm to Solve MAX-F

Problem MAX-F is a combinatorial optimization problem aimed at finding a
best combination of terms taken from a given vocabulary. That is, MAX-F is
a typical problem for which GA’s are known to be a good candidate resolution
method.

A GA can be regarded as composed of three basic elements: (1) A population,
i.e., a set of candidate solutions, called individuals or chromosomes, that will
evolve during a number of iterations (generations); (2) a fitness function used to
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assign a score to each individual of the population; (3) an evolution mechanism
based on operators such as selection, crossover and mutation. A comprehensive
description of GA can be found in [7].

Next we describe our choices concerning the above points.

3.1 Population Encoding

In the various GA-based approaches to rule induction used in the literature (e.g.,
[5, 15, 16]), an individual of the population may either represent a single rule or
a rule set. The former approach (single-rule-per-individual) makes the individual
encoding simpler, but the fitness of an individual may not be a meaningful indica-
tor of the quality of the rule. On the other hand, the several-rules-per-individual
approach, where an individual may represent an entire classifier, requires a more
sophisticated encoding of individuals, but the fitness provides a reliable indi-
cator. So, in general, there is a trade-off between simplicity of encoding and
effectiveness of the fitness function.

Thanks to the structural simplicity of the hypothesis language, in our model
an individual encodes a classifier in a very natural way, thus combining the
advantages of the two aforementioned approaches. In fact, an individual is simply
a binary representation of the sets Pos and Neg of a classifier Hc(Pos, Neg).

Our initial approach was that of representing Hc(Pos, Neg) through an indi-
vidual consisting of 2 · |V (k, f)| bits, half for the terms in Pos, and half for the
terms in Neg (recall that both Pos and Neg are subsets of V (k, f)). This how-
ever proved to be very ineffective (and inefficient), as local solutions representing
classifiers with hundreds of terms were generated.

More effective classifiers were obtained by restricting the search of both posi-
tive and negative terms, based on the following simple observations: (1) scoring
functions are used to assess goodness of terms w.r.t. a given category; hence,
it is quite reasonable searching positive terms for c within Vc(k, f), i.e., among
the terms that score highest for c according to a given function f ; (2) the role
played by negative terms in the training phase is that of avoiding classification
of documents (of the training set) containing some positive term, but falling
outside the training set TSc of c.

Based on the above remarks, we define the following subsets Pos∗ and Neg∗
of V (k, f):

– Pos∗ = Vc(k, f), i.e., Pos∗ is the subset of V (k, f) consisting of the k terms
occurring in the documents of the training set TSc of c that score highest
according to scoring function f ; we say that ti ∈ Pos∗ is a candidate positive
term of c over V (k, f);

– Neg∗ = {t ∈ V (k, f) | (∪tj∈Pos∗Δ(tj)\TSc)∩Δ(t) �= ∅}, where Δ(tj) ⊆ TS
(resp. Δ(t) ⊆ TS) is the set of documents of TS containing term tj (resp.
t); we say that ti ∈ Neg∗ is a candidate negative term of c over V (k, f).
Intuitively, a candidate negative term is one which occurs in a document
containing some candidate positive term and not belonging to the training
set TSc of c.
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Now, we represent a classifier Hc(Pos, Neg) over V (k, f) as a chromosome K
made of |Pos ∗ | + |Neg ∗ | bits. The first |Pos ∗ | bits of K, denoted K+, are
used to represent the terms in Pos, and the remaining |Neg ∗ |, denoted K−, to
represent the terms in Neg. We denote the bit in K+ (resp. K−) representing
the candidate positive (resp. negative) term ti as K+[ti] (resp. K−[ti]). Thus, the
value 0-1 of K+[ti] (resp. K−[ti]) denotes whether ti ∈ Pos∗ (resp. ti ∈ Neg∗)
is included in Pos (resp. Neg) or not.

A chromosome K is legal if there is no term ti ∈ Pos ∗ ∩Neg∗ such that
K+[ti] = K−[ti] = 1 (that is, ti cannot be at the same time a positive and a
negative term)4.

3.2 Fitness Function

The fitness of a chromosome K, representing Hc(Pos, Neg), is the value of the
F -measure resulting from applying Hc(Pos, Neg) to the training set TS. This
choice naturally follows from the formulation of problem MAX-F. Now, if we
denote by D(K) ⊆ TS the set of all documents containing any positive term in
Pos and no negative term in Neg, i.e.,

D(K) = ∪t∈PosΔ(t) \ ∪t∈NegΔ(t),

starting from the definition of Fc,α, after some algebra, we obtain the following
formula for Fc,α:

Fc,α(K) =
|D(K) ∩ TSc|

(1 − α)|TSc| + α|D(K)| .

3.3 Evolutionary Operators

We perform selection via the roulette-wheel method, and crossover by the uni-
form crossover scheme. Mutation consists in the flipping of each single bit with a
given (low) probability. In order not to lose good chromosomes, we apply elitism,
thus ensuring that the best individuals of the current generation are passed to
the next one without being altered by a genetic operator. All the above operators
are described in [7].

3.4 The Genetic Algorithm

A description of Olex-GA is sketched in Figure 1. First, the sets Pos∗ and Neg∗
of candidate positive and negative terms, respectively, are computed from the
input vocabulary V (k, f). After population has been initialized, evolution takes
place by iterating elitism, selection, crossover and mutation, until a pre-defined
number n of generations is created. At each step, a repair operator ρ, aimed
at correcting possible illegal individuals generated by crossover/mutation, is
applied. In particular, if K is an illegal individual with K+[t] = K−[t] = 1,
4 Note that the classifier encoded by an illegal individual is simply redundant, as it

contains a “dummy” rule of the form c ← t ∈ d, · · · ¬(t ∈ d), · · ·.
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Algorithm Olex-GA

Input: vocabulary V (f, k) over the training set TS; number n of generations;
Output: “best” classifier Hc(Pos,Neg) of c over TS;

- begin
- Evaluate the sets of candidate positive and negative terms from V (f, k);
- Create the population oldPop and initialize each chromosome;
- Repeat n times
- Evaluate the fitness of each chromosome in oldPop;
- newPop = ∅;
- Copy in NewPop the best r chromosomes of oldPop (elitism - r is

determined on the basis of the elitism percentage)
- While size(newPop) < size(oldPop)
- select parent1 and parent2 in oldPop via roulette wheel
- generate kid1, kid2 through crossover(parent1, parent2)
- apply mutation, i.e., kid1 = mut(kid1) and kid2 = mut(kid2)
- apply the repair operator ρ to both kid1 and kid2;
- add kid1 and kid2 to newPop;
- end-while
- oldPop = newPop;
- end-repeat;
- Select the best chromosome K in oldPop;
- Eliminate redundancies from K;
- return the classifier Hc(Pos,Neg) associated with K.

Fig. 1. Evolutionary Process for category c

the application of ρ to K simply set K+[t] = 0 (thus, the redundant rule
c ← t ∈ d, · · · ¬(t ∈ d), · · · is removed from the encoded classifier). After it-
eration completes, the elimination of redundant bits/terms from the best chro-
mosome/classifier K is performed. A bit K[t] = 1 is redundant in a chromosome
K, representing Hc(Pos, Neg), if the chromosome K ′ obtained from K by setting
K[t] = 0 is such that Fc,α(K) = Fc,α(K ′). This may happen if either t ∈ Pos
and Δ(t) ⊆ ∪t′∈(Pos−{t})Δ(t′) (i.e., t does not provide any contribution to the
classification of new documents) or t ∈ Neg and Δ(t) ∩ ∪t′∈PosΔ(t′) = ∅ (i.e., t
does not contribute to remove any misclassified document).

4 Learning Process

While Olex-GA is the search of a “best” classifier for category c over the training
set, for a given input vocabulary, the learning process is the search of a “best”
classifier for c over the validation set, for all input vocabularies. More precisely,
the learning process proceeds as follows:
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– Learning: for each input vocabulary
• Evolutionary Process: execute a predefined number of runs of Olex-GA

over the training set, according to Figure 1;
• Validation: run over the validation set the best chromosome/classifier

generated by Olex-GA;
– Testing: After all runs have been executed, pick up the best classifier (over

the validation set), and assess its accuracy over the test set (unseen data).

The output of the learning process is assumed to be the “best classifier” of c.

5 Experimentation

5.1 Benchmark Corpora

We have experimentally evaluated our method using both the Reuters-21578

[12] and and the Ohsumed [8] test collections.
The Reuters-21578 consists of 12,902 documents. We have used the Mod-

Apté split, in which 9,603 documents are selected for training (seen data) and
the other 3,299 form the test set (unseen data). Of the 135 categories of the
TOPICS group, we have considered the 10 with the highest number of positive
training examples (in the following, we will refer to this subset as R10). We
remark that we used all 9603 documents of the training corpus for the learning
phase, and performed the test using all 3299 documents of the test set (including
those not belonging to any category in R10).

The second data set we considered is Ohsumed, in particular, the collection
consisting of the first 20,000 documents from the 50,216 medical abstracts of
the year 1991. Of the 20,000 documents of the corpus, the first 10,000 were used
as seen data and the second 10,000 as unseen data. The classification scheme
consisted of the 23 MeSH diseases.

5.2 Document Pre-processing

Preliminarily, documents were subjected to the following pre-processing steps:
(1) First, we removed all words occurring in a list of common stopwords, as well
as punctuation marks and numbers; (2) then, we extracted all n-grams, defined
as sequences of maximum three words consecutively occurring within a document
(after stopword removal)5; (3) at this point we have randomly split the set of
seen data into a training set (70%), on which to run the GA, and a validation set
(30%), on which tuning the model parameters. We performed the split in such
a way that each category was proportionally represented in both sets (stratified
holdout); (4) finally, for each category c ∈ C, we scored all n-grams occurring in
the documents of the training set TSc by each scoring function f ∈ {CHI, IG},
where IG stands for Information Gain and CHI for Chi Square [4, 22].

5 Preliminary experiments showed that n-grams of length ranging between 1 and 3
perform slightly better than single words.
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Table 1. Best classifiers for categories in R10 and micro-averaged performance

Cat. Input Training Test Classifier
(α = 0.5) (GA)
f k F -meas F -meas BEP #pos #neg

earn CHI 80 93.91 95.34 95.34 36 9
acq CHI 60 83.44 87.15 87.49 22 35
mon-fx CHI 150 79.62 66.47 66.66 33 26
grain IG 60 91.05 91.61 91.75 9 8
crude CHI 70 85.08 77.01 77.18 26 14
trade IG 80 76.77 61.80 61.81 20 11
interest CHI 150 73.77 64.20 64.59 44 23
wheat IG 50 92.46 89.47 89.86 8 6
ship CHI 30 87.88 74.07 74.81 17 33
corn IG 30 93.94 90.76 91.07 4 12

μ-BEP 86.35 86.40

5.3 Experimental Setting

We conducted a number of experiments for inducing the best classifiers for both
Reuters-21578 and Ohsumed according to the learning process described in
Section 4. To this end, we used different input vocabularies V (k, f), with k ∈
{10, 20, · · · , 90, 100, 150, 200} and f ∈ {CHI, IG}. For each input vocabulary,
we ran Olex-GA three times. The parameter α of the fitness function Fc,α was
set to 0.5 for all the experiments (thus attributing equal importance to Precision
and Recall).

In all cases, the population size has been held at 500 individuals, the number
of generations at 200, the crossover rate at 1.0, the mutation rate at 0.001 and
the elitism probability at 0.2.

For each chromosome K in the population, we initialized K+ at random,
while we set K−[t] = 0, for each t ∈ Neg∗ (thus, K initially encodes a classifier
Hc(Pos, ∅) with no negative terms).

Initialization, as well as all the above mentioned GA parameters, have been
empirically set based on a preliminary experimentation.

5.4 Experimental Results

The first data set we considered is Reuters-21578 . Table 1 shows the perfor-
mance of the best classifiers for the categories of R10. Here, for each classifier,
we report: (1) the values of f and k of the input vocabulary V (f, k); (2) the
F -measure over the training set (i.e., the fitness of the best individual); (3) F-
measure and Break Even Point (BEP) over the test set (“Test”); (4) the number
of positive and negative terms occurring in the classifier (“Classifier”).

From results of Table 1 it clearly appears that the evolutionary model is sensi-
tive to the input parameters, as each category achieves its maximum performance
with different values of k and f . For an instance, the best classifier of category
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“earn” is learned from a vocabulary V (k, f) where k = 80 and f = CHI; the
respective F -measure and breakeven point are both 95.34. Looking at the last
row, we see that the micro-averaged values of F -measure and BEP over the
test set are equal to 86.35 and 86.40, respectively. Finally, looking at the last
two columns labelled “classifier”, we see that the induced classifiers are rather
compact: the maximum number of positive terms is 44 (“interest”), and the
minimum is 4 (“corn”); likewise, the maximum number of negative terms is 35
(“acq”) and the minimum is 6 (“wheat”).

As an example, the classifier Hc(Pos, Neg) for “corn” has

Pos = {“corn”, “maize”, “tonnes maize”, “tonnes corn”}

Neg = {“jan”, “qtr”, “central bank”, “profit”, “4th”, “bonds”, “pact”,

“offering”, “monetary”, “international”, “money”, “petroleum”}.

Thus, Hc(Pos, Neg) is of the following form:

c ← “corn” ∨ · · · ∨ “tonnes corn” ∧ ¬ (“jan” ∨ · · · ∨ “petroleum”).

To show the sensitivity of the model to parameter settings, in Table 2 we
report the F-measure values (on the validation set) for category “corn” obtained
by using different values for φ and ν. As we can see, the performance of the
induced classifiers varies from a minimum of 84.91 to a maximum of 93.58 (note
that, for both functions, the F -measure starts decreasing for ν > 50, i.e., a
reduction of the vocabulary size provides a benefit in terms of performance [22]).

Table 2. Effect of varying φ and ν on the F-measure for category “corn”

ν

φ 10 50 100 150 200
CHI 90.74 91.00 88.7 88.68 84.91
IG 92.04 93.58 91.59 91.59 89.09

The second data set we considered is Ohsumed . In Table 3 we provide the
best performance for the ten most frequent Mesh categories and micro-averaged
performance over all 23. In particular, micro-averaged F -measure and BEP (over
the test set) are both equal to 62.30. Also in this case, with a few exceptions,
classifiers are rather compact.

5.5 Time Efficiency

Experiments have been run on a 2.33 GHz Xeon 4 Gb RAM. The average ex-
ecution time of the evolutionary process of Figure 1 is around 10 seconds per
category for both data sets (recall that in both cases the population is made of
500 individuals which evolve for 200 generations).



A Genetic Algorithm for Text Classification Rule Induction 199

Table 3. Best classifiers for the ten most frequent MeSH “diseases” categories of
Ohsumed and micro-averaged performance over all 23

Cat. Input Training Test Classifier
(α = 0.5) (GA)

name f k F -meas F -meas BEP #pos #neg
C23 CHI 100 54.93 50.67 51.39 25 13
C14 CHI 70 79.67 75.46 75.61 32 7
C04 CHI 100 80.79 80.18 80.36 33 7
C10 CHI 70 61.63 54.60 54.65 24 25
C06 IG 100 73.51 68.69 68.80 95 3
C21 CHI 200 79.17 62.11 62.22 113 6
C20 IG 80 75.64 70.98 71.12 35 4
C12 CHI 100 81.59 73.60 74.28 55 7
C08 IG 30 69.63 63.99 64.07 18 24
C01 CHI 100 76.14 64.32 64.46 93 3

avg-BEP (top 10) 66.46 66.96
μ-BEP (all 23) 62.30 62.30

6 Performance Comparisons

In this section we compare Olex-GA with four classical learning algorithms: SVM
(both, polynomial and radial basis function - rbf), Ripper (with two optimization
steps), C4.5 and Naive Bayes (NB). Further, we make a comparison with the
greedy approach to problem MAX-F we presented in our previous work [19]
(hereafter called Olex-Greedy).

To determine the performance of the above algorithms (apart from Olex-
Greedy) we utilized the Weka library of machine learning algorithms, version
3.5.6 [21].

In order to make results really comparable, documents of both corpora were
preliminarily pre-processed exactly as described in Subsection 5.2. Then, for each
of the above learners, we carried out a number of experiments over the training
set, using the validation set for tuning the model parameters. In particular, we
ran all methods with vocabularies consisting of 500, 1000, 2000, 5000 terms. For
each vocabulary, polynomial SVM was run with degree d ranging from 1 to 5,
while rbf SVM was executed with variance γ ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2}. Once
completed all experiments, we selected the best classifier (over the validation
set) of each category, i.e., the one with the maximum value of the F -measure.
Finally, we used the test set to evaluate the performance of the best classifiers
and the micro-averaged accuracy measures6.

Reuters-21578 . The performance results of the tested algorithms are re-
ported in Table 4. In particular, for each algorithm, we provide the BEP over
6 To attain more reliable estimations of the differences in predictive accuracy of differ-

ent methods, n-fold cross-validation along with statistical significance tests should
be performed. We envision this task as part of our future work.
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Table 4. Recall/Precision breakeven points on R10

Category NB C4.5 Ripper SVM Olex
poly rbf Greedy GA

earn 96.61 95.77 95.31 97.32 96.57 93.13 95.34
acq 90.29 85.59 86.63 90.37 90.83 84.32 87.49
money 56.67 63.08 62.94 72.89 68.22 68.01 66.66
grain 77.82 89.69 89.93 92.47 88.94 91.28 91.75
crude 78.84 82.43 81.07 87.82 86.17 80.84 77.18
trade 57.90 70.04 75.82 77.77 74.14 64.28 61.81
interest 61.71 52.93 63.15 68.16 58.71 55.96 64.59
wheat 71.77 91.46 90.66 86.13 89.25 91.46 89.86
ship 68.65 71.92 75.91 82.66 80.40 78.49 74.81
corn 59.41 86.73 91.79 87.16 84.74 89.38 91.07
μ-BEP 82.52 85.82 86.71 89.91 88.80 84.80 86.40
learning times (min) 0.02 425 800 46 696 2.30 116

the test set of each category in R10, the micro-avg BEP and the overall learning
time. Concerning predictive accuracy, with a μ-BEP of 86.40, our method sur-
passes Naive Bayes (82.52), which shows the worst behavior, and Olex-Greedy
(84.80); is competitive with C4.5 (85.82) and Ripper (86.71), while performs
worse than both SVM’s (poly = 89.91, rbf = 88.80). Concerning efficiency, NB
(0.02 min) and Olex-Greedy (2.30 min) are by far the fastest methods. Then
poly SVM (46 min) and Olex-GA (116 min), followed at some distance by C4.5
(425 min), rbf SVM (696 min) and Ripper (800).

Ohsumed . As we can see from Table 5, with a μ-BEP = 62.30, the proposed
method is the top-performer. On the other side, C4.5 shows to be the worst

Table 5. Recall/Precision breakeven points on the ten most frequent MeSH diseases
categories of Ohsumed and micro-averaged performance over all 23

Category NB C4.5 Ripper SVM Olex
poly rbf Greedy GA

C23 47.59 41.93 35.01 45.00 44.21 47.32 51.39
C14 77.15 73.79 74.16 73.81 75.34 74.52 75.61
C04 75.71 76.22 80.05 78.18 76.65 77.78 80.36
C10 45.96 44.88 49.73 52.22 51.54 54.72 54.65
C06 65.19 57.47 64.99 63.18 65.10 63.25 68.80
C21 54.92 61.68 61.42 64.95 62.59 61.62 62.22
C20 68.09 64.72 71.99 70.23 66.39 67.81 71.12
C12 63.04 65.42 70.06 72.29 64.78 67.82 74.28
C08 57.70 54.29 63.86 60.40 55.33 61.57 64.07
C01 58.36 48.89 56.05 43.05 52.09 55.59 64.46
avg-BEP (top 10) 61.37 58.92 62.73 62.33 61.40 62.08 66.69
μ-BEP (all 23) 57.75 55.14 59.65 60.24 59.57 59.38 62.30
learning times (min) 0.04 805 1615 89 1100 6 249
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performer (55.14) (so confirming the findings of [11]). Then, in the order, Naive
Bayes (57.75), rbf SVM (59.57), Ripper (59.65), polynomial SVM (60.24) and
Olex-Greedy (61.57). As for time efficiency, the Ohsumed results essentially
confirm the hierarchy coming out from the Reuters-21578 .

7 Olex-GA vs. Olex-Greedy

One point that is noteworthy is the relationship between Olex-Greedy and Olex-
GA, in terms of both predictive accuracy and time efficiency.

Concerning the former, we have seen that Olex-GA consistently beats Olex-
Greedy on both data sets. This confirms Freitas’ findings [6], according to
which effectiveness of GA’s in rule induction is a consequence of their inher-
ent ability to cope with attribute interaction as, thanks to their global search
approach, more attributes at a time are modified and evaluated as a whole.
This in contrast with the local, one-condition-at-a-time greedy rule generation
approach.

On the other hand, concerning time efficiency, Olex-Greedy showed to be much
faster than Olex-GA. This should not be surprising, as the greedy approach,
unlike GA’s, provides a search strategy which straight leads to a suboptimal
solution.

8 Relation to Other Inductive Rule Learners

Because of the computational complexity of the learning problem, all real sys-
tems employ heuristic search strategies which prunes vast parts of the hypothe-
sis space. Conventional inductive rule learners (e.g, RIPPER [3]) usually adopt,
as their general search method, a covering approach based on a separate-and-
conquer strategy. Starting from an empty rule set, they learn a set of rules, one
by one. Different learners essentially differ in how they find a single rule. In RIP-
PER, the construction of a single rule is a two-stage process: a greedy heuristics
constructs an initial rule set (IREP*) and, then, one or more optimization phases
improve compactness and accuracy of the rule set.

Also decision tree techniques, e.g., C4.5 [18], rely on a two-stage process. After
the decision tree has been transformed into a rule set, C4.5 implements a pruning
stage which requires more steps to produce the final rule set - a rather complex
and time consuming task.

In contrast, Olex-GA, like Olex-Greedy and other GA-based approaches (e.g.,
[5]), relies on a single-step process whereby an “optimal” classifier, i.e., one
consisting of few high-quality rules, is learned. Thus, no pruning strategy is
needed, with a great advantage in terms of efficiency. This may actually account
for the time results of Tables 4 and 5, which show the superiority of Olex-GA
w.r.t. both C4.5 and Ripper.
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9 Conclusions

We have presented a Genetic Algorithm, Olex-GA, for inducing rule-based text
classifiers of the form ”if a document d includes either term t1 or ... or term tn,
but not term tn+1 and ... and not term tn+m, then classify d under category c”.

Olex-GA relies on a simple binary representation of classifiers (several-rules-
per-individual approach) and uses the F -measure as the fitness function. One
design aspect related to the encoding of a classifier Hc(Pos, Neg) was concerned
with the choice of the length of individuals (i.e., the size of the search space).
Based on preliminary experiments, we have restricted the search of Pos and Neg
to suitable subsets of the vocabulary (instead of taking it entirely), thus getting
more effective and compact classifiers.

The experimental results obtained on the standard data collections Reuters-

21578 and Ohsumed show that Olex-GA quickly converges to very accurate
classifiers. In particular, in the case of Ohsumed , it defeats all the other eval-
uated algorithms. Further, on both data sets, Olex-GA consistently beats Olex-
Greedy. As for time efficiency, Olex-GA is slower than Olex-Greedy but faster
than the other rule learning methods (i.e., Ripper and C4.5).

We conclude by remarking that we consider the experiments reported in this
paper somewhat preliminary, and feel that performance can further be improved
through a fine-tuning of the GA parameters.
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2. Apté, C., Damerau, F.J., Weiss, S.M.: Automated learning of decision rules for text
categorization. ACM Transactions on Information Systems 12(3), 233–251 (1994)

3. Cohen, W.W., Singer, Y.: Context-sensitive learning methods for text categoriza-
tion. ACM Transactions on Information Systems 17(2), 141–173 (1999)

4. Forman, G.: An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research 3, 1289–1305 (2003)

5. Freitas, A.A.: A genetic algorithm for generalized rule induction. In: Advances in
Soft Computing-Engineering Design and Manufacturing, pp. 340–353. Springer,
Heidelberg (1999)

6. Freitas, A.A.: In: Klosgen, W., Zytkow, J. (eds.) Handbook of Data Mining and
Knowledge Discovery, ch. 32, pp. 698–706. Oxford University Press, Oxford (2002)

7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1989)

8. Hersh, W., Buckley, C., Leone, T., Hickman, D.: Ohsumed: an interactive retrieval
evaluation and new large text collection for research. In: Croft, W.B., van Rijsber-
gen, C.J. (eds.) Proceedings of SIGIR-1994, 17th ACM International Conference
on Research and Development in Information Retrieval, Dublin, IE, pp. 192–201.
Springer, Heidelberg (1994)

9. Homaifar, A., Guan, S., Liepins, G.E.: Schema analysis of the traveling salesman
problem using genetic algorithms. Complex Systems 6(2), 183–217 (1992)



A Genetic Algorithm for Text Classification Rule Induction 203

10. Hristakeva, M., Shrestha, D.: Solving the 0/1 Knapsack Problem with Genetic
Algorithms. In: Midwest Instruction and Computing Symposium 2004 Proceedings
(2004)

11. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

12. Lewis, D.D.: Reuters-21578 text categorization test collection. Distribution 1.0
(1997)

13. Lewis, D.D., Hayes, P.J.: Guest editors’ introduction to the special issue on text
categorization. ACM Transactions on Information Systems 12(3), 231 (1994)

14. Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs, 3rd
edn. Springer, Heidelberg (1999)

15. Noda, E., Freitas, A.A., Lopes, H.S.: Discovering interesting prediction rules with a
genetic algorithm. In: Proc. Congress on Evolutionary Computation (CEC-1999),
July 1999. IEEE, Washington (1999)

16. Pei, M., Goodman, E.D., Punch, W.F.: Pattern discovery from data using genetic
algorithms. In: Proc. 1st Pacific-Asia Conf. Knowledge Discovery and Data Mining
(PAKDD-1997), Febuary 1997. World Scientific, Singapore (1997)

17. Jung, Y., Jog, S.P., van Gucht, D.: Parallel genetic algorithms applied to the
traveling salesman problem. SIAM Journal of Optimization 1(4), 515–529 (1991)

18. Quinlan, J.R.: Generating production rules from decision trees. In: Proc. of IJCAI-
1987, pp. 304–307 (1987)

19. Rullo, P., Cumbo, C., Policicchio, V.L.: Learning rules with negation for text cat-
egorization. In: Proc. of SAC - Symposium on Applied Computing, Seoul, Korea,
March 11-15 2007, pp. 409–416. ACM, New York (2007)

20. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34(1), 1–47 (2002)

21. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

22. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text cat-
egorization. In: Fisher, D.H. (ed.) Proceedings of ICML-97, 14th International
Conference on Machine Learning, Nashville, US, pp. 412–420. Morgan Kaufmann
Publishers, San Francisco (1997)



Nonstationary Gaussian Process Regression
Using Point Estimates of Local Smoothness

Christian Plagemann1, Kristian Kersting2, and Wolfram Burgard1

1 University of Freiburg, Georges-Koehler-Allee 79, 79110 Freiburg, Germany
{plagem,burgard}@informatik.uni-freiburg.de

2 Fraunhofer Institute IAIS, Sankt Augustin, Germany
kristian.kersting@iais.fraunhofer.de

Abstract. Gaussian processes using nonstationary covariance functions
are a powerful tool for Bayesian regression with input-dependent smooth-
ness. A common approach is to model the local smoothness by a la-
tent process that is integrated over using Markov chain Monte Carlo
approaches. In this paper, we demonstrate that an approximation that
uses the estimated mean of the local smoothness yields good results and
allows one to employ efficient gradient-based optimization techniques for
jointly learning the parameters of the latent and the observed processes.
Extensive experiments on both synthetic and real-world data, including
challenging problems in robotics, show the relevance and feasibility of
our approach.

1 Introduction

Gaussian processes (GPs) have emerged as a powerful yet practical tool for solv-
ing various machine learning problems such as nonlinear regression or multi-class
classification [16]. As opposed to making parametric assumptions about the un-
derlying functions, GP models are directly expressed in terms of the training
data and thus belong to the so called nonparametric methods. Their increasing
popularity is due to the fact that nonlinear problems can be solved in a princi-
pled Bayesian framework for learning, model selection, and density estimation
while the basic model just requires relatively simple linear algebra. A common
assumption when specifying a GP prior is stationarity, i.e., that the covariance
between function values f(x) and f(x′) only depends on the distance ‖x − x′‖
between the indexes and not on their locations directly. Consequently, standard
GPs lack the ability to adapt to variable smoothness in the function of interest.

Modeling input-dependent smoothness, however, is essential in many funda-
mental problems in the geo-sciences, mobility mining, activity recognition, and
robotics, among other areas. Consider, for example, the problem of modeling ter-
rain surfaces given sets of noisy elevation measurements. Accurately modeling
such data requires the ability to deal with a varying data density and to bal-
ance smoothing against the preservation of discontinuities. Discontinuities arise
for instance at steps, stairs, curbs, or at walls. These features are important
for planning paths of mobile robots, for estimating traversability, and in terrain

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 204–219, 2008.
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segmentation tasks. Accordingly, the ability to flexibly adapt a regression model
to the local properties of the data may greatly enhance the applicability of such
techniques.

In the past, several approaches for specifying nonstationary GP models haven
been proposed in the literature [12,13]. A particularly promising approach is due
to Paciorek and Schervish [8] who proposed to explicitly model input-depending
smoothness using additional, latent GPs. This approach (a) provides the user
with a continuous latent space of local kernels, (b) allows the user to analyze
the estimated covariance function yielding important insights into the problem
domain, and (c) fully stays in the GP framework so that computational methods
for speeding up GP inference and fitting can be adapted.

Paciorek and Schervish provide a flexible and general framework based on
MCMC integration, which unfortunately – as also noted by the authors – is com-
putationally demanding for large data sets and which is thus not feasible in the
real world situations that are typically encountered in robotics and engineering
tasks. In this paper, we present a simple approximation that does not integrate
over all latent values but uses the predicted mean values only. Specifically, we
parameterize the nonstationary covariances using a second GP with m latent
length-scales. Assuming m � n, where n is the number of training points, this
results in a nonstationary GP regression method with practically no overhead
compared to standard GPs. More importantly, using point estimates naturally
leads to gradient-based techniques for efficiently learning the parameters of both
processes jointly, which is the main contribution of this paper.

We present experiments carried out on on synthetic and real-world data sets
from challenging application domains such as robotics and embedded systems
showing the relevance and feasibility of our approach. More specifically, our
nonstationary GP approach significantly outperforms standard GPs in terms
of prediction accuracy, while it is significantly faster then [8]. We regard these
empirical results as an additional substantial contribution of this paper as they
tighten the link between advanced regression techniques based on GPs and ap-
plication domains such as robotics and embedded systems. To the best of our
knowledge, it is the first time that nonstationary GPs have been learned in a
principled way in these challenging domains.

This paper is organized as follows. After reviewing related work, we introduce
nonstationary Gaussian processes regression and how to make predictions in
Section 3. In Section 4, we then show how to learn the hyperparameters using
gradient-based methods. Before concluding, we demonstrate the feasibility and
relevance of our approach in an extensive set of experiments.

2 Related Work

Gaussian process models [11] have the advantage of providing predictive un-
certainties for their estimates while not requiring, for instance, a fixed dis-
cretization of the space. This has led to their successful application in a wide
range of application areas including robotics and ubiquitous computing. For
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example, Schwaighofer et al. [14] applied the model for realizing positioning
systems using cellular networks. GPs have been proposed as measurement mod-
els [1] and for model-based failure detection [10] in robotics because they natu-
rally deal with noisy measurements, unevenly distributed observations, and fill
small gaps in the data with high confidence while assigning higher predictive
uncertainty in sparsely sampled areas. Many robotics applications, however, call
for non-standard GP models. Kersting et al. [5], for example, have shown that
heteroscedastic GP regression, i.e., regression with input-dependent noise out-
performs state-of-the-art approaches in mobile robot localization. Whereas they
also use a GP prior to model local noise rates, they do not estimate the hyper-
parameters jointly using gradient-based optimization but alternate each process
in a sampling-based EM fashion. Lang et al. [6] modeled 3D terrain data using
nonstationary GPs by following the approach of Paciorek and Schervish [8].
They derived a specific adaptation procedure that also does not require MCMC
integration as originally proposed by Paciorek and Schervish, but that is not
derived from first principles. Another approach to modeling nonstationarity is
to use ensembles of GPs, where every GP is assigned to a specific region, an
idea akin to GP mixture models such as presented by Williams’ [16]. A related
idea has also been proposed by Pfingsten et al. [9]. Cornford et al. [3] model
straight discontinuities in wind fields by placing auxiliary GPs along the edge
on both sides of the discontinuity. They are then used to learn GPs representing
the process on either side of the discontinuity.

Apart from Paciorek and Schervish’s [8] (see also the references in there) ap-
proach of directly modeling the covariance function using additional latent GPs,
several other approaches for specifying nonstationary GP models can be found
in the literature. For instance, Sampson and Guttorp [12] map a nonstationary
spatial process (not based on GPs) into a latent space, in which the problem
becomes approximately stationary. Schmidt and O’Hagan [13] followed this idea
and used GPs to implement the mapping. Similar in spirit, Pfingsten et al. [9]
proposed to augment the input space by a latent extra input to tear apart re-
gions of the input space that are separated by abrupt changes of the function
values. All GP approaches proposed so far, however, followed a Markov chain
Monte Carlo approach to inference and learning. Instead, we present a novel
maximum-a-posterior treatment of Paciorek and Schervish’s approach that fully
stays in the GP framework, explicitly models the covariance function, provides
continuous estimates of the local kernels, and that naturally allows for gradient-
based joint optimization of its parameters.

3 Nonstationary Gaussian Process Regression

The nonlinear regression problem is to recover a functional dependency yi =
f(xi) + εi from n observed data points D = {(xi, yi)}n

i=1, where yi ∈ R are the
noisy observed outputs at input locations xi ∈ R

d. Throughout this paper we
will also use X ∈ R

n×d to refer to all input locations. For the sake of simplic-
ity, we will concentrate on one-dimensional outputs, but all formulas naturally
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Table 1. Notation used to derive the gradient of the model selection criterion w.r.t.
the joint hyperparameters θ of the nonstationary GP

Observed GP GPy

Hyperparameters of GPy θy = 〈σf , σn〉
Training set D = 〈X,y〉,X ∈ R

n×d,y ∈ R
n

Prediction y∗ ∈ R at location X∗ ∈ R
1×d

Latent length-scale process GP�

Latent length-scale support values � ∈ R
m at locations X ∈ R

m×d

Latent length-scales at training points of GPy � ∈ R
n at locations X

Latent length-scale at test point �∗ ∈ R at location X∗

Hyperparameters of GP� θ� = 〈σf , σ�, σn〉
Joint hyperparameters θ = 〈θy, θ�, �〉 = 〈σf , σn, σf , σ�, σn, �〉

generalize to the multidimensional case. The regression task is to learn a model
for p(y∗|x∗, D), i.e., the predictive distribution of new target values y∗ at x∗

given D. The notation we will use is listed in Table 1.

Stationary Gaussian Process Regression: In the standard Gaussian process
model for regression (STD-GP), we assume independent, normally distributed
noise terms εi ∼ N (0, σ2

n) with a constant noise variance parameter σ2
n. The

central idea is to model every finite set of samples yi from the process as jointly
Gaussian distributed, such that the predictive distribution p(y∗|x∗, D) at arbi-
trary query points x∗ is a Gaussian distribution N (μ, σ2) with mean

μ = kT
x∗,x(Kx,x + σ2

nI)−1y (1)

and variance

σ2 = k(x∗,x∗) − kT
x∗,x(Kx,x + σ2

nI)−1kx∗,x + σ2
n . (2)

Here, we have Kx,x ∈ R
n×n with Kx,x(i, j) = k(xi,xj), kx∗,x ∈ R

n with
kx∗,x(i) = k(x∗,xi), y = (y1, . . . , yn)T , and I the identity matrix.

An integral part of GP regression is the covariance function k(·, ·), which
specifies the covariance of the corresponding targets (see [11] for more details).
A common choice is the squared exponential covariance function kse(x,x′) =
σ2

f exp
(
−1/2 · (s(x,x′)/σ�)2

)
with s(x,x′) = ‖x − x′‖. The term σf denotes

the amplitude (or signal variance) and σ� is the characteristic length-scale. The
parameters θy = (σf , σ�, σn) are called the hyperparameters of the process. Note
that we – as opposed to some other authors – also treat the global noise rate σ2

n

as a hyperparameter for ease of notation.

Modeling Input-Dependent Smoothness: A limitation of the standard GP
framework as described above is the assumption of constant length-scales σ� over
the whole input space. Intuitively, length-scales define the extent of the area
in which observations strongly influence each other. For 3D terrain modeling,
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Fig. 1. Placing a GP prior over the latent length-scales for nonstationary GP regression.
An observed Gaussian process GPy is sketched on left-hand side and the latent GP�

governing the local length-scales is shown on the right-hand side.

for instance, within the context of mobile robot localization, one would like
to use locally varying length-scales to account for the different situations. For
example in flat plains, the terrain elevations are strongly correlated over long
distances. In high-variance, “wiggly” terrain, on the other hand and at strong
discontinuities, the terrain elevations are correlated over very short distances
only, if at all. To address this problem of varying correlation scale, an extension
of the squared exponential (SE) covariance function was proposed by Paciorek
and Schervish [8], which takes the form

k(xi,xj) =σ2
f |Σi|

1
4 |Σj |

1
4

∣
∣
∣
∣
Σi + Σj

2

∣
∣
∣
∣

− 1
2

· exp

[

−dT
ij

(
Σi + Σj

2

)−1

dij

]

, (3)

where dij = (xi − xj). The intuition is that each input location x′ is assigned a
local Gaussian kernel matrix Σ′ and the covariance between two targets yi and
yj is calculated by averaging between the two local kernels at the input locations
xi and xj . In this way, the local characteristics at both locations influence the
modeled covariance of the corresponding target values. For the sake of simplicity,
we consider the isotropic case only in this paper. The general case can be treated
in the same way. In the isotropic case, where the eigenvectors of the local kernels
are aligned to the coordinate axes and their eigenvalues are equal, the matrices
Σi simplify to �2

i · In with a real-valued length-scale parameter �i. In the one-
dimensional case, for instance, Eq. (3) then simplifies to

k(xi, xj) = σ2
f · (�2

i )
1
4 · (�2

j)
1
4 ·

(
1
2
�2
i +

1
2
�2
j

)− 1
2

· exp

[

− (xi − xj)2
1
2 �2

i + 1
2�2

j

]

. (4)

We do not specify a functional form for the length-scale �(x) at location x but
place a GP prior over them. More precisely, an independent GP is used to model
the logarithms log(�(x)) of the length-scales, to avoid negative values. This pro-
cess, denoted as GP� is governed by a different covariance function specified by
the hyperparameters θ� = 〈σf , σ�, σn〉. Additionally, we have to maintain the
set of m support values � as part of θ as depicted in Figure 1.

Making Predictions: In the extended model, we now have to integrate over
all possible latent length-scales to get the predictive distribution

p(y∗|X∗, D, θ)=
∫∫

p(y∗|X∗, D, exp(�∗), exp(�), θy)·p(�∗, �|X∗,X, �,X, θ�) d� d�∗



Nonstationary GP Regression Using Point Estimates of Local Smoothness 209

of a regressand y∗ at location X∗ given a dataset D and hyperparameters θ (Note
that we explicitly highlight here that GP� is defined over the log length-scales).
Because this marginalization is intractable, [8] apply MCMC to approximate
it. Instead, we seek for the solution using the most probable length-scale es-
timates, i.e., p(y∗|X∗, D, θ) ≈ p(y∗|X∗, exp(�∗), exp(�), D, θy) where (�∗, �) are
the mean predictions of the length-scale process at X∗ and the locations in D.
Since the length-scales are independent latent variables in the combined regres-
sion model, making predictions amounts to making two standard GP predictions
using Eqs. (1) and (2), one using GP� to get (�∗, �) and one using GPy with (�∗, �)
treated as fixed parameters.

4 Learning Hyperparameters

So far, we have described our model assuming that we have the joint hyper-
parameters θ of the overall process. In practice, we are unlikely to have these
parameters a-priori and, instead, we wish to estimate them from observations y.

Assume a given set of n observations y at locations X. We seek to find those
hyperparameters that maximize the probability of observing y at X, i.e., we
seek to maximize p(y|X, θ) =

∫
p(y|X, �, θy) · p(�|X, �,X, θ�) d� . As for mak-

ing predictions, such a marginalization is intractable. Instead, we seek to make
progress by seeking a solution that maximizes the a-posteriori probability of the
latent length-scales

log p(�|y,X, θ) = log p(y|X, exp(�), θy) + log p(�|X, �,X, θ�) + const. , (5)

where, again, the � are the mean predictions of GP�. The gradient of this objec-
tive function w.r.t. to hyperparameters θ or a subset of them can be employed
within gradient-based optimization to find the corresponding solution. In our
experiments, we optimized σf , σn, and σ� of the latent kernel width process
in an outer cross-validation loop on an independent validation set and assumed
∂L(θ)/∂• = 0, where • denotes one of them, within the inner gradient opti-
mization. The locations X of the latent kernel width variables were sampled
uniformly on the bounding rectangle given by X.

In the following, we will detail the objective function and the gradient of it
with respect to the hyperparameter.

4.1 The Objective Function

We maximize the marginal likelihood (5) of the data with respect to the joint
hyperparameters as well as the support values � of the length-scale process.
The first term in this equation is the standard objective function for Gaussian
processes

log p(y|X, exp(�), θy) = −1
2
yT (Kx,x+σ2

nI)−1y− 1
2

log |Kx,x+σ2
nI|− n

2
log(2π) ,

where |M| denotes the determinant of a matrix M and Kx,x stands for the
noise-free nonstationary covariance matrix for the training locations X that will
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be detailed below. Our point estimate approach considers the most likely latent
length-scales �, i.e. the mean predictions of GP� at locations X. Thus, the second
term of Eq. (5) has the form

log p(�|X, �,X, θ�) = −1
2

log |Kx,x + σ2
nI| − n

2
log(2π) .

Putting both together, we get the objective function

L(θ) = log p(�|y, X, θ) = c1 + c2 ·
[
yT A−1y + log |A| + log |B|

]
, (6)

where c1 and c2 are real-valued constants, and A := Kx,x + σ2
nI and B :=

Kx,x + σ2
nI are covariance matrices. The noise-free part of the nonstationary

covariance matrix Kx,x is calculated according to Eq. (3). As mentioned above,
we consider the isotropic case only for the sake of simplicity. We express Eq. (4)
for the case of multivariate inputs xi using the compact matrix-vector notation
suggested in [2]. Recalling that � represents the local length-scales at the training
locations X, we get

Kx,x = σ2
f · Pr

1
4 ◦ Pc

1
4 ◦ (1/2)−

1
2 Ps

− 1
2 ◦ E (7)

with

Pr = p · 1T
n , Pc = 1T

n · pT , p = �T � ,
Ps = Pr + Pc , E = exp[−s(X) ÷ Ps] , � = exp

[
K

T

x,x
[
Kx,x + σ2

nI
]−1

�
]
.

Note that p ∈ R
n and, thus, Pr and Pc are matrices built using the outer vector

product. Here, s(X) calculates the n × n matrix of squared distances between
the input vectors x contained in X. ◦ and ÷ denote element-wise multiplication
and division respectively and matrix exponentiation Mα is also defined element-
wise for α 
= −1. In the same notation, the covariance function for the latent
length-scale process GP� becomes (in the stationary squared exponential form)

Kx,x = σf
2 · exp

[
−1

2
s(σ�

−2X)
]

and, analogously, for making predictions within GP�

Kx,x = σf
2 · exp

[
−1

2
s(σ�

−2X, σ�
−2X)

]
.

4.2 The Gradient

Using standard results from matrix calculus, the partial derivative of the objec-
tive (6) w.r.t. an element • of θ turns out to be

∂L(θ)
∂• = −yT A−1 ∂A

∂• A−1y + tr(A−1 ∂A
∂• ) + tr(B−1 ∂B

∂• ) , (8)

where tr(M) is the trace of a matrix M. For the two hyperparameters of GPy

we get the straight-forward results
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∂A
∂σn

= 2σnI , ∂B
∂σn

= 0 , ∂A
∂σf

= 2σfKx,x , ∂B
∂σf

= 0 .

The case • = � yields (∂B/∂�) = 0 and (∂A)/(∂�) = (∂Kx,x)/(∂�) =

σ2
f (1/2)−

1
2 ·

[(
∂(Pr

1
4 )

∂�
◦ Pc

1
4 ◦ Ps

− 1
2 ◦ E

)

+

(

Pr
1
4 ◦ ∂(Pc

1
4 )

∂�
◦ Ps

− 1
2 ◦ E

)

+

(

Pr
1
4 ◦ Pc

1
4 ◦ ∂(Ps

− 1
2 )

∂�
◦ E

)

+
(
Pr

1
4 ◦ Pc

1
4 ◦ Ps

− 1
2 ◦ ∂(E)

∂�

)]

.

The remaining simplifications can be achieved by substitution with the defini-
tions given after Eq. (7) and by applying general rules for differentiation such
as the chain rule

∂f(g(X))
∂x

=
∂(f(U) : )

∂U
· ∂g(x)

∂x

∣
∣
∣∣
U=g(X)

where X : denotes the vectorization of a matrix by stacking its columns, e.g., as
applied to a term containing element-wise division

∂(A ÷ B)
∂x

= A ◦ ∂ inv(U) :
∂U :

· ∂B :
∂x

∣
∣
∣
∣
U=B

for a matrix A that does not depend on x. Substituting the resulting par-
tial derivatives in Eq. (8) yields the gradient ∂L(θ)/∂θ, which can be used
in gradient-based optimization techniques, such as Møller’s [7] scaled conjugate
gradients (SCG), to jointly optimize the hyperparameters of GPy and GP�.

5 Experiments

The goal of our experimental evaluation was to investigate to which extent the
point estimate approach to nonstationary GP regression is able to handle input-
dependent smoothness and to quantify the gains relative to the stationary model.
Specifically, we designed several experiments to investigate whether the approach
can solve standard regression problems from the literature. We also applied it to
two hard and relevant regression problems from embedded systems and robotics.
On the two standard test sets, we demonstrate that the prediction accuracy of
our approach is comparable to the one achieved by the MCMC-based method by
Paciorek and Schervish [8], which, compared to our algorithm, is substantially
more demanding regarding the computational resources.

We have implemented and evaluated our approach in Matlab1. Using the
compact matrix notation for all derivations, the core algorithm is implemented
in less than 150 lines of code and, more importantly, advanced optimization
strategies like sparse matrix approximations or parallelization can be realized
with virtually no additional implementation efforts. As optimization procedure,
1 The source code and data sets are available at http://robreg.org/projects/lagp
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we applied Møller’s scaled conjugate gradient (SCG) [7] approach. In all our
experiments, the SCG converged after at most 20 iterations. To quantitatively
evaluate the performance of our nonstationary regression technique, we ran 30 to
50 independent test runs for each of the following test cases. Each run consisted of
(a) randomly selecting or generating training data, (b) fitting the nonstationary
model, and (c) evaluating the predictive distribution of the learned model at
independent test locations. The latter was done either using the known ground
truth function values or by assessing the likelihood of independent observations
in the cases in which the ground truth was not known (e.g., for the RFID and
terrain mapping experiments).

In all test scenarios, we evaluate the accuracy of the mean predictions and
also the fit of the whole predictive distribution using the standardized mean
squared error

sMSE := n−1
∑n

i=1
var(y)−1(yi − mi)2

and the negative log predictive density

NLPD := n−1
∑n

i=1
log pmodel(yi|xi)

respectively. Here, {(xi, yi)}n
i=1 denotes the test data set, pmodel(·|xi) stands for

the predictive distribution at location xi, and mi := E[pmodel(·|xi)] denotes the
predicted mean. Statistical significance was assessed using two-sample t-tests
with 95% confidence intervals.

All experiments were conducted using Matlab on a Linux desktop PC with a
single 2 GHz CPU. The typical runtime for fitting the full nonstationary model
to 100 training points was in the order of 50 seconds. The runtime requirements
of the MCMC-based approach [8] which does not employ any gradient infor-
mation were reported to be in the order of hours for a C-implementation on
standard hardware in year 2004. In the following, we term our nonstationary
approach as LA-GP (Locally Adaptive GP), the standard model employing the
isotropic, squared exponential covariance function as STD-GP and Paciorek and
Schervish’s MCMC-based approach as NS-GP (Nonstationary GP).

5.1 Simulation Results in 1D and 2D

First, we verified that our approach accurately solves standard regression prob-
lems described in the literature. To this aim, we considered the two simulated
functions shown in Figure 2. Both functions were also used for evaluation pur-
poses by Dimatteo et al. [4] and in [8]. In the remainder, these test scenarios
will be referred to as SMOOTH-1D and JUMP-1D. Whereas SMOOTH-1D is
a smoothly varying function with a substantial “bump” close to 0, JUMP-1D
has a sharp jump at 0.4. For SMOOTH-1D, we sampled 101 training points and
400 test points from the interval (−2, 2). In the case of JUMP-1D, we sampled
111 training points and 111 for testing from (0, 1). Table 2 gives the results for
theses experiments (averaged over 50 independent runs). Additionally, this table
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Fig. 2. Two standard nonstationary test cases SMOOTH-1D (top left) and JUMP-1D
(top right) that were used for evaluation purposes in previous work [4] and [8]. The
lower two plots give the inverse latent length-scales as optimized by our approach.
Higher values in these plots indicate a larger local frequency.

contains results for a two-dimensional simulated function NONSTAT-2D, which
is described further below in this sub-section.

The results can be summarized as follows: with respect to the sMSE, the ac-
curacy of our approach is comparable to the MCMC-based method of Paciorek
and Schervish. Note that values given here were taken from their publication [8].
Both approaches significantly (α=0.05) outperform standard GPs. Our approach
also provides a significantly better performance compared to standard GPs with
respect to the NLPD. For a visual comparison of the regression results, con-
sider the left two diagrams in Figure 3. Whereas the standard GP (left plot)
– having a constant length-scale for the whole domain – cannot adapt to all
local properties well, our LA-GP accurately fits the bump and also the smoother
parts (center plot). It should be noted that LA-GP tends to assign higher fre-
quencies to the border regions of the training set, since there is less constrain-
ing data there compared to the center regions (see also the lower left plot in
Figure 2).

Table 2. Quantitative evaluation of the proposed nonstationary approach (LA-GP)
and the standard Gaussian process (STD-GP) as well as the MCMC-based approach
of [8] (NS-GP). We compare the prediction accuracies using the negative log predictive
density (NLPD) and the standardized mean squared errors (sMSE), see text. Results
marked by • differ significantly (α = 0.05) from the others in their category.

NLPD sMSE
Test Scenario LA-GP STD-GP LA-GP STD-GP NS-GP [8]
SMOOTH-1D -1.100 -1.026 (•) 0.0156 0.021 (•) 0.015

JUMP-1D -0.375 -0.440 (•) 0.0268 0.123 (•) 0.026
NONSTAT-2D -3.405 -3.315 (•) 0.0429 0.0572 (•) -
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Fig. 3. Typical regression results in the SMOOTH-1D test scenario for the STD-GP
model (left) and LA-GP (middle). The right diagram gives the statistics for changes
of the objective function per SCG optimization cycle (in log data liklihood).
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Fig. 4. Absolute distances of the test points from the predicted means in one run of
the JUMP-1D scenario using the STD-GP model (left) and LA-GP (right). The model
confidence bounds (2 standard deviations of the predictive distribution) are given by
dashed lines.

The right diagram of Figure 3 provides statistics about the individual gains
during the SCG cycles for 50 independent test runs. As can be seen from this plot,
after about 20 cycles the objective function, which corresponds to the negative
log data likelihood, does not change notably any more. ‘ Figure 4 compares the
confidence bounds of the different regression models to the actual prediction
errors made. It can be seen that the LA-GP model has more accurate bounds. It
should be noted that the predictive variance of the STD-GP model depends only
on the local data density and not on the target values and, thus, it is constant
in the non-border regions.

We give the absolute average errors of the mean predictions in the different
test cases in Figure 5. To highlight the more accurate confidence bounds of the
LA-GP model, we also give the statistics for the 50% most confident predictions.

In addition to the two one-dimensional standard test cases, we evaluated the
performance or our approach on a bivariate function (NONSTAT-2D). In par-
ticular, we simulated observations y(x1, x2) ∼ f(x1, x2) + N (0, 0.025) using the
noise-free bivariate function f(x1, x2) = 1/10 ·(sin(x1 b(x1, x2)+sin(x2 b(x1, x2))
and the underlying bandwidth function b(x1, x2) = π (2x1 + 0.5x2 + 1). This
function and typical observations are depicted in the left diagram of Figure 6.
During training, we sampled 11 · 11 = 121 points from a uniform distribution
over [−0.5, 1] × [−0.5, 1] and corresponding simulated observations (the latter
were drawn independently for each run). For testing, we uniformly sampled
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Fig. 5. Absolute average errors of the mean predictions in the SMOOTH-1D test sce-
nario (left), JUMP-1D (middle), and NONSTAT-2D (right). We give the absolute dis-
tances of the simulated observations to the true function values, the overall average
errors for the different models, and the average errors of the 50% most confidently
predicted means respectively.

31 ·31 = 961 points from [−0.5, 1]× [−0.5, 1] including their true function values.
A typical example of the resulting optimized length-scales are visualized in the
upper right contour plot of Figure 6. It can be seen that larger length-scales
(which correspond to stronger smoothing) are assigned to the flat part of the
surface around (−0.5, 0)T and smaller ones towards (1, 1)T .

The quantitative results in terms of NLPD and sMSE for 30 independent test
runs are given in Table 2. The absolute errors of the mean predictions are given
in the right bar chart of Figure 5. The two lower plots of Figure 6 give a visual
impression about the accuracy of the two regression models. We give the NLPD
errors at equidistantly sampled test locations overlayed by contour plots of the
predictive uncertainties. Note that the LA-GP model assigns higher confidence
to the flat part of the function, which – given the uniform sampling of training
points – can be reconstructed more accurately than the higher-frequency parts.

5.2 Modeling RFID Signal Strength

We have applied our nonstationary regression approach to the problem of learn-
ing the signal strength distribution of RFID (Radio Frequency Identification)
tags. For this experiment, 21.794 signal strength measurements (logarithmic to
the base of 10) have been recorded in a test setup at the University of Freiburg
using a static antenna and a mobile, externally localized RFID tag. For effi-
ciency reasons, only the left half-space of the antenna was sampled with real
measurements and then mirrored along the respective axis. We randomly sam-
pled 121 training points for learning the regression models and 500 different ones
for evaluation. Note that although larger training sets lead to better models, we
learn from this comparably small number of observations only to achieve faster
evaluation runs. Table 3 gives the quantitative comparison to the standard GP
model (STD-GP). As can be seen from the results, the standard model is out-
performed by our nonstationary extension both in terms of sMSE and NLPD.
Figure 7 shows predicted mean log signal strengths of the two models as color
maps overlayed with contour plots of the corresponding predictive uncertainties.
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Fig. 6. The true function and noisy observations in the NONSTAT-2D test case (top
left). Note the spatially varying oscillation frequency. The top right plot depicts the
contours of the latent length-scales as estimated by our LA-GP model. In the two lower
diagrams, we give the individual prediction errors (NLPD) of the Standard GP model
(bottom left) and LA-GP (bottom right). The predictive uncertainty of the models is
visualized using overlayed contours.

Table 3. Quantitative results for the RFID-2D experiment. Results marked by • differ
significantly (α = 0.05) from the others in their category.

NLPD sMSE
Test Scenario LA-GP STD-GP LA-GP STD-GP

RFID-2D -0.0101 (•) 0.1475 0.3352 (•) 0.4602
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Fig. 7. Predicted mean log signal strengths of RFID tags using the standard GP (left)
and the locally adapted GP (middle). The sensor location (0,0) is marked by a cross
and the predictive uncertainties of the models are visualized by overlayed contours. The
right plot visualizes the adapted latent length-scales of the LA-GP model. Coordinates
are given in Meters.



Nonstationary GP Regression Using Point Estimates of Local Smoothness 217

Table 4. Quantitative results for the simulated (TERSIM-2D) and the real
(TERREAL-2D) terrain mapping experiment. Results marked by • differ significantly
(α = 0.05) from the others in their category.

NLPD sMSE
Test Scenario LA-GP STD-GP LA-GP STD-GP

TERSIM-2D -4.261 (•) -4.198 0.127 0.126
TERREAL-2D -3.652 -3.626 0.441 (•) 0.475
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Fig. 8. A quadruped robot equipped with a laser sensor (left) acquires elevation mea-
surements of a rough terrain surface (middle) by executing a ’pushup’ motion. From
a subset of elevation samples, our LA-GP approach learns a predictive model that
captures the nonstationary nature of the data set (right).

We also visualize the contours of the latent length-scales modeling higher
frequencies in the proximity of the sensor location and lower ones in front of it.

5.3 Laser-Based Terrain Mapping

We also applied our model to the particularly hard robotics problem of learning
probabilistic terrain models from laser range measurements. In a joint project
with the Massachusetts Institute of Technology, we have equipped a quadruped
robot with a Hokuyo URG laser range sensor (see the left picture in Figure 8).
The robot was programmed to perform a ’pushup’ motion sequence in order
to acquire a 3D scan of the local environment. For evaluation, we selected a
20 × 20cm part of a rough terrain (with a maximum height of around 9 cm)
including its front edge (see the middle plot of Figure 8). 4.282 laser end points
of the 3D scan fall into this area.

We have trained the standard GP model and our nonstationary variant on
80 randomly selected training points from a noise-free simulation of the real
terrain (TERSIM-2D) and evaluated the prediction accuracy for 500 test points
(averaged over 30 independent runs). We repeated the same procedure on the
real data (TERREAL-2D) and evaluated the prediction accuracy for other, in-
dependently selected test points from the real scan. Thus, the latter evaluation
quantifies how well the models are able to predict other samples from the same
distribution while the former gives the prediction errors relative to a known



218 C. Plagemann, K. Kersting, and W. Burgard

ground truth function. Table 4 gives the quantitative results for these two ex-
periments. The right colormap in Figure 8 depicts the optimized length-scales
of the LA-GP model. It can be seen that the flat part of the terrain is assigned
larger local kernels compared to the rougher parts.

6 Conclusions

This paper has shown that GP regression with nonstationary covariance func-
tions can be realized efficiently using point estimates of the latent local smooth-
ness. The experimental results have shown that the resulting locally adaptive
GPs perform significantly better than standard GPs and that they have the
potential to solve hard learning problems from robotics and embedded systems.

There are several interesting directions for future work. First, the idea of opti-
mizing the parameters of the latent and the observed process jointly should be
applied to GP regression with input-dependent noise. In robotics applications,
one is likely to encounter both, input-dependent noise and variable smoothness.
Hence, the joint treatment of both should be addressed. Another direction is the
extensions of our approach to the pseudo-noise setting introduced by Snelson and
Ghahramani, see e.g. [15], so that the locations of the length-scale support values
are learned from data, too. Finally, one should investigate multi-task learning e.g.
along the lines of Yu et al. [17] to generalize e.g. across different types of terrains.
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Abstract. Methods for inductive transfer take advantage of knowledge
from previous learning tasks to solve a newly given task. In the con-
text of supervised learning, the task is to find a suitable bias for a new
dataset, given a set of known datasets. In this paper, we take a kernel-
based approach to inductive transfer, that is, we aim at finding a suitable
kernel for the new data. In our setup, the kernel is taken from the linear
span of a set of predefined kernels. To find such a kernel, we apply con-
vex optimization on two levels. On the base level, we propose an iterative
procedure to generate kernels that generalize well on the known datasets.
On the meta level, we combine those kernels in a minimization criterion
to predict a suitable kernel for the new data. The criterion is based on
a meta kernel capturing the similarity of two datasets. In experiments
on small molecule and text data, kernel-based inductive transfer showed
a statistically significant improvement over the best individual kernel in
almost all cases.

Keywords: kernels, inductive transfer, transfer learning, regularized risk
minimization.

1 Introduction

It is well known that the success or failure of a supervised learning method
depends on its bias. If the bias matches well with the underlying learning prob-
lem, the system will be able to construct predictive models. If the bias does not
match very well, the generated classifier will perform poorly. One of the great
advantages of kernel-based methods is the fact that the learning bias can be
flexibly adjusted by choosing a customized kernel for the data at hand. How-
ever, building custom kernels from scratch for individual applications can be
a tedious task. Recent research has dealt with the problem of learning kernels
automatically from data, see e.g. the work by Ong et al. [17] and Lanckriet et al.
[14]. In practice actual training data is often rare and in most cases it is better
to invest it for the actual learning task than for kernel selection. Even though
data from the same source may be rare, it is sometimes the case that data on
related or similar learning problems is available. As an example, for text classi-
fication problems, plenty of related text data might be available on the internet.
Similarly, for some problems from computational chemistry, research on related
endpoints might lead to related datasets.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 220–233, 2008.
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The task of using such related data to improve accuracy for the the learning
problem at hand is known as inductive transfer. Here, the main idea is that a
kernel (i.e., a bias) that has worked well on the related transfer datasets should
also work well on the new data. One particularly pragmatic approach to inductive
transfer is to build a range of classifiers with varying kernels and settings on the
transfer data and to evaluate the predictive accuracy of those classifiers. The
kernel that performed best on the transfer datasets could then be selected for the
new data. While conceptually simple, this method has three disadvantages. First,
classifier evaluation takes quite a lot of time, because evaluation methods like
cross validation require the generation of many classifiers. Second, the method
evaluates only single kernels and does not take into account the case where a
combination of many kernels might perform better than each individual kernel.
Third, it does not consider the fact that some transfer datasets are more similar
to the learning problem at hand than others.

In this paper we would like to address these issues. As a first contribution
we present a method that finds kernels, which generalize well on the existing
transfer data without the need to resort to expensive evaluation methods. Having
these “known good” kernels for the transfer data, we frame the problem of
finding a good kernel for the new data at hand as a meta learning problem.
Roughly, this learning problem can be stated as follows: given a set of transfer
datasets together with the corresponding good kernels, what would a good kernel
for the data at hand look like? We propose to solve this meta learning task
using a strategy based on regularized convex loss minimization with a meta-
kernel. For the case where the design of domain-specific meta-kernels is too
tedious or impossible (perhaps due to lack of suitable background knowledge),
we propose the histogram kernel, a generic meta-kernel that is applicable for
standard propositional datasets.

The paper is organized as follows. After a brief review of some related work in
Section 2, we introduce the setting and describe our approach in Section 3. We
start with the problem of finding good kernels for the transfer data in Section
3.1, present the histogram kernel in section 3.2 and discuss our approach to
the meta learning problem in Section 3.3. Finally, we report on experiments in
Section 4 and conclude in Section 5.

2 Related Work

The presented work is related to research in three areas. On one side, there has
been considerable progress in learning kernels from data. The original formula-
tion as a semi-definite optimization problem by Lanckriet et al. [14] has been
extended in various directions [16,19]. Other techniques for kernel learning in-
clude hyper kernels [17] and boosting [4,12]. All these approaches aim at learning
a good kernel from training data rather than from transfer data. On the other
side, there is a long history of work on inductive transfer, see e.g. Baxter [2].
Of course, inductive transfer is related to multi-task learning [3], where the goal
is to induce classifiers for many tasks at once. Multi-task learning with kernels
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Fig. 1. We aim at finding a good kernel k for the base learning problem. To do so,
we search for good kernels k̄1, . . . , k̄n for the n transfer learning problems. The meta
learning problem deals with learning a predictor f̊ , which outputs a good base kernel
k for the base data.

has been the subject of research by Evgeniou et al. [6] and Argyriou et al. [1].
It is often approached using Bayesian methods [10,24,22]. This paper deals with
a more asymmetric setting, where we use the older datasets only to increase
predictive performance on the new data at hand. Similar settings have been the
subject of work by Kaski and Peltonen [13] and Erhan et al. [5]. While Kaski and
Peltonen consider the case where only a few instances in the transfer datasets
are relevant, the study by Erhan et al. aims at generalizing from the transfer
data only, so that no base data is necessary.
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Finally, the presented work is also loosely related to research on meta learn-
ing. Here, the goal is to induce meta-classifiers, which, given a dataset and its
characteristics, propose a learning algorithm that is supposed to perform well
on the data at hand. We refer to Pfahringer et al. [18] for a meta learning study
based on landmarking and a short overview of related work.

3 Kernel-Based Inductive Transfer

For the following discussion, we assume a setting, where a user is interested in
finding a good classifier for some new data. Additionally, she has access to a
range of older datasets, which are assumed to be similar to the new data in
some regard. In the following, we call the older datasets transfer datasets and
the new data base dataset. The main question we are dealing with is how to find
a good kernel (i.e. bias) for the base learning problem, given the old transfer
datasets. As illustrated in Figure 1, we frame this problem as a meta learning
task. We proceed in three steps. First, for each transfer dataset, we generate a
kernel that leads to a highly predictive classifier on this data. Then, from the
transfer datasets and kernels, we learn a meta classifier f̊ , which predicts a new
base kernel when given a base dataset. The meta learning algorithm makes use
of the meta kernel k̊ to compare two datasets. Finally, in the last step, the meta
classifier is applied to the base data at hand, leading to a kernel k for the base
learning problem. This kernel is then plugged into a standard SVM to construct
a suitable classifier for the base data.

Let us introduce some notation before we delve into the details. As usual,
we assume that the training data is given as a set of labeled examples (X, Y ),
where the rows x1, . . . , xn of the training matrix X ∈ R

n×m constitute the
examples, and the y1, . . . , yn ∈ {−1, 1} represent the class labels. The goal is
to induce a classifier from (X, Y ) that predicts well on new, previously unseen
test instances. Since we are dealing with the inductive transfer setting, we are
given an additional set of t transfer datasets (X̄1, Ȳ1), . . . , (X̄t, Ȳt), which are
supposed to pose similar learning problems as the one given by (X, Y ). To allow
for a concise description, we mark all parameters and variables referring to the
transfer problems with a bar. For instance, given a particular transfer dataset
(X̄, Ȳ ), we let (x̄1, ȳ1), . . . , (x̄n, ȳn) denote its examples. Similarly, if an SVM is
applied on this data, we denote the coefficient vector and threshold output by
the SVM with ᾱ := (ᾱ1, . . . , ᾱn)T and b̄.

As explained above, we proceed in three steps to find a kernel, which is likely
to perform well on the base data. First of all, we compute for each transfer
dataset (X̄i, Ȳi) a kernel k̄∗

i that generalizes well from (transfer) training data to
(transfer) test data. Then, in the second step, we tackle the problem of finding a
good kernel k for the base learning data (X, Y ). We frame this as a meta learning
problem. In particular, we make use of a meta kernel k̊ : ((X̄, Ȳ ), (X̄ ′, Ȳ ′)) �→
r ∈ R, defined on the space of (transfer) datasets, to induce a meta model,
represented by a coefficient vector α̊ and a threshold b̊. Given a (base) dataset,
the meta model outputs a kernel that is likely to work well for learning on the
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base data. For notational clarity, we again mark all parameters and variables that
deal with the meta learning task (as opposed to the transfer and base learning
tasks) with a circle (e.g., we write k̊ to represent the meta kernel). Finally, in the
last step, we apply the meta model to the training data (X, Y ) at hand, yielding
a base kernel k. This kernel is then employed in the base SVM to build a final
classifier. In the following sections we describe the three steps in more detail.

3.1 Learning Kernels from Transfer Data

In the first step, we would like to discover which bias works well for each of the k
transfer data sets. Since we are working with SVMs, this essentially boils down
to the question of what kernel should be chosen in each case. Recall that the soft-
margin SVM optimizes the regularized hinge loss of classifier f̄ on the training
set. More formally, let k̄ be some positive semi-definite kernel, lh(ȳ, f̄(x̄)) =
max(0, 1 − ȳf̄(x̄)) denote the hinge loss, and let C > 0 be a tuning parameter.
Then, the SVM minimizes the following functional over all linear classifiers f̄ ∈
Hk̄ in the Hilbert space produced by kernel k̄, where ‖ · ‖k̄ denotes the norm in
this space.

S(X̄, Ȳ , f̄ , k̄) := C
∑

(x̄,ȳ)∈(X̄,Ȳ )

lh(ȳ, f̄(x̄)) + ‖f̄‖k̄ (1)

The standard SVM computes the optimal classifier f̄∗ by minimizing (1) over
f̄ , while keeping the kernel k̄ fixed: f̄∗ := argminf̄∈Hk̄

S(X̄, Ȳ , f̄ , k̄). Since the
hinge loss can be seen as a robust upper bound of the zero-one loss, it is a sensible
strategy to select not only the classifier f̄ , but also the kernel k̄ by minimizing
S(X̄, Ȳ , f̄ , k̄). In other words, to find a good kernel for a given dataset, one
can solve (f̄∗, k̄∗) := argminf̄∈Hk̄,k̄∈K S(X̄, Ȳ , f̄ , k̄), where K denotes some pre-
defined space of possible kernels. If K is a convex set, this enlarged optimization
problem is still convex and can thus be solved efficiently [14].

Unfortunately, minimizing (1) over a transfer data set (X̄, Ȳ ) does not neces-
sarily lead to a kernel that generalizes well on new data. This is for two reasons.
First, by optimizing k̄ and f̄ at the same time, one finds a kernel k̄∗ that works
well together with the optimal f̄∗. However, when one applies the kernel later
on new data, the SVM might induce a f̄ , which might differ from f̄∗ and does
therefore not match well with the k̄∗. In other words, we are not looking for
a k̄∗ that works well with f̄∗, but a kernel that works well with an f̄ that is
typically chosen by an SVM on new data. Second, for some classes of kernels
the kernel matrix has always full rank. This means that there is always a sub-
space H0 ⊆ Hk whose classifiers f̄ ∈ H0 achieve

∑n
i=1 lh(ȳi, f̄(x̄i)) = 0. This

is also true for practically relevant classes of kernels, for instance, radial basis
kernels. In those cases, minimizing S(X̄, Ȳ , f̄ , k̄) focuses almost exclusively on
the regularization term ‖f̄‖k̄ and the data-dependent term is largely ignored
(because it is zero in most cases). In other words, a kernel matrix of full rank
leads to overfitting in the sense that the optimization procedure prefers kernels
that match well with the regularization criterion rather than kernels that catch
the bias inherent in the data.
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Algorithm 1. An iterative procedure to find a kernel that generalizes well on
the dataset (X̄, Ȳ )

procedure FindGoodKernel(X̄, Ȳ , C)
select subset (X̄ ′, Ȳ ′) from (X̄, Ȳ )
select initial k̄(0) ∈ K
i ← 0
repeat

i ← i + 1
f̄ (i) ← argminf̄∈Hk̄

S(X̄ ′, Ȳ ′, f̄ , k̄(i−1))

k̄(i) ← argmink̄∈K S(X̄, Ȳ , f̄ (i), k̄)
until S(X̄, Ȳ , f̄ (i), k̄(i)) ≥ S(X̄, Ȳ , f̄ (i−1), k̄(i−1))
return (k̄(i), f̄ (i))

end procedure

To avoid the two problems, we split (X̄, Ȳ ) into two parts and modify the op-
timization criterion, so that f̄ depends only on the first part of the data, whereas
the kernel k̄ ∈ K is evaluated on the whole dataset. In this way, f∗ is chosen from
a much smaller and more restricted space of classifiers. Consequently, the opti-
mization procedure needs to better adjust k̄∗ to ensure that even a f̄∗ from the
rather restricted subspace generalizes well to the remaining instances. This setup
is similar to classifier evaluation with a hold-out set, where a classifier is induced
from the training set and then evaluated on a separate test set. More formally,
let (X̄ ′, Ȳ ′) be some subset of (X̄, Ȳ ). We use the standard SVM regularized risk
functional (1) to rate a classifier f̄ for a fixed kernel k̄ on this subset:

f̄ ∗̄
k := argmin

f̄∈Hk̄

S(X̄ ′, Ȳ ′, f̄ , k̄) (2)

Then, we choose the optimal kernel so that it performs best with f̄ ∗̄
k

on all
examples. More precisely, the desired optimal kernel k̄∗ is

k̄∗ = argmin
k̄∈K

S(X̄, Ȳ , argmin
f̄∈Hk̄

S(X̄ ′, Ȳ ′, f̄ , k̄), k̄) (3)

This criterion contains two nested optimization problems, one to determine the
best classifier, the other, which depends on the first one, to compute the optimal
kernel. Generally, the functional is not convex when optimizing over k̄ and f̄ ∗̄

k
at

the same time. However, on their own, the two single parts are convex optimiza-
tion problems: The first part argminf̄∈Hk̄

S(X̄ ′, Ȳ ′, f̄ , k̄) is the standard SVM cri-
terion, that is, a quadratic program. The second part argmink̄∈K S(X̄, Ȳ , f̄ ∗̄

k
, k̄)

is a convex criterion, if one sets f̄ ∗̄
k

to a fixed value and optimizes only over
k̄. This naturally leads to an optimization procedure that alternates between
optimizing (2) with a fixed k̄ and optimizing (3) with a fixed f̄ ∗̄

k
. The loop is

terminated as soon as neither of the two steps improves on the score anymore.
The approach is outlined in Algorithm 1.

Of course, it is impractical to deal with the explicit representations of f̄ ∗̄
k

in
a high-dimensional Hilbert space. Fortunately, the representer theorem ensures
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that the optimal f̄ ∗̄
k

is always contained in the linear span of {k(x̄′, ·)|x̄′ ∈ X̄ ′}.
Therefore, a classifier f̄ can be conveniently represented by a coefficient vector
ᾱ and a threshold b̄, so that f̄(x) =

∑n′

i=1 ȳ′
iᾱik̄(x, x̄′

i) + b̄. With this, the first
criterion (2) can be equivalently stated as follows:

argmin
ᾱ∈R

n
+,b̄∈R

C

n′∑

i=1

lh(ȳi, [K̄ ′D̄′ᾱ]i + b̄) + ᾱT D̄′K̄ ′D̄′ᾱ (4)

Here, ᾱ and b̄ are the coefficient vector and threshold of the linear classifier to be
found, n′ is the number of instances in (X̄ ′, Ȳ ′), K̄ ′ denotes the n′ ×n′ kernel ma-
trix with K̄ ′

ij = k̄(x̄i, x̄j), D̄′ is a n′ ×n′ diagonal matrix whose diagonal contains
the class labels D̄′

ii = ȳ′
i, and [x]i denotes the ith component of vector x.

The exact form of the second criterion depends on the structure of K. For
the experiments in section 4 we set K to the space of positive linear com-
binations of l main kernels k̄1, . . . , k̄l. This means that a kernel k̄ ∈ K can
be represented by a vector μ̄ ∈ R

l
+, ‖μ̄‖ ≤ 1 of linear coefficients, because

k̄(x̄1, x̄2) =
∑l

i=1 μ̄ik̄i(x̄1, x̄2). With this, criterion (3) becomes:

argmin
μ̄∈R

n
+,‖μ̄‖≤1

C

n∑

i=1

lh(ȳi, [M̄μ̄]i + b̄) + r̄T μ̄ (5)

Here, M̄ ∈ R
n×l with M̄ij = ȳi

∑n′

k=1 ȳkᾱkk̄j(x̄i, x̄k), and r̄ ∈ R
l with r̄k =

∑n′

i=1
∑n′

j=1 ȳiȳjᾱiᾱj k̄k(x̄i, x̄j). Of course, the overall transfer learning scheme
works also with other kernel spaces K. For instance, one could choose K =
{k̄p|p ∈ R}, where k̄p is a kernel function parameterized with p. If the resulting
kernel space K is a convex set, the corresponding transfer optimization criterion
(3) and the meta learning problem (6) (see section 3.3) can be cast as convex
optimization problems and are thus solvable with standard methods.

3.2 The Histogram Kernel for the Meta Learning Task

In the preceding section we described a method to find a kernel k̄∗
i that encodes

the bias inherent in each transfer dataset (X̄i, Ȳi). Now, we address the main
question of the paper: How can we make use of this transfer information when
dealing with the base learning problem, where we wish to learn a classifier for
the base dataset (X, Y )? In particular, given the k̄∗

i , what should a “good” base
kernel k for the base data look like? Since we assume that the transfer learning
problems are similar to the base learning problem, choosing the average over the
k̄∗

i appears to be a good option. On the second sight, though, it is clear that
some transfer learning problems are more similar to the base setup than others.
Thus, it makes sense to frame the task of finding a good base kernel k as a meta
learning problem. Formally, this problem can be stated as follows: Given a set
of t transfer datasets (X̄1, Ȳ1), . . . , (X̄t, Ȳt) and the corresponding t known good
kernels k̄∗

1 , . . . , k̄∗
t , we would like to predict a new kernel k that performs as good

as possible on the base data (X, Y ).



Kernel-Based Inductive Transfer 227

We tackle this meta learning problem using a kernel-based approach. As a first
step, we need a meta kernel k̊ : (X , Y) × (X , Y) → R. As it is the case with all
kernel-based classification systems, it is best to apply a kernel that incorporates
domain specific knowledge about the problem at hand. In our setting one could
use information about the features of the transfer and base datasets to construct
informative kernels. For instance, if the learning task at hand deals with the
classification of text documents, a meta kernel could compare two datasets by
counting the tokens that are shared in the two documents. As a default kernel
for the case where no usable meta-information is available for the construction
of a custom kernel, we propose the histogram kernel.

Given two datasets (X̄, Ȳ ) and (X̄ ′, Ȳ ′), where X̄ ∈ R
n×m and X̄ ′ ∈ R

n′×m′

are training matrices, the histogram kernel is the sum of the radial basis kernel
applied on the difference of the two histograms of feature averages and the ra-
dial basis kernel on the difference of the histograms of instance averages. More
precisely, the kernel is computed as follows. Assume one is given the two train-
ing datasets X and X ′. First, we compute the averages hc(X̄) = 1

neT
nX and

hr(X̄) = 1
mXem for X̄ and X̄ ′ (en denotes the vector of n ones) over the rows

and columns of those two datasets. Let hc, h
′
c, hr and h′

r denote the average
vectors for X̄ and X̄ ′ respectively. In the next step we sort the components in
the four vectors by descending size. With that, each vector represents the distri-
bution of feature and instance averages in the datasets, similar to a histogram.
Unfortunately, we can not compare the corresponding vectors directly, because
the number of columns and rows may differ between X and X ′ so that the
histogram vectors differ in the number of components. Thus, we normalize the
histograms hc, h

′
c and hr, h

′
r by duplicating components evenly in the smaller of

the two vectors until the two histograms have the same number of components.
Finally, we compute the absolute differences between the two corresponding his-
tograms dc := 1

m

∑m
j=1 |[hc −h′

c]j | and dr := 1
n

∑n
j=1 |[hr −h′

r]j |. The final kernel
value is then k̊((X̄, Ȳ ), (X̄ ′, Ȳ ′)) := 1

2 (exp(−dc) + exp(−dr)). It is easy to see
that k̊ is positive semi-definite, because dc and dr constitute the one-norm of the
histogram differences. While the histogram kernel is designed as a generic meta
kernel for the case where no application-specific choice is available, it appears to
work quite well in the experiments in section 4.1. It is an open question, whether
it could also be applied in other transfer or meta learning schemes, and which
other application-specific meta kernels could provide successful alternatives.

3.3 The Meta Learning Procedure

With this, we have the building blocks to address the meta learning problem.
Recall that we wish to learn a meta-model that relates the transfer datasets
(X̄1, Ȳ1), . . . , (X̄t, Ȳt) and the corresponding “known good” kernels k̄∗

1 , . . . , k̄∗
t .

The model is later used to predict a suitable base kernel for the base dataset.
Also recall from section 3.1 that each kernel k̄∗

i is a linear combination k̄∗
i =∑l

j=1 μ̄j k̄j of some main kernels k̄j . Thus, the transfer kernels k̄∗
1 , . . . , k̄∗

t are
actually represented by the corresponding coefficient vectors μ̄1, . . . , μ̄t.
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For the meta learning problem, we chose a regularized loss minimization
approach that resembles a Leave-One-Out-SVM [21]. First of all, it is clear,
that the zero-one or hinge losses are not applicable in this setting, because
the quantity to predict is a whole vector rather than a binary variable. As
a natural replacement, we select the 2-norm to measure the loss between the
predicted and true coefficient vector: l2(μ̄, f̊(X̄, Ȳ )) := ‖μ̄ − f̊(X̄, Ȳ )‖2. Fol-
lowing the approach of the SVM, we now aim at finding a coefficient vector
α̊ ∈ R

t and a threshold b̊ ∈ R
l, which minimize the loss of the kernel classifier

f̊(X, Y ) :=
∑t

i=1 k̊((X̄i, Ȳi), (X, Y ))α̊iμ̄i + b̊. For the training of this classifier,
though, we follow the philosophy of the Leave-One-Out-SVM and do not con-
sider the contribution of a training example for its own classification. More pre-
cisely, when evaluating the classifier given by (α̊, b̊) on training instance (X̄i, Ȳi)
during the learning step, we measure the 2-norm loss of the modified classifier
f̊\i(X, Y ) :=

∑
j �=i k̊((X̄j , Ȳj), (X, Y ))α̊j μ̄j + b̊, which does not incorporate the

contribution of the instance it is evaluated on. This ensures that the induced
classifier (α̊, b̊) focuses more on generalization from similar training instances,
rather than the rote-learning of dataset-weight associations. In other words, the
approach encourages stronger generalization, which is helpful for the typically
quite small meta datasets. Altogether, the optimization procedure for the meta-
learning task is given by:

argmin
α̊≥0,̊b

C

t∑

i=1

l2(μ̄, f̊\i(X̄, Ȳ )) + α̊T D̊α̊ (6)

Here, D̊ is the meta kernel matrix normalized with the main kernel weight vec-
tors: D̊ij = k̊((X̄i, Ȳi), (X̄j , Ȳj))μ̄T

i μ̄j .
Finally, after the meta classifier is induced from the transfer datasets, we can

apply it to the base data (X, Y ) to obtain a kernel k. This kernel, in turn, can
be expected to work well for the data at hand, because it was derived from the
related transfer datasets. In the next section we report results on experiments
with the described transfer learning scheme.

4 Experiments

We evaluated the described approach to inductive transfer in two experiments.
The first one deals with the prediction of biological activity of molecules, the
second with text categorization.

4.1 Structure-Activity Relationship Data

In this experiment, we evaluated kernel-based inductive transfer on the task of
learning the biological activity of compounds given their molecular structure as
a graph. Learning challenges of this sort are known as structure-activity rela-
tionships (SARs), and are common in medicinal chemistry and pharmaceutical
research. For the transfer and base data, we chose six datasets from the literature.
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Table 1. Results: estimated predictive accuracy of the classifiers on the structure-
activity relationship (SAR) data

Induct. Kernel Lin Quad RBF Lin Quad. RBF Lin Quad RBF
Trans. Learn. 100 100 100 500 500 500 all all all

bloodbarr 75.6 70.6• 75.9 75.7 72.8• 72.7• 74.1• 71.3• 71.7• 73.6• 71.3•
factorxa 95.7 93.9• 90.9• 94.9• 78.9• 94.0• 95.0• 71.7• 94.7• 95.5 68.1•
hia 81.8 77.0• 76.7• 77.4• 70.6• 79.1• 79.4• 67.2• 77.3• 79.2• 66.3•
mutagenesis 77.1 71.9• 72.0• 73.7• 67.7• 72.0• 73.6• 57.8• 71.5• 72.8• 56.3•
nctrer 81.6 77.6• 79.3• 78.2• 65.0• 80.0• 79.9• 62.8• 78.5• 80.1• 61.1•
yoshida 72.5 64.9• 63.6• 65.9• 68.8• 67.4• 67.5• 61.0• 67.7• 67.7• 61.0•

The bloodbarr dataset classifies 415 molecules according to the degree to which
they can cross the blood-brain barrier [15]. The HIA (Human Intestinal Absorp-
tion) dataset contains 164 molecules from various sources, rated according to
their oral bio-availability [20]. For the FactorXa set, the task is to discriminate
between factor Xa inhibitors of high and low affinity [8]. The NCTRER dataset
[7] deals with the prediction of binding activity of small molecules at the estro-
gen receptor, while the mutagenesis dataset [11] deals with the mutagenicity of
compounds. Finally, the Yoshida dataset [23] consists of 265 molecules classified
according to their bio-availability.

To transform the graph data into an attribute-value representation, we deter-
mined for each dataset the subgraphs that occur in more than a fixed fraction
pmin of graphs in the set. We lowered the threshold pmin for each dataset until
around 1,000 non-redundant subgraphs1 were found and used these subgraphs as
binary features (“subgraph occurs/does not occur”). For the resulting datasets,
we applied the method described in section 3.1. We randomly chose half of the
instances for the estimation of f̄ ∗̄

k
and ran Algorithm 1 with C = 1 to compute

good transfer kernels k̄∗. Each such kernel is a linear combination of nine main
kernels. For the main kernels, we chose a linear kernel, a quadratic kernel, and a
Gaussian kernel with σ = 1. Since the subgraph features are sorted by size (i.e.
number of edges), and since it is known that smaller subgraphs tend to be more
informative, we applied the three kernels first on the first 100 features, then on
the first 500 features, and finally on all features. The k̄∗

i for each transfer dataset
are then linear combinations of these nine main kernels.

Finally, we set one dataset as base learning problem aside and kept the remain-
ing datasets as transfer data. We generated the meta model from this transfer
data using the histogram kernel outlined in section 3.2 and the optimization
criterion described in section 3.3. The application of the meta model on the base
data yields the desired base kernel, which was used in an SVM with C = 1 on
the base data to learn a classifier. An evaluation of this classifier is given in

1 Here, “non-redundant” means that we omitted features whose occurrence vector
agreed exactly with an already exiting subgraph feature. This step is necessary to
avoid the combinatorial explosion, which takes place when a large amount of slight
subgraph variants occur frequently in a dataset.
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Table 2. Results: estimated predictive accuracy of the classifiers induced on text cat-
egorization data

Dataset Induct. Kernel Lin Quad RBF Lin Quad RBF Lin Quad RBF
Trans. Learn. 25% 25% 25% 50% 50% 50% all all all

10341-14525 55.9 52.2• 49.9• 49.2• 56.6 50.2• 49.2• 57.2 50.1• 49.2• 53.4•
1092-1110 78.5 63.3• 74.6• 51.7• 61.3• 74.6• 51.8• 61.7• 74.9• 51.8• 61.9•
114202-190888 69.3 55.3• 64.6• 52.6• 50.2• 64.6• 52.6• 48.8• 64.9• 52.8• 50.8•
1155181-138526 85.2 64.8• 85.2 57.5• 57.0• 85.2 58.4• 56.1• 85.1 58.3• 55.9•
123412-17899 68.7 66.7 66.3• 64.6• 63.5• 66.3• 64.5• 63.7• 66.3• 64.2• 64.4•
14271-194927 67.1 56.9• 65.3 52.7• 49.4• 65.1 52.4• 49.8• 64.9 52.0• 49.1•
14630-20186 73.4 56.1• 64.7• 44.6• 59.7• 64.6• 45.2• 59.9• 67.5• 45.8• 54.8•
173089-524208 79.8 68.0• 73.5• 63.4• 62.5• 73.7• 63.9• 64.5• 73.8• 63.9• 64.2•
17360-20186 69.5 56.0• 62.8• 51.6• 53.2• 62.6• 51.7• 53.9• 63.1• 51.9• 51.2•
186330-314499 59.3 56.0 52.3• 49.0• 57.4• 52.5• 49.0• 57.3• 52.7• 49.0• 55.9•

Table 1. For comparison, we state the accuracy of a classifier that was induced
by kernel learning without the use of the transfer data. To obtain this classifier,
we split the training data into two parts of equal size, learn a kernel from the
first part of the data and a classifier from the second part. We also give the
accuracies of the classifiers induced by the nine main kernels. The estimates are
averages over ten ten-fold cross-validation runs. An accuracy estimate for the
comparison classifiers is marked with a bullet (“•”), if it is significantly worse
than the one for the inductive transfer method according to a paired Wilcoxon
rank test at the 5% significance level. The classifiers generated by the presented
inductive transfer method were never significantly worse than those induced by
the main kernels and by kernel learning. Inductive transfer outperforms kernel
learning on all six datasets and it is better than all main kernels on five of them
(significantly so on four datasets). Only on the bloodbarr dataset, the classifier
constructed by the linear kernel proved to be competitive with the inductive
transfer approach.

4.2 Text Data

For the second experiment, we evaluated the proposed method on text catego-
rization data. This domain is well suited for our setting, because the internet
provides a wealth of labeled text documents that can be used for inductive
transfer. The experiments are based on the datasets from TechTC, the Technion
repository of text categorization datasets [9]. Each dataset contains between 150
and 200 web documents, which were obtained by crawling the english language
section of a web directory. The binary classification task posed by a dataset con-
sists in telling which category of the web directory a document was taken from.
An instance is represented by a vector whose components state the number of
occurrences of a word. We sorted the features in descending order from frequently
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to infrequently occurring words. For the experiments, we randomly chose fifty
datasets as transfer data, and selected ten base datasets for evaluation.

As a first step, we applied Algorithm 1 to construct a predictive kernel for
each transfer dataset. As before, we used half of the data for classifier estimation
and set C = 1. The kernels were again represented as linear combinations of nine
main kernels k̄1, . . . , k̄9. The first three main kernels were applied on only the first
quarter of the features (that is, the 25% of most frequently occurring words), the
second three main kernels used the 50% most frequently occurring words, and the
last three kernels were computed on all features. As in the previous experiment,
we had a linear, a quadratic and a Gauss main kernel for each feature (sub-)set. In
the next step, we computed the meta kernel matrix for the fifty transfer datasets.
The meta kernel was computed based on the overlap of word features between
two datasets. More precisely, we chose k̊(X̄1, X̄2) := |W̄1∩W̄2|/ max(|W̄1|, |W̄2|),
where W̄1 and W̄2 denote the set of words in X̄1 and X̄2, respectively.

Plugging this meta kernel into the optimization criterion (6), we obtain a
meta classifier that predicts a kernel for each base dataset. Table 2 gives an
evaluation of the predictive accuracy of the classifiers that were induced with
those base kernels (setting C = 1 for the base SVM). As before, we give also the
predictive performance of a kernel induced from the training data and the single
main kernels. All estimates are averaged over ten runs of tenfold-cross valida-
tion. An estimate is marked with a bullet (“•”), if it is significantly worse than
the estimate for the inductive transfer method according to a paired Wilcoxon
rank test on the 5% significance level, and with a circle (“◦”), if it is better.
The inductive transfer method outperformed the kernel learning on all datasets
(significantly so on eight out of the ten) and it was better than all main kernels
in nine cases (in seven of them significantly), a clear indication that the pre-
dicted base kernels provide indeed a good bias for text categorization tasks on
web documents.

5 Conclusion

In this paper, we described a kernel-based approach to inductive transfer. In this
setting, the main goal is to make use of existing datasets to increase the predictive
performance of classifiers induced on a new dataset. We framed the problem of
finding a good bias for the new data as a meta learning problem: Given the
transfer data, what should a kernel for the new data look like? We proposed a
kernel-based approach to this problem. First, we presented an iterative procedure
to find transfer kernels, which encode the bias necessary to perform well on the
transfer datasets. Second, we introduced a convex optimization criterion for the
meta learning problem to predict a suitable base kernel for the new data. Third,
we described the histogram kernel, a general purpose kernel for the meta learning
task. Of course, the work can be extended in various directions. For example, it
would be interesting to investigate other meta kernels that use more (possibly
domain specific) knowledge about the datasets.
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Abstract. Policy Gradient methods are model-free reinforcement learn-
ing algorithms which in recent years have been successfully applied to
many real-world problems. Typically, Likelihood Ratio (LR) methods
are used to estimate the gradient, but they suffer from high variance
due to random exploration at every time step of each training episode.
Our solution to this problem is to introduce a state-dependent explo-
ration function (SDE) which during an episode returns the same action
for any given state. This results in less variance per episode and faster
convergence. SDE also finds solutions overlooked by other methods, and
even improves upon state-of-the-art gradient estimators such as Natural
Actor-Critic. We systematically derive SDE and apply it to several illus-
trative toy problems and a challenging robotics simulation task, where
SDE greatly outperforms random exploration.

1 Introduction

Reinforcement Learning (RL) is a powerful concept for dealing with semi-super-
vised control tasks. There is no teacher to tell the agent the correct action for a
given situation, but it does receive feedback (the reinforcement signal) about how
well it is doing. While exploring the space of possible actions, the reinforcement
signal can be used to adapt the parameters governing the agent’s behavior.
Classical RL algorithms [1,2] are designed for problems with a limited, discrete
number of states. For these scenarios, sophisticated exploration strategies can
be found in the literature [3,4].

In contrast, Policy Gradient (PG) methods as pioneered by Williams [5] can
deal with continuous states and actions, as they appear in many real-life settings.
They can handle function approximation, avoid sudden discontinuities in the
action policy during learning, and were shown to converge at least locally [6].
Successful applications are found e.g. in robotics [7], financial data prediction [8]
or network routing [9].

However, a major problem in RL remains that feedback is rarely available at
every time step. Imagine a robot trying to exit a labyrinth within a set time,
with a default policy of driving straight. Feedback is given at the end of an
episode, based on whether it was successful or not. PG methods most commonly
use a random exploration strategy [5,7], where the deterministic action (“if wall
ahead, go straight”) at each time step is perturbed by Gaussian noise. This way,
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the robot may wiggle free from time to time, but it is very hard to improve the
policy based on this success, due to the high variance in the gradient estimation.
Obviously, a lot of research has gone into devising smarter, more robust ways of
estimating the gradient, as detailed in the excellent survey by Peters [7].

Our novel approach is much simpler and targets the exploration strategy
instead: In the example, the robot would use a deterministic function providing
an exploration offset consistent throughout the episode, but still depending on
the state. This might easily change the policy into something like “if wall ahead,
veer a little left”, which is much more likely to lead out of the labyrinth, and thus
can be identified easily as a policy improvement. Hence, our method, which we
call state-dependent exploration (SDE), causes considerable variance reduction
and therefore faster convergence. Because it only affects exploration and does
not depend on a particular gradient estimation technique, SDE can be enhanced
with any episodic likelihood ratio (LR) method, like REINFORCE [5], GPOMDP
[10], or ENAC [11], to reduce the variance even further.

Our exploration strategy is in a sense related to Finite Difference (FD) meth-
ods like SPSA [12] as both create policy deltas (or strategy variations) rather
than perturbing single actions. However, direct parameter perturbation has to
be handled with care, since small changes in the policy can easily lead to un-
forseen and unstable behavior and a fair amount of system knowledge is therefore
necessary. Furthermore, FD are very sensitive to noise and hence not suited for
many real-world tasks. SDE does not suffer from these drawbacks—it embeds
the power of FD exploration into the stable LR framework.

The remainder of this paper is structured as follows: Section 2 introduces
the policy gradient framework together with a thorough derivation of the equa-
tions and applications to function approximation. Our novel exploration strategy
SDE will be explained in detail in section 3. Experiments and their results are
described in section 4. The paper concludes with a short discussion in section 5.

2 Policy Gradient Framework

An advantage of policy gradient methods is that they don’t require the envi-
ronment to be Markovian, i.e. each controller action may depend on the whole
history encountered. So we will introduce our policy gradient framework for gen-
eral non-Markovian environments but later assume a Markov Decission Process
(MDP) for ease of argument.

2.1 General Assumptions

A policy π(u|h, θ) is the probability of taking action u when encountering history
h under the policy parameters θ. Since we use parameterized policies throughout
this paper, we usually ommit θ and just write π(u|h). We will use hπ for the
history of all the observations x, actions u, and rewards r encountered when
following policy π. The history at time t = 0 is defined as the sequence hπ

0 =
{x0}, consisting only of the start state x0. The history at time t consists of
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all the observations, actions and rewards encountered so far and is defined as
hπ

t = {x0, u0, r0, x1, . . . , ut−1, rt−1, xt}.
The return for the controller whose interaction with the environment produces

history hπ is written as R(hπ), which is defined as R(hπ) = aΣ

∑T
t=0 aD rt

with aΣ = (1 − γ), aD = γt for discounted (possibly continuous) tasks and
aΣ = 1/T , aD = 1 for undiscounted (and thus necessarily episodic) tasks. In this
paper, we deal with episodic learning and therefore will use the latter definition.
The expectation operator is written as E{·}.

The overall performance measure of policy π, independent from any history h,
is denoted J(π). It is defined as J(π) = E{R(hπ)} =

∫
p(hπ)R(hπ) dhπ. Instead

of J(π) for policy π parameterized with θ, we will also write J(θ).
To optimize policy π, we want to move the parameters θ along the gradient

of J to an optimum with a certain learning rate α:

θt+1 = θt + α∇θJ(π). (1)

The gradient ∇θJ(π) is

∇θJ(π) = ∇θ

∫

hπ

p(hπ)R(hπ) dhπ =
∫

hπ

∇θp(hπ)R(hπ) dhπ . (2)

2.2 Likelihood Ratio Methods

Rather than perturbing the policy directly, as it is the case with FD methods
[12,7], LR methods [5] perturb the resulting action instead, leading to a stochas-
tic policy (which we assume to be differentiable with respect to its parameters
θ), such as

u = f(h, θ) + ε, ε ∼ N (0, σ2) (3)

where f is the controller and ε the exploration noise. Unlike FD methods, the new
policy that leads to this behavior is not known and consequently the difference
quotient

∂J(θ)
∂θi

≈ J(θ + δθ) − J(θ)
δθi

(4)

can not be calculated. Thus, LR methods use a different approach in estimating
∇θJ(θ).

Following the derivation of e.g. Wierstra et al. [13], we start with the proba-
bility of observing history hπ under policy π, which is given by the probability
of starting with an initial observation x0, multiplied by the probability of taking
action u0 under h0, multiplied by the probability of receiving the next obser-
vation x1, and so on. Thus, (5) gives the probability of encountering a certain
history hπ.

p(hπ) = p(x0)
T−1∏

t=0

π(ut|hπ
t ) p(xt+1|hπ

t , ut) (5)
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Inserting this into (2), we can rewrite the equation by multiplying with 1 =
p(hπ)/p(hπ) and using 1

x∇x = ∇ log(x) to get

∇θJ(π) =
∫

p(hπ)
p(hπ)

∇θp(hπ)R(hπ) dhπ (6)

=
∫

p(hπ)∇θ log p(hπ)R(hπ) dhπ . (7)

For now, let us consider the gradient ∇θ log p(hπ). Substituting the probability
p(hπ) according to (5) gives

∇θ log p(hπ) = ∇θ log
[
p(x0)

T−1∏

t=0

π(ut|hπ
t ) p(xt+1|hπ

t , ut)
]

= ∇θ

[
log p(x0) +

T−1∑

t=0

log π(ut|hπ
t ) +

T−1∑

t=0

log p(xt+1|hπ
t , ut)

]
. (8)

On the right side of (8), only the policy π is dependent on θ, so the gradient can
be simplified to

∇θ log p(hπ) =
T−1∑

t=0

∇θ log π(ut|hπ
t ). (9)

We can now resubstitute this term into (7) and get

∇θJ(π) =
∫

p(hπ)
T−1∑

t=0

∇θ log π(ut|hπ
t )R(hπ) dhπ

= E

{
T−1∑

t=0

∇θ log π(ut|hπ
t )R(hπ)

}

. (10)

Unfortunately, the probability distribution p(hπ) over the histories produced
by π is not known in general. Thus we need to approximate the expectation,
e.g. by Monte-Carlo sampling. To this end, we collect N samples through world
interaction, where a single sample comprises a complete history hπ (one episode
or rollout) to which a return R(hπ) can be assigned, and sum over all samples
which basically yields Williams’ [5] episodic REINFORCE gradient estimation:

∇θJ(π) ≈ 1
N

∑

hπ

T−1∑

t=0

∇θ log π(ut|hπ
t )R(hπ) (11)

At this point there are several approaches to improve gradient estimates, as
mentioned in the introduction. Neither these nor ideas like baselines [5], the
PEGASUS trick [14] or other variance reduction techniques [15] are treated here.
They are complementary to our approach, and their combination with SDE will
be covered by a future paper.
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2.3 Application to Function Approximation

Here we describe how the results above, in particular (11), can be applied to
general parametric function approximation. Because we are dealing with multi-
dimensional states x and multi-dimensional actions u, we will now use bold font
for (column) vectors in our notation for clarification.

To avoid the issue of a growing history length and to simplify the equations,
we will assume the world to be Markovian for the remainder of the paper, i.e. the
current action only depends on the last state encountered, so that π(ut|hπ

t ) =
π(ut|xt). But due to its general derivation, the idea of SDE is still applicable to
non-Markovian environments.

The most general case would include a multi-variate normal distribution func-
tion with a covariance matrix Σ, but this would square the number of parameters
and required samples. Also, differentiating this distribution requires calculation
of Σ−1, which is time-consuming. We will instead use a simplification here and
add independent uni-variate normal noise to each element of the output vector
seperately. This corresponds to a covariance matrix Σ = diag(σ1, . . . , σn).1 The
action u can thus be computed as

u = f(x, θ) + e =

⎡

⎢
⎣

f1(x, θ)
...

fn(x, θ)

⎤

⎥
⎦ +

⎡

⎢
⎣

e1
...

en

⎤

⎥
⎦ (12)

with θ = [θ1, θ2, . . .] being the parameter vector and fj the jth controller output
element. The exploration values ej are each drawn from a normal distribution
ej ∼ N (0, σ2

j ). The policy π(u|x) is the probability of executing action u when
in state x. Because of the independence of the elements, it can be decomposed
into π(u|x) =

∏
k∈O

πk(uk|x) with O as the set of indices over all outputs, and
therefore log π(u|x) =

∑
k∈O

log πk(uk|x). The element-wise policy πk(uk|x) is
the probability of receiving value uk as kth element of action vector u when
encountering state x and is given by

πk(uk|x) =
1√

2πσk

exp
(

− (uk − μk)2

2σ2
k

)

, (13)

where we substituted μk := fk(x, θ). We differentiate with respect to the pa-
rameters θj and σj :

∂ log π(u|x)
∂θj

=
∑

k∈O

∂ log πk(uk|x)
∂μk

∂μk

∂θj

=
∑

k∈O

(uk − μk)
σ2

k

∂μk

∂θj
(14)

1 A further simplification would use Σ = σI with I being the unity matrix. This is
advisable if the optimal solution for all parameters is expected to lay in similar value
ranges.
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∂ log π(u|x)
∂σj

=
∑

k∈O

∂ log πk(uk|x)
∂σj

=
(uj − μj)2 − σ2

j

σ3
j

(15)

For the linear case, where f(x, θ) = Θx with the parameter matrix Θ = [θji]
mapping states to actions, (14) becomes

∂ log π(u|x)
∂θji

=
(uj −

∑
i θjixi)

σ2
j

xi (16)

An issue with nonlinear function approximation (NLFA) is a parameter di-
mensionality typically much higher than their output dimensionality, constitut-
ing a huge search space for FD methods. However, in combination with LR
methods, they are interesting because LR methods only perturb the resulting
outputs and not the parameters directly. Assuming the NLFA is differentiable
with respect to its parameters, one can easily calculate the log likelihood values
for each single parameter.

The factor ∂μk

∂θj
in (14) describes the differentiation through the function ap-

proximator. It is convenient to use existing implementations, where instead of
an error, the log likelihood derivative with respect to the mean, i.e. the first
factor of the sum in (14), can be injected. The usual backward pass through
the NLFA—known from supervised learning settings—then results in the log
likelihood derivatives for each parameter [5].

3 State-Dependent Exploration

As indicated in the introduction, adding noise to the action u of a stochastic
policy (3) at each step enables random exploration, but also aggravates the
credit assignment problem: The overall reward for an episode (also called return)
cannot be properly assigned to individual actions because information about
which actions (if any) had a positive effect on the return value is not accessible.2

Our alternative approach adds a state-dependent offset to the action at each
timestep, which can still carry the necessary exploratory randomness through
variation between episodes, but will always return the same value in the same
state within an episode. We define a function ε̂(x; θ̂) on the states, which will act
as a pseudo-random function that takes the state x as input. Randomness origi-
nates from parameters θ̂ being drawn from a normal distribution θ̂j ∼ N (0, σ̂2

j ).
As discussed in section 2.3, simplifications to reduce the number of variance
parameters can be applied. The action is then calculated by

u = f(x; θ) + ε̂(x; θ̂), θ̂j ∼ N (0, σ̂2
j ). (17)

2 GPOMDP [10], also known as the Policy Gradient Theorem [6], does consider single
step rewards. However, it still introduces a significant amount of variance to a rollout
with traditional random exploration.
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Fig. 1. Illustration of the main difference between random (left) and state-dependent
(right) exploration. Several rollouts in state-action space of a task with state x ∈ R

2

(x- and y-axis) and action u ∈ R (z-axis) are plotted. While random exploration follows
the same trajectory over and over again (with added noise), SDE instead tries different
strategies and can quickly find solutions that would take a long time to discover with
random exploration.

If the parameters θ̂ are drawn at each timestep, we have an LR algorithm as
in (3) and (12), although with a different exploration variance. However, if we
keep θ̂ constant for a full episode, then our action will have the same exploration
added whenever we encounter the same state (Figure 1). Depending on the choice
of ε̂(x), the randomness can further be “continuous”, resulting in similar offsets
for similar states. Effectively, by drawing θ̂, we actually create a policy delta,
similar to FD methods. In fact, if both f(x; Θ) with Θ = [θji] and ε̂(x, Θ̂) with
Θ̂ = [θ̂ji] are linear functions, we see that

u = f(x; Θ) + ε̂(x; Θ̂)

= Θx + Θ̂x

= (Θ + Θ̂)x, (18)

which shows that direct parameter perturbation methods (cf. (4)) are a special
case of SDE and can be expressed in this more general reinforcement framework.

3.1 Updates of Exploration Variances

For a linear exploration function ε̂(x; Θ̂) = Θ̂x it is possible to calculate the
derivative of the log likelihood with respect to the variance. We will derive the
adaptation for general σ̂ji, any parameter reduction techniques from 2.3 can be
applied accordingly.

First, we need the distribution of the action vector elements uj:

uj = fj(x, Θ) + Θ̂jx = fj(x, Θ) +
∑

i

θ̂jixi (19)
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with fj(x, Θ) as the jth element of the return vector of the deterministic con-
troller f and θ̂ji ∼ N (0, σ̂2

ji). We now use two well-known properties of normal
distributions: First, if X and Y are two independent random variables with
X ∼ N (μa, σ2

a) and Y ∼ N (μb, σ
2
b ) then U = X + Y is normally distributed

with U ∼ N (μa + μb, σ
2
a + σ2

b ). Second, if X ∼ N (μ, σ2) and a, b ∈ R, then
aX + b ∼ N (aμ + b, (aσ)2).

Applied to (19), we see that θ̂jixi ∼ N (0, (xiσ̂ji)2), that the sum is distributed
as

∑
i θ̂jixi ∼ N (0,

∑
i(xiσ̂ji)2), and that the action element uj is therefore

distributed as
uj ∼ N (fj(x, Θ),

∑

i

(xiσ̂ji)2), (20)

where we will substitute μj := fj(x, Θ) and σ2
j :=

∑
i(xiσ̂ji)2 to obtain ex-

pression (13) for the policy components again. Differentiation of the policy with
respect to the free parameters σ̂ji yields:

∂ log π(u|x)
∂σ̂ji

=
∑

k

∂ log πk(uk|x)
∂σj

∂σj

∂σ̂ji

=
(uj − μj)2 − σ2

j

σ4
j

x2
i σ̂ji (21)

For more complex exploration functions, calculating the exact derivative for
the sigma adaptation might not be possible and heuristic or manual adaptation
(e.g. with slowly decreasing σ̂) is required.

3.2 Stochastic Policies

The original policy gradient setup as presented in e.g. [5] conveniently unifies
the two stochastic features of the algorithm: the stochastic exploration and the
stochasticity of the policy itself. Both were represented by the Gaussian noise
added on top of the controller. While elegant on the one hand, it also conceals the
fact that there are two different stochastic processes. With SDE, randomness has
been taken out of the controller completely and is represented by the seperate
exploration function. So if learning is switched off, the controller only returns
deterministic actions. But in many scenarios the best policy is necessarily of
stochastic nature.

It is possible and straight-forward to implement SDE with stochastic policies,
by combining both random and state-dependent exploration in one controller,
as in

u = f(x; θ) + ε + ε̂(x; θ̂), (22)

where εj ∼ N(0, σj) and θ̂j ∼ N(0, σ̂j). Since the respective noises are simply
added together, none of them affects the derivative of the log-likelihood of the
other and σ and σ̂ can be updated independently. In this case, the trajectories
through state-action space would look like a noisy version of Figure 1, righthand
side.
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3.3 Negative Variances

For practical applications, we also have to deal with the issue of negative vari-
ances. Obviously, we must prevent σ from falling below zero, which can happen
since the right side of (15) can become negative. We therefore designed the fol-
lowing smooth, continuous function and its first derivative:

expln(σ) =

{
exp(σ) σ ≤ 0
ln(σ + 1) + 1 else

(23)

expln′(σ) =

{
exp(σ) σ ≤ 0

1
σ+1 else

(24)

Substitution of σ∗ := expln(σ) will keep the variance above zero (exponential
part) and also prevent it from growing too fast (logarithmic part). For this, the
derivatives in (15) and (21) have to be multiplied by expln′(σ). In the experi-
ments in section 4, this factor is included.

4 Experiments

Two different sets of experiments are conducted to investigate both the theore-
tical properties and the practical application of SDE. The first looks at plain
function minimization and analyses the properties of SDE compared to REX.
The second demonstrates SDE’s usefulness for real-world problems with a sim-
ulated robot hand trying to catch a ball.

4.1 Function Minimization

The following sections compare SDE and random exploration (REX) with regard
to sensitivity to noise, episode length, and parameter dimensionality. We chose a
very basic setup where the task was to minimize g(x) = x2. This is sufficient for
first convergence evaluations since policy gradients are known to only converge
locally. The agent’s state x lies on the abscissa, its action is multiplied with a
step-size factor s and the result is interpreted as a step along the abscissa in
either direction. To make the task more challenging, we always added random
noise to the agent’s action. Each experiment was repeated 30 times, averaging
the results. Our experiments were all episodic, with the return R for each episode
being the average reward as stated in section 2.1. The reward per timestep was
defined as rt = −g(xt), thus a controller reducing the costs (negative reward)
minimizes g(x).

For a clean comparison of SDE and REX, we used the SDE algorithm in
both cases, and emulated REX by drawing new exploration function parameters
θ̂ after each step (see Section 3). Unless stated otherwise, all experiments were
conducted with a REINFORCE gradient estimator with optimal baseline [7] and
the following parameters: learning rate α = 0.1, step-size factor s = 0.1, initial
parameter θ0 = −2.0, episode length EL = 15 and starting exploration noise
σ̂ = e−2 ≈ 0.135.
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(a) σnoise = 0.5 (b) σnoise = 1.0 (c) σnoise = 1.5

Fig. 2. Convergence for different levels of noise, averaged over 30 runs per curve. The
upper solid curve shows SDE, the lower dotted curve REX.

Noise Level. First, we investigated how both SDE and REX deal with noise
in the setting. We added normally distributed noise with variance σ2

noise to each
new state after the agent’s action was executed: xt+1 = xt + sut + N (0, σ2

noise),
where s is the step-size factor and ut is the action at time t. The results of
experiments with three different noise levels are given in Figure 2 and the right
part of Table 1.

The results show that SDE is much more robust to noise, since its advantage
over REX grows with the noise level. This is a direct effect of the credit assign-
ment problem, which is more severe as the randomness of actions increases.

An interesting side-effect can also be found when comparing the convergence
times for different noise levels. Both methods, REX and SDE, ran at better
convergence rates with higher noise. The reason for this behavior can be shown
best for a one-dimensional linear controller. In the absence of (environmental)
noise, we then have:

xt = xt−1 + sut−1

ut = θxt + εexplore

Table 1. Noise and episode length (EL) sensitivity of REX and SDE. σnoise is the
standard deviation of the environmental noise. The steps designate the number of
episodes until convergence, which was defined as Rt > Rlim (a value that all controllers
reached). The quotient REX/SDE is given as a speed-up factor.

# steps # steps
σnoise EL Rlim REX SDE speed-up σnoise EL Rlim REX SDE speed-up

0.5

5

-1.8

9450 3350 2.82 0.5
15 -1.6

9950 2000 4.98
15 9150 1850 4.95 1.0 9850 1400 7.04
30 9700 1050 9.24 1.5 7700 900 8.56
45 8800 650 13.54
60 8050 500 16.10
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Fig. 3. Left: Results for different episode lengths, from top to bottom: 5, 15, 30. Right:
Nonlinear controller with 18 free parameters on a 2-dimensional task. With REX, the
agent became stuck in a local optimum, while SDE found the same optimum about 15
times faster and then converged to a better solution.

Adding noise to the state update results in

x′
t = xt + εnoise = xt−1 + sut−1 + εnoise

u′
t = θ(xt−1 + sut−1 + εnoise) + εexplore

= θ(xt−1 + sut−1) + θεnoise + εexplore

= θxt + ε′explore

with ε′explore = θεnoise + εexplore. In our example, increasing the environmental
noise was equivalent to increasing the exploratory noise of the agent, which
obviously accelerated convergence.

Episode Length. In this series of experiments, we varied only the episode
length and otherwise used the default settings with σnoise = 0.5 for all runs. The
results are shown in Figure 3 on the left side and Table 1, left part. Convergence
speed with REX only improved marginally with longer episodes. The increased
variance introduced by longer episodes almost completely outweighed the higher
number of samples for a better gradient estimate. Since SDE does not introduce
more noise with longer episodes during a single rollout, it could profit from longer
episodes enormously. The speed-up factor rose almost proportionally with the
episode length.

Parameter Dimensionality. Here, we increased the dimensionality of the
problem in two ways: Instead of minimizing a scalar function, we minimized
g(x, y) = [x2, y2]T . Further, we used a nonlinear function approximator, namely
a multilayer perceptron with 3 hidden units with sigmoid activation and a bias
unit connected to hidden and output layer. We chose a single parameter σ̂ for ex-
ploration variance adaptation. Including σ̂ the system consisted of 18 adjustable
parameters, which made it a highly challenging task for policy gradient methods.
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The exploration variance was initially set to σ̂ = −2 which corresponds to an
effective variance of ∼ 0.135. The parameters were initialized with θi ∈ [−1, 0[
because positive actions quickly lead to high negative rewards and destabilized
learning. For smooth convergence, the learning rate α = 0.01 needed to be
smaller than in the one-dimensional task.

As the righthand side of Figure 3 shows, the agent with REX became stuck
after 15, 000 episodes at a local optimum around R = −70 from which it could
not recover. SDE on the other hand found the same local optimum after a mere
1, 000 episodes, and subsequently was able to converge to a much better solution.

4.2 Catching a Ball

This series of experiments is based on a simulated robot hand with realistically
modelled physics. We chose this experiment to show the predominance of SDE
over random exploration, especially in a realistic robot task. We used the Open
Dynamics Engine3 to model the hand, arm, body, and object. The arm has
3 degrees of freedom: shoulder, elbow, and wrist, where each joint is assumed
to be a 1D hinge joint, which limits the arm movements to forward-backward
and up-down. The hand itself consists of 4 fingers with 2 joints each, but for
simplicity we only use a single actor to move all finger joints together, which
gives the system the possibility to open and close the hand, but it cannot control
individual fingers. These limitations to hand and arm movement reduce the
overall complexity of the task while giving the system enough freedom to catch
the ball. A 3D visualization of the robot attempting a catch is shown in Fig. 4.
First, we used REINFORCE gradient estimation with optimal baseline and a
learning rate of α = 0.0001. We then repeated the experiment with Episodic
Natural Actor-Critic (ENAC), to see if SDE can be used for different gradient
estimation techniques as well.

Experiment Setup. The information given to the system are the three coor-
dinates of the ball position, so the robot “sees” where the ball is. It has four
degrees of freedom to act, and in each timestep it can add a positive or negative
torque to the joints. The controller therefore has 3 inputs and 4 outputs. We map
inputs directly to outputs, but squash the outgoing signal with a tanh-function
to ensure output between -1 and 1.

The reward function is defined as follows: upon release of the ball, in each
time step the reward can either be −3 if the ball hits the ground (in which case
the episode is considered a failure, because the system cannot recover from it)
or else the negative distance between ball center and palm center, which can be
any value between −3 (we capped the distance at 3 units) and −0.5 (the closest
possible distance considering the palm heights and ball radius). The return for
a whole episode is the mean over the episode: R = 1

N

∑N
n=1 rt. In practice, we

found an overall episodic return of −1 or better to represent nearly optimal

3 The Open Dynamics Engine (ODE) is an open source physics engine, see
http://www.ode.org/ for more details.
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Fig. 4. Visualization of the simulated robot hand while catching a ball. The ball is
released 5 units above the palm, where the palm dimensions are 1 x 0.1 x 1 units.
When the fingers grasp the ball and do not release it throughout the episode, the best
possible return (close to −1.0) is achieved.

catching behavior, considering the time from ball release to impact on palm,
which is penalized with the capped distance to the palm center.

One attempt at catching the ball was considered to be one episode, which
lasted for 500 timesteps. One simulation step corresponded to 0.01 seconds,
giving the system a simulated time of 5 seconds to catch and hold the ball.

For the policy updates, we first executed 20 episodes with exploration and
stored the complete history of states, actions, and rewards in an episode queue.
After executing one learning step with the stored episodes, the first episode was
discarded and one new rollout was executed and added to the front of the queue,
followed by another learning step. With this “online” procedure, a policy update
could be executed after each single step, resulting in smoother policy changes.
However, we did not evaluate each single policy but ran every twentieth a few
times without exploration. This yields a return estimate for the deterministic
policy. Training was stopped after 500 policy updates.

Results. We will first describe the results with REINFORCE. The whole ex-
periment was repeated 100 times. The left side of Figure 5 shows the learning
curves over 500 episodes. Please note that the curves are not perfectly smooth
because we only evaluated every twentieth policy. As can be seen, SDE finds a
near-perfect solution in almost every case, resulting in a very low variance. The
mean of the REX experiments indicate a semi-optimal solution, but in fact some
of the runs found a good solution while others failed, which explains the high
variance throughout the learning process.

The best controller found by SDE yielded a return of −0.95, REX reached
−0.97. While these values do not differ much, the chances of producing a good
controller are much higher with SDE. The right plot in Figure 5 shows the
percentage of runs where a solution was found that was better than a certain
value. Out of 100 runs, REX only found a mere 7 policies that qualified as
“good catches”, where SDE found 68. Almost all SDE runs, 98%, produced
rewards R ≥ −1.1, corresponding to behavior that would be considered a “catch”
(closing the hand and holding the ball), although not all policies were as precise
and quick as the “good catches”. A typical behavior that returns R 	 −1.5 can
be described as one that keeps the ball on the fingers throughout the episode
but hasn’t learned to close the hand. R 	 −2.0 corresponds to a behavior where
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Fig. 5. Results after 100 runs with REINFORCE. Left: The solid and dashed curves
show the mean over all runs, the filled envelopes represent the standard deviation.
While SDE (solid line) managed to learn to catch the ball quickly in every single case,
REX occasionally found a good solution but in most cases did not learn to catch the
ball. Right: Cumulative number of runs (out of 100) that achieved a certain level.
R ≥ −1 means “good catch”, R ≥ −1.1 corresponds to all “catches” (closing the hand
and holding the ball). R ≥ −1.5 describes all policies managing to keep the ball on the
hand throughout the episode. R ≥ −2 results from policies that at least slowed down
ball contact to the ground. The remaining policies dropped the ball right away.

Fig. 6. Results after 100 runs with ENAC. Both learning curves had relatively high
variances. While REX often didn’t find a good solution, SDE found a catching behavior
in almost every case, but many times lost it again due to continued exploration. REX
also found slightly more “good catches” but fell far behind SDE considering both
“good” and “average” catches.

the hand is held open and the ball falls onto the palm, rolls over the fingers
and is then dropped to the ground. Some of the REX trials weren’t even able
to reach the −2.0 mark. A typical worst-case behavior is pulling back the hand
and letting the ball drop to the ground immediately.

To investigate if SDE can be used with different gradient estimation tech-
niques, we ran the same experiments with ENAC [11] instead of REINFORCE.
We used a learning rate of 0.01 here, which lead to similar convergence speed.
The results are presented in Figure 6. The difference compared to the results
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with REINFORCE is, that both algorithms, REX and SDE had a relatively
high variance. While REX still had problems to converge to stable catches (yet
showed a 26% improvement over the REINFORCE version of REX for “good
catches”), SDE in most cases (93%) found a “catching” solution but often lost
the policy again due to continued exploration, which explains its high variance.
Perhaps this could have been prevented by using tricks like reducing the learn-
ing rate over time or including a momentum term in the gradient descent. These
advancements, however, are beyond the scope of this paper. SDE also had trou-
ble reaching near-optimal solutions with R ≥ −1.0 and even fell a little behind
REX. But when considering policies with R ≥ −1.1, SDE outperformed REX
by over 38%. Overall the experiments show that SDE can in fact improve more
advanced gradient estimation techniques like ENAC.

5 Conclusion

We introduced state-dependent exploration as an alternative to random explo-
ration for policy gradient methods. By creating strategy variations similar to
those of finite differences but without their disadvantages, SDE inserts consid-
erably less variance into each rollout or episode. We demonstrated how various
factors influence the convergence of both exploration strategies. SDE is much
more robust to environmental noise and exhibits advantages especially during
longer episodes. In problems involving many tunable parameters it not only con-
verges considerably faster than REX, but can also overcome local minima where
the other method gets stuck. In a robotics simulation task, SDE could clearly
outperform REX and delivered a stable, near-optimal result in almost every trial.
SDE also improves upon recent gradient estimation techniques such as ENAC.
Furthermore, SDE is simple and elegant, and easy to integrate into existing pol-
icy gradient implementations. All of this recommends SDE as a valuable addition
to the existing collection of policy gradient methods. Our toy experiment serves
to illustrate basic properties of SDE, while the physics-based ball catching simu-
lation gives a first hint of SDE’s performance in real-world applications. Ongoing
work is focusing on realistic robot domains.
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Abstract. In this work, we introduce a powerful and general feature
representation based on a locality sensitive hash scheme called random
hyperplane hashing. We are addressing the problem of centrally learning
(linear) classification models from data that is distributed on a number
of clients, and subsequently deploying these models on the same clients.
Our main goal is to balance the accuracy of individual classifiers and
different kinds of costs related to their deployment, including commu-
nication costs and computational complexity. We hence systematically
study how well schemes for sparse high-dimensional data adapt to the
much denser representations gained by random hyperplane hashing, how
much data has to be transmitted to preserve enough of the semantics of
each document, and how the representations affect the overall compu-
tational complexity. This paper provides theoretical results in the form
of error bounds and margin based bounds to analyze the performance
of classifiers learnt over the hash-based representation. We also present
empirical evidence to illustrate the attractive properties of random hy-
perplane hashing over the conventional baseline representation of bag of
words with and without feature selection.

1 Introduction

In times of increasingly web-oriented information architectures, it becomes more
and more natural to push analytical software down to clients, and to have them
report back critical and prototypical events that require additional attention or
indicate specific business opportunities. Examples of analytical software running
on user PCs include spam filtering, malware detection, and diagnostic tools for
different kinds of system failures.

We are concerned with a family of classification problems where high-dimen-
sional, sparse training data is available on a large number of clients. We want to
centrally collect data to train classifiers for deployment on the clients. Although
the techniques we are studying apply to a broader set of problems, like eDiscov-
ery, for the sake of this paper, we will exemplarily only consider the problem of
classifying (reasonably large) text documents, like web pages a user visits. We
aim to classify with respect to a quickly changing taxonomy of relevant concepts.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 250–265, 2008.
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Our constraints in this setting stem from the natural goal of minimizing re-
source consumption on clients. This includes network bandwidth, but also mem-
ory and CPU footprint of classifiers and related software. During a cycle of
training and deploying classifiers we go through the following phases: Data is
preprocessed on clients before it is uploaded to a server. The preprocessing is
required to reduce data volumes, and sometimes also to preserve privacy. The
classifiers are learnt on the server. Clients download a potentially large number
of classifiers, so we would like to minimize the required bandwidth. Finally, the
models are deployed on the clients and triggered for each document under con-
sideration, so we are concerned with the associated costs of preprocessing each
document and of applying a linear classifier on top of that representation.

The questions we are addressing in this paper are therefore, which repre-
sentations of sparse and high-dimensional data are compact enough to be
transmitted over the web, general enough to be used for all kinds of upcoming
multi-class classification problems, cheap enough to be applicable at deploy-
ment time, and are close enough to the performance of the models that are
not narrowed down by operational costs.

The novelty of this work is in exploiting a locality sensitive hashing technique
called random hyperplane hashing (cf. Algorithm 1) towards building a compact,
general, cheap and powerful representation scheme. This technique has the ad-
ditional benefit of being content-agnostic, which implies that it does not require
any deep domain understanding in the preprocessing phase. Further, it can be
used in the text domain, without any feature selection and for any language. The
contributions of this paper are two fold: (i) we present key theoretical results in
terms of error bounds and margin based bounds to quantify the loss of informa-
tion due to random hyperplane hashing and (ii) we present experimental results
to bring out the above mentioned attractive properties of the hashing-based
representation scheme.

The closely related random projection technique [3,4,9,19,10] has been used
successfully as a tool for dimensionality reduction because of its simplicity and
nice theoretical Euclidean distance preserving properties. Though the random
hyperplane hash method has a striking resemblance to the random projection
method (as seen in Algorithm 1), there is a key difference as random hyperplane
hashing preserves the angular distance while random projection preserves Eu-
clidean distance, leading to a completely different representation scheme. More
importantly, from a practical standpoint, the bit-based representation based on
random hyperplane hashing turns out to be significantly more compact, which
we elaborate later in the paper.

The rest of the paper is organized as follows. Sec. 2 provides the required tech-
nical preliminaries and reviews locality sensitive hashing with emphasis on the
angular distance preserving random hyperplane representation scheme. In this
paper, we confine ourselves to the problem of learning linear classification models
on top of this representation; in Sec. 3 we discuss this setting and present theo-
retical results based on error bounds and margin based bounds. Sec. 3 includes a
comparative study of our representation scheme with that of random projection
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Require:
– Input document d
– Number k of output dimensions
– Type of transformation, either RP or RHH

Ensure:
k-dimensional boolean (for RHH) or integer (for RP) vector representing d

Computation:
Create a k dimensional vector v with v[i] = 0 for 1 ≤ i ≤ k
for all terms w in document d do

Set random seed to w // cast w to integer or use hash value
for all i in (1, . . . , k) do

b ← sample random bit uniformly from {−1, +1}
v[i] ← v[i] + b

for all i in (1, . . . , k) do
v[i] ← sign(v[i]) // only for RHH, skip this step for RP

return v

Algorithm 1. A random projection (RP) / hyperplane (RHH) algorithm

based representation. We complement our theoretical findings with a number of
empirical results on benchmark datasets in Sec. 4. Finally, we summarize and
conclude in Sec. 5.

2 Random Hyperplane Hashing

Locality Sensitive Hash functions are invaluable tools for approximate near
neighbor problems in high dimensional spaces. Traditionally, nearest neighbor
search in high dimensional spaces has been expensive, because with increasing
dimensionality, indexing schemes such as KD Trees very quickly deteriorate to
a linear scan of all the items. Locality Sensitive Hash Functions [12] were intro-
duced to solve the approximate nearest neighbor problem in high dimensional
spaces, and several advancements [6,2,5] have been done in this area.

Definition 1 (Locality Sensitive Hashing [5,12]). A locality sensitive hash-
ing scheme is a distribution on a family F of hash functions on a set of instances,
such that for two instances x and y,

Prh∈F [h(x) = h(y)] = f(sim(x, y)) (1)

where, sim(x, y) is some similarity function defined on the instances and f is a
monotonically increasing function i.e., more the similarity, higher the probability.

Simply put, a locality sensitive hash function is designed in such a way that if
two vectors are close in the intended distance measure, the probability that they
hash to the same value is high; if they are far in the intended distance measure,
the probability that they hash to the same value is low. Next, we provide a formal
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review of locality sensitive hash functions. In particular, we focus on the cosine
similarity as it is a popular one for a variety of applications such as in document
retrieval [17], natural language processing [16] and image retrieval [18].

Definition 2 (Cosine Similarity). The cosine of two vectors u ∈ R
m and

v ∈ R
m is defined as cos(u, v) = u.v

|u||v| .

As we will discuss, the random hyperplane hashing algorithm provides a locality
sensitive hash function that corresponds to the cosine similarity measure. Let us
first introduce the notion of a cosine hash family.

Definition 3 (Cosine Hash Family [7]). A set of functions H = {h1, h2, . . .}
constitute a cosine hash family over R

m iff for some finite U ⊂ N,

– hk ∈ H : R
m → U

– For any four vectors u, u′, v, v′ in R
m where

cos(u, u′) = cos(v, v′), the following is true:

Prh∈H(h(u) = h(u′)) = Prh∈H(h(v) = h(v′))

– For any four vectors u, u′, v, v′ in R
m where

cos(u, u′) > cos(v, v′), the following is true:

Prh∈H(h(u) = h(u′)) > Prh∈H(h(v) = h(v′))

The following definition is similar to Algorithm 1, but more convenient for ana-
lytical purposes. We will compare the two at a later point.

Definition 4 (Random Hyperplane Hash (RHH) algorithm [5]). The
random hyperplane hashing algorithm works as follows: for a desired hash length
of k, generate an m × k projection matrix M , where each element is chosen
i.i.d from a N (0, 1) distribution. The k dimensional hash of a vector u ∈ R

m is
computed in two steps,

– Compute the vector P = uM

– The ith entry of the hash of u is −1 if Pi < 0, and 1 otherwise.

We will conclude this section with a number of important properties of random
projections that will be used throughout the paper.

Lemma 1. Let u, v be vectors in R
m such that cos(u, v) = ρ and their cor-

responding k-dimensional random hyperplane hash are denoted as u′ and v′ re-
spectively. We denote the distance between u′ and v′ as d′(u′, v′) which is defined
below. Then,

1. P (u′
i = v′i) = 1 − arccos(ρ)

π

2. 1
4 (u′

i − v′i)
2 ∼ Bernoulli(arccos(ρ)

π )
3. d′(u′, v′) := 1

4

∑k
i=1(u

′
i − v′i)

2 ∼ Binomial(k, arccos(ρ)
π )
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4. Additive bound: For any ε > 0,

Pr
(

1
k

d′(u′, v′) − arccos(ρ)
π

> ε

)

≤ e−2ε2k (2)

Pr
(

1
k

d′(u′, v′) − arccos(ρ)
π

< −ε

)

≤ e−2ε2k (3)

5. Multiplicative bound: For any λ ∈ [0, 1],

Pr
(

1
k

d′(u′, v′) ≥ (1 + λ)
arccos(ρ)

π

)

≤ e−
λ2k arccos(ρ)

3π (4)

Pr
(

1
k

d′(u′, v′) ≤ (1 − λ)
arccos(ρ)

π

)

≤ e−
λ2k arccos(ρ)

2π (5)

Proof. The first result is a fundamental property of random hyperplanes exploited
in [11] and was later used to develop the random hyperplane hashing algorithm in
[5]. This key property results in random hyperplane hashes satisfying the proper-
ties of a cosine hash family. The second and third results follow from 1. The fourth
and fifth results are obtained by applying Hoeffding and Chernoff bounds respec-
tively on d′(u′, v′) by expressing it as a sum of independent Bernoulli distributed
random variables (u′

1 − v′1)
2, (u′

2 − v′2)
2, . . . , (u′

k − v′k)2. �	

The key contribution of this work is the use of random hyperplane hashing
as a representation scheme over which classifiers can be learnt. The efficient
random hyperplane hashing algorithm leads to a general and compact angular
distance preserving representation. In the next section, we exploit the properties
of random hyperplane hashing provided in Lemma 1 to obtain bounds on the
performance of linear classifiers learnt over such a representation and further,
compare it with the closely related random projection algorithm.

3 Classifier over Random Hyperplane Hashes

We start with a formal definition of a linear classifier in both spaces, Euclidean
space and random hyperplane hash space.

Definition 5 (Linear classifier and its hash representation). Let T rep-
resent a concept that maps instances xi from an m-dimensional space of reals
R

m to labels yi that belongs to {−1, +1}. The concept T allows for a linear clas-
sifier h ∈ R

m, if there exists a h satisfying, yi(hT xi) ≥ 0 which can alternately
be written as yi

(
1
2 − 1

π arccos( hT xi

|h||xi| )
)

≥ 0. Since, h ∈ R
m, it allows for a ran-

dom hyperplane hash representation h′. In the hash space, we consider linear
classifiers of the form yi

k (h′T x′
i) ≥ 0 1.

1 The 1
k

is for convenience and results in the classifier output to be in the range
[−1, 1].
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Our first important error bound requires a stronger notion of separability, how-
ever. In the next subsection, we will show that a slightly less restrictive constraint
is not sufficient.

Definition 6 (ε-robust concept). For any real 0 < ε < 0.5, a concept T along
with a distribution D on R

m is ε-robust, if it allows for a linear classifier h that
satisfies 1

2 − 1
π arccos( hT x

|h||x|) > ε for positive and 1
2 − 1

π arccos( hT x
|h||x|) < −ε for

negative instances.

Theorem 1. Let h be a linear classifier that can correctly classify instances
in R

m according to some ε-robust target concept T and let h′ denote its hash
representation. Consider x ∈ R

m and its k dimensional random hyperplane hash
x′, for k ≥ α

2ε2 and projection matrix M . Then,

∀x : D(x) > 0,PrM∼[N(0,1)]m×k [labelh(x) �= labelh′(x′)] ≤ e−α (6)

Proof. Consider a positive instance x. Let the random hyperplane hash of x be
x′. By definition of ε robustness, h satisfies

1
π

arccos(
hT xi

|h||xi|
) ≤ 1

2
− ε. (7)

Now for 0 < ε < 0.5, let us compute the following probability,

Pr
(

1
k

d′(h′, x′) >
1
2

+ ε

)

(8)

The Hoeffding bound from Lemma 1,

Pr
(

1
k

d′(h′, x′) − 1
π

arccos(
hT xi

|h||xi|
) > ε

)

≤ e−2kε2 (9)

and Eqn. 7, with the definition of d′, can be combined to obtain,

Pr
(

1
4k

(
|h′|2 + |x′|2 − 2h′T x′) − (

1
2

− ε) > ε

)

≤ e−2kε2 (10)

and using the property that |h′| = |x′| =
√

k (by construction2) leads to,

Pr
(

1
k

h′T x′ < 0
)

≤ e−2kε2 (11)

which corresponds to the probability that x′ is mislabeled as negative by h′. A
similar result can be shown for negative instances which leads to the error bound
in Eqn. 6. �	
Using Theorem 6, Fig. 1 illustrates the lower bounds on hash length k required
for different label error rate constraints. It is important to note that the bound
is obtained based on the hash of the classifier. A classifier explicitly learnt in the
hash space can only lead to a better margin.
2 The conventional random hyperplane algorithm results in a k dimensional vector

of 0s and 1s, but we construct a vector of −1s and 1s to allow for a constant norm
of

√
k for hash length k.
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Fig. 1. Plot showing lower bounds on hash length for the random hyperplane hashing
algorithm for different upper bounds on label error rates (set by varying α). The x-
axis represents the level of robustness of the target concept in terms of ε.

3.1 Comparison with Random Projections

The method of random projections (RP) has been used extensively to perform
dimensionality reduction [19] in a distance preserving manner. The random pro-
jection method is the same as the random hyperplane method described in Def. 1
without the thresholding performed in the second step. The thresholding step
results in a key difference: Euclidean distance is preserved with high probability
in the case of random projections [13] whereas the angular distance (Lemma 1) is
preserved in the random hyperplane case. As mentioned before, cosine similarity
is extensively used in domains like text and image retrieval. The work reported
in [3] provides error bounds for classifiers learnt over random projections. The
error bound (based on Lemma 3 from [3]), indicates the number of projections,
kRP ≥ 8α

ε2 compared to our case where the number of hash elements kRHH ≥ α
2ε2

while ensuring the same error bound e−α for different notions of robustness. In
[19], the authors define the notion of l-robustness which simply put, disallows
instances with different labels to be less than l close to each other. Our notion of
ε robustness is much stronger than the l-robustness. Next, we present empirical
results to show the need for such a strong notion of robustness.

In this synthetic experiment, we demonstrate the label errors introduced by
the random projection algorithm and random hyperplane hashing algorithm.
Generate p different random hyperplanes h1, h2, . . . , hp. For every random hy-
perplane, we use the l robustness assumption used in [3] and generate N instances
at random from R

m in such a way that no two instances with different labels are
more than l close to each other. The labeling yij of each instance xi is obtained
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Fig. 2. Plot illustrating the drop in label error rate with increasing projec-
tions/hashlength where the classification obeys l-robustness (left plot) and ε-
robustness (right plot)

based on yij(hT
j xi) ≥ 0 3. We generate K different projection matrices of size

k × m where each element is chosen i.i.d from N (0, 1). The random projection
and random hyperplane hashing algorithms are performed using all l projection
matrices, on all xil, hjl, to obtain x̂il,ĥjl and x′

il, h′
jl respectively. The labels in

the hash space are obtained according to ŷijl(ĥT
jlx̂il) ≥ 0 and y′

ijl(h
′T
jlx

′
il) ≥ 0.

Now, we evaluate the label error rate given by, 1
K×N×p

∑
i,j,l I (yij �= ŷijl) and

1
K×N×p

∑
i,j,l I

(
yij �= y′

ijl

)
for the random projection method and the random

hyperplane case for different values of k. Fig. 2 (left) shows that, even with
hashlength 16384, the label error rate is still around 4% which is clearly unex-
pected based on the lower bounds on hash length. The same inconsistency arises
with the random projection case as well. The reason for this effect is that the
notion of l-robustness does not account for disallowing instances that are very
close to the hyperplane, which leads to high label error rates. In the following
simulation, we enforce the ε-robustness constraint, which simply put, disallows
instances to be too close to the hyperplane. We set ε to be 0.0319. The rest of
the experimental setup is the same as the first experiment. Results presented
in Fig. 2 (right) show a more desirable fast drop-off in label error rate and at
the same time, comfortably satisfying the lower bounds presented in Theorem
6 and illustrated through Fig. 1.

It is important to note that one projection obtained through random pro-
jection requires a significantly larger chunk of memory compared to one bit
required to represent one element of a random hyperplane hash; each hyper-
plane hash is just one bit long, whereas random projections are of continuous
nature, and would usually be represented by 4 or even 8 bytes. The results from
Fig. 2 (right) lead to another very interesting observation. The label error rate
of the k-dimensional random hyperplane hashing is empirically bound by the
label error rates of k

2� random projections and k
3 � random projections. It also

3 The random projection method and the random hyperplane algorithm are com-
parable only in the case of hyperplanes passing through the origin.
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illustrates that less than 3 random hyperplane bits are more expressive than a
“full” random projection that allocates multiple bytes. The random hyperplane
algorithm obviously compresses the data better than random projections. In the
experimental results section, we further substantiate the claim that this behavior
also holds for real data.

On the technical side, it is worth noting that the elements of the projection
matrix M used in Def. 4, are not required to be continuous in practice. As
noted in [1] for the random projection case, sampling uniformly from {−1, +1}
instead of sampling from N (0, 1), yields very similar results due to the central
limit theorem. In fact, unless the documents were very short, we found the re-
sults to be indistinguishable. This closes the gap between Def. 4 and Algorithm
1. Regarding preprocessing, random projections are cheaper. Even if we need
only about 2.5 times more random hyperplane “bits” than random projections
to get similarity approximations of the same quality, this still means that the
algorithm has to generate more than twice as many random bits in the first
place. This is required only once for each document, however, and whenever
we expect to apply a large number of classifiers to that representation we may
in return benefit from the cheaper complexity of the models: random hyper-
plane representations are just bits, so linear models just have to add associated
weights. There is a trivial way of simplifying such classifiers: After transforming
the decision function of the classifier from {−1, +1} feature space to {0, +1}
space (which just requires to adapt the threshold) it only has to do an ad-
dition for every second bit on average. In contrast, random projections yield
integer or real-valued vectors, which even requires additional multiplications.
In practice, random hyperplanes should hence be cheaper, even if they operate
on twice as many dimensions. When it comes to uploading models to clients,
which happens only once per model-client pair, the higher dimensionality of the
random hyperplanes algorithm is a disadvantage however, because models that
get the same quality of results will usually have a larger number of associated
weights.

Whether random hyperplanes or random projections are favorable depends on
an application-dependent weighting of CPU and memory footprint, the expected
number of examples to be classified per model, the number of examples to be
uploaded, and the expected frequency of model upgrades.

3.2 Large Margin Classifiers over Random Hyperplane Hashes

The results previously derived in this section show that the preservation of labels
in the random hyperplane hash space is closely related to the notion of a margin.
In this subsection, we consequently analyze how margins of SVM classifiers in
the hash space are affected by the hash length. Further, we determine the hash
length which will preserve the margin with high probability. In [14], the authors
present such a theorem on the effect of learning large margin classifiers over
random projections. We first require a few more definitions.
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Definition 7 (SVM classifiers, margin and angular margin). Consider a
linearly separable data set S = {(xi, yi), i = 1 . . . n}, xi ∈ R

m, yi ∈ {+1, −1}, the
SVM optimization problem is set up as follows:

maxh
1
|h| s.t. yi(hT xi) ≥ 1, i = 1, . . . , n (12)

where, 1
|h| is defined as the margin and hence, the solution to the above optimiza-

tion problem is termed the maximum margin solution. Traditionally, an offset is
included in the constraint and we address this issue at the end of this section.

For the sake of convenience, we define the angular margin la, as

la := mini yi

(
1
2

− 1
π

arccos
hT xi

|h||xi|

)

(13)

where we have exploited the fact that a classifier satisfying yi(hT xi) ≥ 0 can be
rewritten as, yi

(
1
2 − 1

π arccos( hT xi

|h||xi| )
)

≥ 0.

These definitions allow us to formulate the desired probabilistic bound on the
margin:

Theorem 2. Given a linearly separable data set S (|S| = n), let the optimal
maximum margin solution on S be given by h with angular margin la. Let S′

k

represent the set of random hyperplane hashes of instances in the set S. If k ≥
1
2+la
γ2l2a

log n
δ , 0 < γ < 1, 0 < δ < 1, then the maximum margin solution on S′

k

satisfies the following bound,

Pr(lp > (1 − γ)la) ≥ 1 − δ (14)

where lp corresponds to the margin in the hash space.

Proof. Consider a positive example x, and in particular we consider the worst
case where the instance lies on the margin i.e., 1

2 − 1
π arccos hT x

|h||x| = la. Let x′ and
h′ represent the k-dimensional random hyperplane hash of x and the optimal
solution h respectively. Now, let us compute the following probability:

Pr
(

1
k

d′(h′, x′) <
1
2

− (1 − γ)la

)

(15)

which can be reformulated in a more amenable multiplicative form:

1
k

d′(h′, x′) <
1
2

− (1 − γ)la ≡ 1
k

d′(h′, x′) < (1 + λ)
(

1
2

− la

)

(16)

Solving for λ, we obtain λ = γla
1
2−la

. Eqn. 15, can be rewritten as:

Pr
(

1
2k

h′T x′ > (1 − γ)la

)

= Pr
(

h′T x′
√

k
> 2

√
k(1 − γ)la

)

. (17)
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Using the multiplicative Chernoff bounds from Lemma 1, we obtain the following
bound:

Pr
(

h′T x′
√

k
> 2

√
k(1 − γ)la

)

= 1 − Pr
(

1
k

d′(h′, x′) >
1
2

− (1 − γ)la

)

> 1 − e
− γ2l2a

1
2 −la

k
3

⇒ Pr
(

h′T x′
√

k
> (1 − γ)la

)

> 1 − e
− γ2l2a

1
2 −la

k
3 (18)

Similarly for any negative instance x′, we obtain the bound:

Pr
(

h′T x′
√

k
< −(1 − γ)la

)

= 1 − Pr
(

1
k

d′(h′, x′) <
1
2

+ (1 − γ)la

)

> 1 − e
− γ2l2a

1
2 +la

k
2 (19)

By definition, the margin in the hash space expressed as lp is given by min y′ h′T x′√
k

.
The union bound can be used on Eqns. 18 and 19, to obtain guarantees of a
hyperplane in the hash space with a margin lp that is at least (1 − γ)la where

γ ≤
ε
√

la + 1
2

la
(20)

with probability at least 1 − ne−ε2 k
3 . The corresponding value of k is given by:

ne
− γ2l2a

1
2+la

k
3 ≤ δ ⇒ k ≥

1
2 + la

γ2l2a
log

n

δ
(21)

Notice that the sub-optimal h′, which corresponds to the random hyperplane
hash of the optimal classifier h achieves the bound. So, the optimal classifier on
S′

k can only achieve a better margin than h′. �	

Finally, we want to justify for not having included an offset term into Eqn. (12)
for mathematical simplicity. The common SVM constraint is given by

yi(hT xi − b) ≥ 1, i = 1, . . . , n. (22)

It is slightly more expressive in theory, but we found the difference in practice to
be negligible. However, in doubt we can always include a “constant” component
to each example vector, e.g. a new first component which is always equal to 1. In
this case, the vector h effectively also provides the offset b. The only remaining
difference to the regular SVM is then that having the offset b inside h makes it
part of the margin. In the case of high-dimensional data we are discussing in this
paper this obviously does not change matters too much. In the next section we
will complement this argument with empirical evidence that the hashing-based
representation is well suited for building text classifiers, even without spending
any particular attention to the matter of offsets.
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Table 1. LibSVM results for a number of multi-class classification problems previ-
ously used in the context of feature selection. Reported are 10fold cross-validated
accuracies on different representations and corresponding standard deviations.

dataset classes size BOW 8192 RHH 2048 RHH 2048 RP
Cora 36 1800 49.50 ± 2.24 66.56 ± 2.51 58.00 ± 3.45 52.22 ± 3.42
FBIS 17 2463 85.87 ± 1.61 84.94 ± 2.08 83.92 ± 1.29 84.65 ± 1.91
LA1 6 3204 90.20 ± 1.34 89.95 ± 1.32 85.55 ± 1.96 87.42 ± 0.60
LA2 6 3075 90.51 ± 2.28 90.41 ± 1.92 86.86 ± 1.70 87.51 ± 1.98
OH0 10 1003 89.53 ± 3.75 88.83 ± 2.69 87.13 ± 2.68 87.63 ± 2.65
OH10 10 1050 81.43 ± 3.79 81.71 ± 2.44 76.86 ± 2.37 78.19 ± 2.71
OH15 10 913 81.49 ± 2.69 81.71 ± 3.54 79.62 ± 5.09 80.83 ± 5.12
OH5 10 918 87.69 ± 3.76 88.57 ± 3.43 83.33 ± 3.80 85.08 ± 3.88
RE0 13 1504 84.17 ± 2.69 84.31 ± 2.56 83.04 ± 2.86 82.44 ± 2.45
RE1 25 1657 84.55 ± 2.32 80.87 ± 2.80 79.85 ± 3.01 82.62 ± 2.77
WAP 20 1560 85.38 ± 1.34 82.95 ± 2.84 80.06 ± 2.49 82.50 ± 2.48

OHSCAL 10 11162 78.07 ± 0.93 78.31 ± 1.14 71.58 ± 1.19 74.82 ± 0.97

4 Experimental Results

The main goal of the subsequently described experiments is to complement the
theoretical guarantees by empirical evidence that for typical text classification
tasks hashing-based representations are in fact able to capture enough of the
similarities between documents to allow for competitive predictive classifier per-
formance. More detailed questions of interest include how much information is
lost when switching to less exact representations and how this loss qualitatively
changes with the number of bits we allow for each of the representations. We
stress that the experiments do not aim at reaching the best individual classifier
performances reported for each dataset. We are hence not applying any sophis-
ticated preprocessing methods and avoid the issue of parameter tuning by fixing
the experimental setup. We just vary the representations of input data sets.

The representations we want to evaluate are random hyperplane hashing
(RHH) and random projections (RP). We compare the classifiers learnt over
these representations to the classifiers learnt over the regular bag of words vec-
tor space representation of text (BOW). In order to raise the bar of the baseline
method, we also report results when classifying on top of a BOW representa-
tion after feature selection. We do not want to narrow down the setting to the
somewhat unnatural case of strictly binary classifiers, so all of our experiments
involve multi-class problems. For this kind of data, Information Gain feature
selection is a widely used option.

All experimental results reported in this section are the result of tenfold cross-
validation. We chose the LibSVM operator that is part of RapidMiner [15] as
an inner learner, because it is capable of building competitive logistic models
on top of SVM classifiers for multi-class problems. We used a linear kernel with
default settings, and fixed the C parameter to 0.1 for all experiments to establish
a common baseline. Please note that this low value of C introduces a slight



262 S. Rajaram and M. Scholz

cora fbis la1 la2 oh0 oh10
40

45

50

55

60

65

70

75

80

85

90

95

Ac
cu

rac
y

BOW
IG2048
IG1024
RHH8192
RHH2048
RHH1024
RP2048
RP1024

Fig. 3. Accuracies and standard deviations of different methods on benchmark
datasets

disadvantage for hashing-based representations, since the original vector space
contains up to 30, 000+ dimensions and for the most part much fewer data
points in our experiments; the data can be expected to be linearly separable in
the original space, but after the noisy projections there might be a considerable
number of examples on the wrong side of the hyperplane, which requires a larger
value of C. In our experimental setup we allow for the baseline information gain
based feature selection to select features on the complete data set (including the
test set) which results in a minor disadvantage for the hashing representation.

4.1 Medium-Sized Corpora

For brevity, we first report experiments on a set of publicly available benchmark
data sets, namely corpora that were used in [8] to evaluate feature selection
techniques4. Compression is not a concern for data sets at this scale, but they
allow for estimates of how many projections or RHH bits are required to preserve
similarities in hash space sufficiently well for classification purposes.

Table 1 lists the data sets and summarizes the results for the plain bag of
words representation, random hyperplane hashing with 8192 and 2048 bits (1
KByte and 256 Bytes), and random projections with 2048 projections. We report
results for random projections where we encoded each projection by 2 bytes,
which means that the representation using only 2048 projections is still four
times longer than the 8192 RHH bit representation. Figures 3 and 4 show the
same results and in addition compare to Information Gain with 2048 and 1024
dimensions and 1024 random projections.

The results of our experiments suggest that 8192 RHH bits are enough to
represent documents based on hashes with a negligible loss in classification ac-
curacy (see bar plots). Only in rare cases, the RHH representation and the vector
space model give significantly different results. Examples include the Cora data

4 It is available at the JMLR website:
http://www.jmlr.org/papers/volume3/forman03a/forman03a data.tgz.
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set, where RHH performs much better, and RE1, where the original represen-
tations and feature selection perform better. Using only 2048 RHH bits reduces
the accuracy typically by about 3 to 4%. Keeping the number of classes and the
generality of the representation in mind, this is still a decent result. Interestingly,
reducing the number of bits even further to 1024 (factor of 2) the performance
drops more than when we reduced it by a factor of 4 before. This reflects the
exponentially decreasing quality of approximations.

Using random projections in the order of 200 dimensions, a case that has been
studied in the literature, clearly does not serve the purpose. It is interesting to
note though that even if we assume just 4 bytes per projection (float, single
precision) we end up with 8192 bits representing only 256 dimensions. In our ex-
periments we generally found that – depending on whether accuracy or shorter
representations are more important – choices between 100 bytes and 1KByte
seem to work reasonably well. A pleasant property of the hashing-based repre-
sentation we found is that the accuracy always increased monotonically with an
increasing number of features. This does not hold for feature selection.

4.2 Experiments with Larger Corpora

The practically more relevant task is to scale up the sketched method to data
sets of very high dimensionality and size. To study the effects with larger corpora
we hence ran experiments on the widely used 20 newsgroups data set and on
a hand-crafted corpus that contained examples of categorized web pages. The
former contains about 20K examples, 40K terms, and 20 different categories. For
the latter we crawled pages from the different sports subcategories of the Open
Directory (DMOZ). We removed all non-textual parts from the web pages, and
tokenized and Porter stemmed the plain text. To reduce noise, we deleted pages
with less than 2 KBytes. Finally, we removed all categories with less than 20
remaining documents, leaving about 30K documents, 200K terms, and 52 skewed
classes for the evaluation. The largest category is “Soccer” with 4858 documents.
Due to the high dimensionality of the original corpus, we only compared the
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performance of random hyperplane projections to BOW after feature selection.
For 20 newsgroups, the information gain based selection of 1024 features gave
an accuracy of 77.11% ± 1.82; increasing the number of selected features up
to 8192 reduced the accuracy. The same LibSVM classifier on a 2048 RHH bit
representation still gave 73.26% ± .64 accuracy. The representation that gave
best results used 8192 RHH bits; the accuracy was 83.28 ± .62 in that case.

On the sports corpora, varying the number of selected features between 2048
and 8192 did not change the performance much. The best result on information
gain feature selection was 90.99% ± .5. With only 1024 bits of RHH data the
same classifier still reached an accuracy of 84.75% ± .45, on 2048 bits it reached
88.68 ± .37. We got the best result of 91.66 ± .41 using 8192 RHH bits.

The results on both these tasks are very competitive in terms of predictive
performance. They illustrate that global feature selection can be avoided without
compromising accuracy, e.g., if transmitting raw data to a central server for
learning is prohibitively expensive in client-server settings.

5 Conclusion

We studied a specific locality sensitive hashing scheme called random hyper-
plane hashing as a representation for building linear classifiers. It differs from
random projections in that it preserves angular rather than Euclidean distances.
A margin-based robustness criterion allowed us to both upper-bound the error
rate and to lower-bound the margin of the resulting classifier in the hash-space in
a strong probabilistic sense. We illustrated that (i) a certain pre-defined weaker
notion of robustness fails to achieve desirably low label error rates, but that
(ii) label errors when enforcing our margin-based robustness criterion decrease
exponentially fast with increasing hash length (dimensionality). Moreover, we
showed that less than 3 random hyperplane hash bits are as expressive in terms
of preserving labels as a full, real-valued random projection.

The error and margin bounds coupled with the high density and expressiveness
motivated an evaluation of the hash representation for learning text classifiers in
a client-centered setting where the representation length of documents and mod-
els as well as the computational costs of classifiers are crucial. We demonstrated
significant gains in representation length over bag of words and the random pro-
jection method, and a classification performance that is competitive to standard
feature selection, despite using a generic, content-agnostic preprocessing scheme.

Acknowledgments

We would like to thank Kave Eshghi, Rajan Lukose, George Forman, Ram
Swaminathan, and Jaap Suermondt for several fruitful discussions regarding
this work. We would also like to thank an anonymous reviewer for helpful
comments.



Client-Friendly Classification over Random Hyperplane Hashes 265

References

1. Achlioptas, D.: Database-friendly random projections. In: Symposium on Principles
of Database Systems (PODS 2001), pp. 274–281. ACM Press, New York (2001)

2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: Symposium on Foundations of Computer Science
(FOCS 2006), pp. 459–468. IEEE Computer Society, Los Alamitos (2006)

3. Arriaga, R.I., Vempala, S.: An algorithmic theory of learning: Robust concepts and
random projection. In: IEEE Symposium on Foundations of Computer Science, pp.
616–623 (1999)

4. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: appli-
cations to image and text data. In: Int. Conf. on Knowledge Discovery and Data
Mining (KDD 2001), pp. 245–250. ACM Press, New York (2001)

5. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
Symposium on Theory of computing (STOC 2002), pp. 380–388. ACM Press, New
York (2002)

6. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Symposium on Computational geometry
(SCG 2004), pp. 253–262. ACM Press, New York (2004)

7. Eshghi, K., Rajaram, S.: Locality-sensitive hash functions based on concommitant
rank order statistics. In: Int. Conf. on Knowledge discovery and data mining (KDD
2008). ACM Press, New York (2008)

8. Forman, G.: An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research (JMLR) (3), 1289–1305 (2003)

9. Fradkin, D., Madigan, D.: Experiments with random projections for machine learn-
ing. In: Int. Conf. on Knowledge discovery and data mining (KDD 2003), pp. 517–
522. ACM Press, New York (2003)

10. Goel, N., Bebis, G., Nefian, A.: Face recognition experiments with random projec-
tion. In: SPIE, Bellingham, WA, pp. 426–437 (2005)

11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J.
ACM 42(6), 1115–1145 (1995)

12. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Symposium on Theory of computing (STOC 1998), pp.
604–613 (1998)

13. Johnson, W., Lindenstrauss, J.: Extensions of lipschitz maps into a hilbert space.
Contemporary Mathematics 26, 189–206 (1984)

14. Kumar, K., Bhattacharya, C., Hariharan, R.: A randomized algorithm for large
scale support vector learning. In: Advances in Neural Information Processing Sys-
tems (NIPS 2007), pp. 793–800. MIT Press, Cambridge (2008)

15. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid pro-
totyping for complex data mining tasks. In: Int. Conf. on Knowledge discovery and
data mining (KDD 2006). ACM Press, New York (2006)

16. Ravichandran, D., Pantel, P., Hovy, E.: Randomized algorithms and NLP: using
locality sensitive hash function for high speed noun clustering. In: Association for
Computational Linguistics (ACL 2005), pp. 622–629 (2005)

17. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975)

18. Singh, K., Ma, M., Park, D.W.: A content-based image retrieval using FFT &
cosine similarity coefficient. Signal and Image Processing (2003)

19. Vempala,S.:TheRandomProjectionMethod.AmericanMathematicalSociety(2004)



Large-Scale Clustering through Functional

Embedding

Frédéric Ratle1, Jason Weston2, and Matthew L. Miller2

1 IGAR, University of Lausanne, Amphipôle, 1015 Lausanne, Switzerland
frederic.ratle@unil.ch

2 NEC Labs America, 4 Independence Way, Princeton NJ, USA

Abstract. We present a new framework for large-scale data clustering.
The main idea is to modify functional dimensionality reduction tech-
niques to directly optimize over discrete labels using stochastic gradi-
ent descent. Compared to methods like spectral clustering our approach
solves a single optimization problem, rather than an ad-hoc two-stage
optimization approach, does not require a matrix inversion, can easily
encode prior knowledge in the set of implementable functions, and does
not have an “out-of-sample” problem. Experimental results on both ar-
tificial and real-world datasets show the usefulness of our approach.

1 Introduction

Clustering, which aims at identifying groups in the data in an unsupervised
manner, is one of the main tasks in the field of machine learning, and different
approaches to tackle this problem have been popularized over the last decades,
among them: k-means and hierarchical clustering, spectral clustering and its
variants (e.g., [20,24]), support vector and maximum margin clustering [5,30,31].

Clustering and dimensionality reduction algorithms have, in recent years,
grown to become a single field of study through spectral embedding methods.
Indeed, both tasks aim at producing a compact and visually meaningful rep-
resentation of data, and strong links between methods to achieve both tasks
have been highlighted. For example, methods based on the analysis of the graph
Laplacian of a similarity matrix have provided a common framework to perform
clustering and embedding using the top eigenvectors of the Laplacian [3]. Typ-
ically methods like spectral clustering, however, require a two-stage approach
of first embedding and then using k-means to cluster data points in the found
embedding space.

In this paper we aim at providing a framework for data clustering based on
large-scale direct optimization by stochastic gradient descent. We describe a
general class of objective functions that are the analogue of nonlinear embed-
ding pairwise loss functions, but using loss functions that are directly related to
the task of clustering. After a review of existing embedding algorithms for clus-
tering, we present an instance of our approach, the Ncut embedding (NCutEmb
thereafter) method. We first describe a comparison of explicit and functional em-
bedding methods in order to highlight the benefits of using a function-based ap-
proach. Experiments with NCutEmb clustering clearly show that we can achieve
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error rates inferior or at most similar to those obtained with deterministic batch
methods using stochastic gradient descent, while obtaining at the same time a
model for new examples as they become available, thus avoiding the so-called
“out-of-sample” problem.

2 Existing Methods: Embedding and Clustering

The problem of learning the underlying data structure from unlabeled examples
has been intensively studied with both functional and explicit (point-based) meth-
ods. This problem is usually referred to as manifold learning or dimensionality
reduction in the machine learning literature. Self-organizing maps and autoas-
sociator networks are classical examples of function-based embedding methods.
While these methods have traditionally been based on various heuristics, recent
work [4,13,14] has shown that functional methods can benefit from the theoreti-
cal understanding of dimensionality reduction made since the nineties, and offer
several practical advantages over explicit methods.

2.1 Point-Based Methods

Point-based, or explicit, methods are most commonly rooted either in principal
component analysis or multidimensional scaling, two well-known linear embed-
ding methods, which provide them a sound mathematical background. They
provide a point-to-point correspondence between the input space and the intrin-
sic space in which the data lie. Explicit methods have been multiplied in recent
years, and include the following methods and their variants: kernel PCA [23],
Isomap [25], Locally Linear Embedding [21], Maximum Variance Unfolding [28]
and Laplacian Eigenmaps [3]. Thorough reviews of this family of methods can
be found in [19,22].

Laplacian Eigenmaps and Spectral Clustering. We will briefly describe
here Laplacian Eigenmaps (LE), as it is central to the remainder of the paper.
The idea behind LE is to map nearby inputs to nearby outputs, hence pre-
serving the neighborhood relations between data points. This preservation of
neighborhood structure renders the method insensitive to outliers, thus mak-
ing it appropriate for clustering. LE finds the embedding that minimizes the
following loss function:

∑

ij

L (fi, fj, Wij) =
∑

ij

Wij ||fi − fj||2 (1)

where fk ∈ R
d is the embedding of training example k. The algorithm finds an

embedding of examples given a distance metric between the examples encoded
in the graph Laplacian L = D −W , where W is a similarity (“affinity”) ma-
trix between examples and Dii =

∑
j Wij is the (diagonal) degree matrix. The

basis vectors of the embedding are given by the top eigenvectors of the graph
Laplacian. LE can be summarized as follows:
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1. Construct the neighborhood graph.
2. Choose weights on the edges (e.g., Wij = 1 if i and j are neighbors, or

Wij = e
||xi−xj||2

2σ2 ).
3. Solve the eigenvalue problem Lv = λDv, where Dii =

∑
j Wij and L =

D −W ).

There is a direct connection between LE and spectral clustering (SC). Both
methods are based on the graph Laplacian of a similarity matrix. Spectral clus-
tering only involves a supplementary step, that is, clustering the spectral images
using a conventional clustering algorithm such as k-means.

Explicit methods have a unique solution. However, their cost becomes pro-
hibitive when confronted with large datasets. Moreover, a vector fi has to be
learnt in order to embed an example xi into a K-dimensional space; each example
is embedded separately, and after training, given a new example x∗ there is no
straightforward way to embed it. This is referred to as the “out-of-sample” prob-
lem, which several authors have tried to address with special techniques (e.g.,
[6,16,26]). Learning a function-based embedding might prove useful to solve the
above problems.

2.2 Functional Methods

While explicit methods learn directly the underlying low-dimensional represen-
tation, functional methods learn a mapping from the input space to the low-
dimensional space. In this paper, we show that with the latter approach, learning
can often be faster, while being easily generalizable to new data points, as we
obtain a function and thus avoid the so-called out-of-sample problem.

As proposed in [14], one can instead of learning vectors learn a function-based
embedding, i.e., yi = f(xi), using some family of functions to choose f . Adopting
this approach can provide several gains:

– Training is faster since if two examples xi and xj are highly correlated, the
embedding for f(xj) will be good before we have even seen it during training
if we have trained well on f(xi) already.

– Prior knowledge can be expressed via the set of possible embedding functions,
as noted in [14]. In their work they showed how choosing a set of functions
based on convolutions exploiting prior knowledge of images they achieve
improved embedding results. In the clustering algorithms we develop, we
will be able to encode this type of prior in exactly the same way.

– There is no out-of-sample problem, as we have the embedding y∗ = f(x∗).
– By choosing f(x) of sufficiently high capacity, we can find the solution pro-

vided by a point-based embedding. By capacity we mean the complexity of
the class of functions f(x), measured by, e.g., the VC dimension.

Several methods have been devised to provide a model that is based on an
embedding criterion. In [4], the authors incorporate a LE-type of regularization
(see Eq. 1) in the cost function of the SVM, which provides a functional version
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of this embedding method, where the function used is a kernel-based classifier.
This method is known as the Laplacian SVM (LapSVM).

The above mentioned algorithms are functional embedding algorithms. Of
course there are many functional clustering algorithms as well, e.g. classical
k-means. Several authors also showed how to implement functional clustering
within the context of a support vector machine by proposing objectives whereby
good clusterings have large margins [5,30,31].

DrLIM Embedding and Siamese Networks. Hadsell, Chopra and LeCun
[14] recently suggested to minimize the following loss function for embedding:
∑

ij

L (fi, fj , Wij) =
∑

ij

Wij ||fi−fj||2 +
∑

ij

(1−Wij)max(0, m−||fi−fj||)2 (2)

where Wij = 1 if i and j are deemed similar and 0 otherwise, and m is the size
of the margin. DrLIM encourages similar examples to be mapped closely, and
dissimilar ones to be separated by at least the distance m. This is related to
energy-based models in general, such as Ising models or Hopfield networks, but
it is based on neighborhood relations rather than actual labels.

Another similar approach is the Normalized Embedding [9]. The loss func-
tion, independent of magnitude, encourages similar examples to be positively
correlated:

∑

ij

L (fi, fj, Wij) =
∑

ij

−Wij
fi · fj

||fi||||fj|| +
∑

ij

(1−Wij)
fi · fj

||fi||||fj || (3)

These two loss functions were implemented as instantiations of a general class
of neural networks called siamese networks. However, potentially any class of
functions can be used to implement f .

3 Functional Embeddings for Clustering

In the above we considered the task of embedding data in a K-dimensional space
K < p, where p is the dimensionality of the input. This can be viewed as soft
clustering; for instance, PCA and soft k-means are guaranteed to provide, under
certain conditions, the same result (see e.g. [12]).

We now propose a general objective for using functional embeddings for clus-
tering. In our framework, one optimizes the following loss:

∑

c

∑

ij

L(f(xi), c) Yc(f(xi), f(xj), Wij) (4)

– W is a pairwise similarity matrix defined a priori as in previous algorithms.
– L(·) is a classification based loss function such as the hinge loss:

L (f(x), y) = H(yf(x)) = max (0, 1− yf(x))) (5)

For the multiclass case we can use L(f(x), y) =
∑K

c=1 H(y(c)fc(x)). Here,
y(c) = 1 if y = c and -1 otherwise.
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– Yc(f(xi), f(xj), Wij) encodes the weight to assign to point i being in cluster
c. In the general case it can be a function of f(xi), f(xj) and the similarity
score Wij . Different choices of Yc(·) implement different algorithms.

This class of algorithms learns a clustering c(x) = argmax f(x) ∈ R
K (or

c(x) = sign(f(x)) in the two-class case). Our objective differs from usual clus-
tering algorithms in that we use pairs of examples to learn the clustering. This
objective is similar to embedding algorithms in that we essentially embed the
data at the same time as performing a clustering by viewing the K-dimensional
output as K clusters.

Intuitively, we directly encode into our clustering algorithm that neighbors
with Wij > 0 should have the same cluster assignment. For example, one choice
for Yc(·) that we explore in this paper, which we call NCutEmb, is as follows
(two-class case, c ∈ {±1} ):

Yc(fi, fj , Wij) =

⎧
⎪⎨

⎪⎩

η(+) if sign(fi + fj) = c and Wij = 1
−η(−) if sign(fj) = c and Wij = 0
0 otherwise.

(6)

Equation (6) assigns a pair of neighbors to the cluster with the most confident
label from the pair. Examples xj that are not neighbors of xi, i.e. when Wij = 0,
are encouraged to fall into different clusters. Multiclass versions of NCutEmb
are described in Section 3.3.

In the following we describe in detail some particular specializations of this
objective function, and our particular implementation of it by training online by
stochastic gradient descent using a set of functions implementable by a neural
network.

3.1 Balancing Constraint

Many unconstrained clustering objective functions lead to a trivial solution, e.g.,
all the points end up in one single cluster, therefore it is often necessary to enforce
some constraints. Even though we do not have access to label information, we
can use the predicted labels to implement such constraints.

Unsupervised and semi-supervised learning (SSL) both usually make use of
balancing constraints, albeit different since in SSL we have partial label infor-
mation. In an unsupervised setting, the usual assumption is that each cluster
should be reasonably large. For instance, RatioCut [15] and NormalizedCut [24]
weigh, respectively, the cut by the number of vertices |ci| in cluster ci and its
volume vol(ci), i.e., the sum of the weights on the edges. In [2], the authors
simply impose that each cluster has at least N

K examples, where N is the size of
the training set and K, the number of clusters.

In a semi-supervised setting, the problem is somehow easier, as the labeled
points provide an estimate of the class balance (if the examples are i.i.d.). In
[17], the author imposes that the fraction of each class in the unlabeled set is
the same as in the labeled set. A similar constraint is used with low-density
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Algorithm 1. Two-class NCutEmb algorithm with hard constraints

for each iteration do

Pick xi and xj such that xj ∈ neighb (xi)

Find g = argmaxi,j(|f(xi)|, |f(xj)|) and h = sign (f(xg))

if seen(h) ≤ Nt
K

+ ζ then

Update the network w.r.t. to η(+)∇L (f(xi), h) and η(+)∇L (f(xj), h)

Update seen(h), we assigned an example to cluster h

end if

Pick xm and xn such that xn /∈ neighb (xm)

Find p = sign (xm) and q = sign (xn)

Update the network w.r.t. η(−)∇L (f(xm),−q) and η(−)∇L (f(xn),−p)

end for

separation [10]. In [18], the authors ignore examples of a class that has been
seen more than its expected frequency, as provided by the labeled set.

Generally speaking, we can classify the constraints used in clustering simply
as “hard” or “soft”. We have tried both types, in the following way:

1. At each iteration, control the number of examples assigned to cluster c,
denoted as seen(c). We then define Yc(·) as

Yc(fi, fj , Wij) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

η(+) if sign(fi + fj) = c and Wij = 1 and
seen(c) ≤ Nt

K + ζ

−η(−) if sign(fj) = c and Wij = 0
0 otherwise.

(7)

where Nt is the number of examples seen at time t, K is the number of
clusters and ζ is a negative or positive factor allowing for some variation in
cluster size. One can apply this constraint on a fixed-sized window of the
last, e.g., 100 examples seen, which corresponds to a particular choice of the
function seen(·).

2. Diminish the “learning rate” proportionally to the number of examples seen
of each class. Yc(·) then becomes

Yc(fi, fj , Wij) =

⎧
⎪⎨

⎪⎩

η(+)

seen(c)+1 if sign(fi + fj) = c and Wij = 1

−η(−) if sign(fj) = c and Wij = 0
0 otherwise.

(8)

where again seen(c) is the number of examples assigned to cluster c seen in
the last 100 examples (+1 to avoid zeros).
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Algorithm 2. Two-class NCutEmb algorithm with soft constraints

for each iteration do

Pick xi and xj such that xj ∈ neighb (xi)

Find g = argmaxi,j(|f(xi)|, |f(xj)|) and h = sign (f(xg))

Update the network w.r.t. to η(+)

seen(h)+1
∇L (f(xi), h) and η(+)

seen(c)+1
∇L (f(xj), h)

Update seen(h), we assigned an example to cluster h

Pick xm and xn such that xn /∈ neighb (xm)

Find p = sign (xm) and q = sign (xn)

Update the network w.r.t. η(−)∇L (f(xm),−q) and η(−)∇L (f(xn),−p)

end for

The hard constraint is similar to the approaches described in [2,18], while
the soft constraint is very similar to the optimal learning rate for stochastic k-
means, as reported in [8]. These approaches will be referred to as NCutEmbh

and NCutEmbs, respectively.

3.2 Two-Class Clustering

In a two-class setting, we employ a neural network f(x) with one output y ∈
{±1}, trained online via stochastic gradient descent. We employ either a hard
constraint (Algorithm 1) or a soft constraint (Algorithm 2). In these algorithms,
neighb (xi) refers to the neighborhood of xi.

Simply put, similar points are pushed towards the same label. In the case of
dissimilar points, the points are pulled in opposite classes. We use two different
learning rates η(+) and η(−). The latter is used to pull non-neighbors in different
classes and is typically smaller. The idea behind the method is illustrated in
Figure 1.

current 

updated current 

updated

Fig. 1. Clustering using NCutEmb. A hyperplane that separates neighbors is pushed
to classify them in the same class (left; the classifier cuts through an edge of the
graph and is pushed upwards), whilst one that classifies non-neighbors in the same
class is modified to separate them (right; the hyperplane is pushed to separate the
unconnected points).



Large-Scale Clustering through Functional Embedding 273

3.3 The Multiclass Case

In the multiclass setting, we also tried two alternative approaches.

1. The same strategy as binary case: push neighbors towards the most confi-
dent label, i.e., if we define the most confident example of a pair as

m(fi, fj) = argmaxi,j (max(fi), max(fj)))

then we can define the function Yc(·) using:

Yc(fi, fj, Wij) =

⎧
⎪⎨

⎪⎩

η(+) if argmax fm(fi,fj) = c and Wij = 1
−η(−) if argmax fj = c and Wij = 0
0 otherwise.

(9)

The balancing constraint can then be enforced in a hard way by a fixed-sized
window, as in the binary case.

2. Push towards the K clusters simultaneously, with one learning rate η per
class, weighted by the outputs of the point with the most confident label.
That is,

Yc(fi, fj , Wij) =

{
ηc if Wij = 1
0 otherwise

(10)

where

ηc ← η(+)fc(xi)

The balancing constraint is soft, i.e, the learning rate decreases with the size
of the cluster.

These approaches will be referred to as NCutEmbmax and NCutEmball. In
the latter approach, the softmax(·) function is used at the output of f(·) in order
to have f(xi) ∈ [0, 1]:

softmax (y1, ..., yk) =
exp(yi)∑
i exp(yi)

This is a common technique in Neural Networks [7].

3.4 Large-Scale Extension

Building a graph a priori is not feasible when dealing with very large datasets
(i.e., millions of examples). One can easily avoid this step by computing neighbors
on the fly with epsilon-balls or local weighted distances. Indeed, whenever two
points are picked, it is straightforward to verify a condition such as

||xi − xj || < ε

where ε is a neighborhood parameter. Note that any similarity measure can be
used. For efficiency purposes, a table with the neighbors found up to date can
be kept in memory.
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4 Experiments

Table 1 summarizes the small-scale datasets that have been used throughout
Section 4. g50c, text and usps are datasets that are often used in the semi-
supervised learning literature (e.g., [10,11]). Numerous clustering techniques
were applied to the usps digit dataset in [29]. The authors, however, studied
two subsets of 2 and 4 digits. In this paper we consider the 10 usps classes.

The datasets bcw (Breast Cancer Wisconsin) and glass (Glass Identification)
are taken from the UCI repository [1]. The ellips dataset consists of four 50-
dimensional ellipses connected by one extremity.

In order to have a relative measure of class imbalance, which will be useful
for the clustering section, we define the degree of class imbalance (DCI):

DCI =
1
N

(
1

K − 1

∑

k

(
|ck| − N

K

)2
) 1

2

(11)

This is the standard deviation of the clusters with respect to the “expected
value” of the size of clusters ck in a balanced problem, divided by N , the number
of examples. A DCI of 0 thus represents a perfectly balanced problem. Simply
taking the ratio between the biggest and smallest classes would not take into
account the variability across all the classes in a multiclass setting.

4.1 Functional vs. Explicit Embedding

We first performed some experiments that aimed at comparing embedding meth-
ods as a justification of the use of functional embedding for clustering. To this
end, we have used the g50c, text and usps datasets. We provide results for ex-
plicit and functional DrLIM, and these are compared with Laplacian Eigenmaps.
The goal is to reach a value as close as possible to LE, as DrLIM is an approx-
imate method. However, the latter has the advantage of being useful on much
larger datasets as it does not require costly operations such as matrix inversion.
The performance criterion that has been used is the fraction of embedded points

Table 1. Small-scale datasets used throughout the experiments. g50c, text and usps

are used in Section 4.1, while all datasets are used in Section 4.2.

data set classes dims points DCI ×100

g50c 2 50 550 0

text 2 7511 1946 0.87

bcw 2 9 569 21.19

ellips 4 50 1064 12.21

glass 6 10 214 13.89

usps 10 256 2007 2.83
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that do not share the same label with their nearest neighbor, i.e.,

Lembed (f1, ..., fn, α) =
1
N

n∑

i=1

δ
(
fi, fnn(i)

)
(12)

where fnn(i) is fi’s nearest neighbor in the embedding (the relation needs not
be mutual), α are the parameters, N is the size of the training set, and

δ
(
fi, fnn(i)

)
=
{

0 if yi = ynn(i)

1 if yi �= ynn(i)

Here, yi designates the label of fi. We have chosen this criterion because
unlike Eq. 1, it does not depend on the specific weights Wij that are used for
each dataset.

Table 2 reports the best values of the embedding criterion obtained. The num-
ber of iterations required to achieve that result is given in brackets. The results
are compared against Laplacian Eigenmaps. Both LE and DrLIM are assessed
using the criterion of Eq. 12. We have tried both a linear network (“Linear”) and
a one-hidden layer network (“NN”). The linear network performed best for the
g50c dataset, while the NN performed better for the text and usps datasets.
For all the methods, the number of neighbors was optimized. An appropriate
learning rate was selected for nf-DrLIM and f-DrLIM.

It can be observed from Table 2 that functional DrLIM provides a gain of
accuracy compared to its non-functional counterpart, and requires a smaller
number of iterations. Using a functional model rather than a point-based one
appears more important than the choice of the class of functions used within
such a model. Indeed, even though there are differences specific to each dataset
between a linear network and a one hidden layer network, the differences between
functional and point-based methods are larger, in terms of both convergence
speed and value of the embedding criterion.

Table 2. Lowest obtained value of the embedding criterion (Eq. 12) for LE, functional
DrLIM and non-functional DrLIM, on an average of 10 runs. Low values indicate
that points sharing the same label are mapped closely. The number of iterations (in
iterations ×103) to reach a minimum value for f-DrLIM and nf-DrLIM is given in
brackets. Convergence is considered achieved when the value of the embedding criterion
stops decreasing. The neural network has one hidden layer and 5, 40 and 40 hidden
units for the three datasets, respectively. For every dataset, the appropriate learning
rate was selected.

g50c text usps

LE 7.45 [-] 10.69 [-] 7.28 [-]

nf-DrLIM 12.82 [100] 29.58 [70] 11.55 [80]

f-DrLIM (Linear) 7.14 [50] 14.18 [50] 10.02 [70]

f-DrLIM (NN) 7.55 [80] 12.00 [40] 8.99 [70]
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The network that has been trained using functional DrLIM can be applied
to any other data point; we thus avoid the out-of-sample problem, as we have
a functional relationship between the high-dimensional input and the output.
The fact that functional DrLIM is also more accurate and faster than the point-
based method further encourages the use of functional methods for embedding.
Indeed, the difference with the values obtained with LE, towards which we wish
to converge, is small. Note that LE optimizes the criterion of Eq. 1, but we make
the assumption that a good embedding will minimize both Eq. 1 and 12.

4.2 Small-Scale Clustering Experiments

Here, all the datasets from Table 1 are used. We compare the NCutEmb algo-
rithm to k-means and spectral clustering (the algorithm presented in [20]). For
spectral clustering, a k-nearest neighbor graph (sc-knn) and a full radial basis
function graph (sc-rbf) have been used for the calculation of the weights, and
the corresponding parameters (k and σ) have been selected. For the NCutEmb
method, we have selected for each experiment the appropriate number of neigh-
bors for W (typically 10, 50 or 100) and learning rate (a value between 0.001
and 1).

Tables 3 and 4 report the cluster assignment error for two-class and multiclass
problems, respectively. The cluster assignment error is simply the fraction of
points for which ci �= yi, where ci is the cluster in which we assign xi. This
has to be calculated considering all permutations from clusters to indices. When
confronted to a large number of classes, one can use optimization techniques
to solve this problem, as underlined in [27]. For the small-scale experiments,
training times ranged approximately from 5 seconds (bcw) to a minute (usps)
on a standard PC.

The results show that the NCutEmb method performs either similarly or
provides superior performance than conventional clustering algorithms. Since we
have other benefits when using NCutEmb, such as the availability of a functional
model and the scalability to large datasets, the approach is quite attractive. For

Table 3. Cluster assignment error (%) on two-class small-scale datasets with the
NCutEmb method, compared to k-means and spectral clustering. The spectral cluster-
ing algorithms have been optimized over the choice of σ and k. Each value is averaged
over 10 random replications of the initial dataset. A linear network was used for bcw

and text, while a one-hidden layer NN with 5 hidden units was used for g50c.

bcw g50c text

k-means 3.89 4.64 7.26

sc-rbf 3.94 5.56 6.73

sc-knn 3.60 6.02 12.9

NCutEmbh 3.63 4.59 7.03

NCutEmbs 3.15 4.41 7.89
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Table 4. Cluster assignment error (%) on multiclass small-scale datasets with the
NCutEmb method, compared to k-means and spectral clustering. The spectral cluster-
ing algorithms have been optimized over the choice of σ and k. Each value is averaged
over 10 random replications of the initial dataset. A linear network was used for ellips
while a one-hidden layer network with 3 hidden units was used for glass and 40 hidden
units for usps.

ellips glass usps

k-means 20.29 25.71 30.34

sc-rbf 10.16 39.30 32.93

sc-knn 2.51 40.64 33.82

NCutEmbmax 4.76 24.58 19.36

NCutEmball 2.75 24.91 19.05

the two-class datasets, the difference between the type of constraint used appears
minor.

Regarding the multiclass experiments, it is interesting to study the perfor-
mance of the methods with respect to the class imbalance of each dataset.
NCutEmball outperforms the other methods (except sc-knn) for the ellips
dataset, which is very imbalanced. However, the glass dataset is also imbal-
anced, and both NCutEmball and NCutEmbmax perform well. Consequently, it
is hard to draw any conclusion regarding the superior ability of one method or
another to handle clusters of different sizes; the two methods can handle them
well given the right parameters.

On average, NCutEmb appears superior to both k-means and spectral clus-
tering on the datasets that we have used. This is a surprising result, as we could
expect spectral clustering to be the “ground truth” result, as with LE in Sec-
tion 4.1. However, this could be the effect of the use of a one-stage approach
for the optimization. Indeed, even if a good embedding is obtained with spectral
clustering, the clustering stage might be poor (and vice versa). Performing the
embedding and clustering tasks simultaneously seems to overcome this problem.
We note, however, that similarly to k-means, the method performs better when
clusters are close to Gaussian objects. Since NCutEmb is neighborhood based, we
cannot expect good performance with highly complex clusters. If ||xi − xj || < ε,
we must have a high probability that xi and xj truly belong to the same cluster.
In other words, the smoothness assumption must hold.

We then conducted a series of experiments where we split the datasets in order
to obtain a test error, as an estimation of the out-of-sample error. In the following
experiments, 70% of the data is used for training, and the error is calculated on
the remaining 30%, which has not been seen. Tables 5 and 6 report this error
for two-class and multiclass methods.

We note that the difference between clustering error and out-of-sample error
is small for each dataset. A network that has been trained on a large enough set
of examples can cluster new points accurately.
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Table 5. Test error (i.e., out-of-sample error) for the two-class datasets (%)

bcw g50c text

k-means 4.22 6.06 8.75

NCutEmbh 3.21 6.06 7.68

NCutEmbs 3.64 6.36 7.38

Table 6. Test error (i.e., out-of-sample error) for the multiclass datasets (%)

ellips glass usps

k-means 20.85 28.52 29.44

NCutEmbmax 5.11 25.16 20.80

NCutEmball 2.88 24.96 17.31

4.3 Large-Scale Clustering Experiments

Here, we repeat the experiments of the previous section with the MNIST digits
database, consisting of 60,000 training examples and 10,000 test examples of
digits 0 to 9. Each image has 28 × 28 pixels. MNIST is a fairly well balanced
dataset (DCI×100 of 0.57 using Eq. 11). NCutEmb requires about 60 minutes
to converge to an optimum on a database such as MNIST. For visualization
purposes, projections of MNIST data are shown in Fig. 2 using Laplacian Eigen-
maps. Only a subset of 3000 examples is projected in Fig. 2 because of compu-
tational limitations, as LE requires the eigenvectors of the similarity matrix of
the data.

Table 7. Clustering the MNIST database with the NCutEmbmax and NCutEmball

methods, compared to k-means, for different numbers of clusters. The training error
(i.e., clustering error) and the test error (out-of-sample error) are provided. A one-
hidden layer network with 40 units has been used for the 10 and 20 clusters problems,
and 80 units for the 50 clusters problem.

# clusters method train test

50 k-means 18.46 17.70

NCutEmbmax 13.82 14.23

NCutEmball 18.67 18.37

20 k-means 29.00 28.03

NCutEmbmax 20.12 23.43

NCutEmball 17.64 21.90

10 k-means 40.98 39.89

NCutEmbmax 21.93 24.37

NCutEmball 24.10 24.90



Large-Scale Clustering through Functional Embedding 279

Fig. 2. Projections of an MNIST subset using Laplacian Eigenmaps with a nearest-
neighbor graph

Table 7 presents the training and test error of the network used to
cluster MNIST. We compare our method to k-means. For 10 and 20 clusters,
NCutEmbmax and NCutEmball provide equivalent error rates. We seem to
achieve a much better performance than k-means in most cases, except with
NCutEmball using 50 clusters. This may be due to the fact that within this ap-
proach, we push neighbors towards all classes at each iteration. It is interesting
to note that the gap with k-means is reduced when increasing the number of
clusters. This could be expected; the more groups we use to divide the dataset,
the more simple these groups become in their structure. With a very large num-
ber of clusters, NCutEmb and k-means should be expected to provide the same
results.

5 Conclusion

We have presented a framework for data clustering based on functional mod-
els for dimensionality reduction optimized by stochastic gradient descent. Our
framework suggests direct algorithms for clustering using an embedding ap-
proach rather than the two-stage approach of spectral clustering. The experi-
ments have shown that using this approach brings about many benefits: (i) the
algorithms scale well as we do not need to compute eigenvectors, (ii) a model is
available and can be applied to new data points, and (iii) the method provides
superior results on average than spectral clustering or k-means.

Some limitations were highlighted, however, in the way it can handle highly
non-linear datasets. The more we violate the smoothness assumption, the more
chance that pairs of neighbors do not belong to the same cluster and the less
accurate the method is expected to be. However, this limitation is dependent
on the method for choosing neighbors: if one has a way of choosing pairs of
neighbors which can guarantee they belong to the same cluster, then the method
can perform well.

We believe that this approach could be of great use in many important appli-
cations areas where new examples are continuously available.
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Abstract. Nowadays applications produce infinite streams of data dis-
tributed across wide sensor networks. In this work we study the problem
of continuously maintain a cluster structure over the data points gener-
ated by the entire network. Usual techniques operate by forwarding and
concentrating the entire data in a central server, processing it as a mul-
tivariate stream. In this paper, we propose DGClust, a new distributed
algorithm which reduces both the dimensionality and the communication
burdens, by allowing each local sensor to keep an online discretization of
its data stream, which operates with constant update time and (almost)
fixed space. Each new data point triggers a cell in this univariate grid,
reflecting the current state of the data stream at the local site. Whenever
a local site changes its state, it notifies the central server about the new
state it is in. This way, at each point in time, the central site has the
global multivariate state of the entire network. To avoid monitoring all
possible states, which is exponential in the number of sensors, the cen-
tral site keeps a small list of counters of the most frequent global states.
Finally, a simple adaptive partitional clustering algorithm is applied to
the frequent states central points in order to provide an anytime defi-
nition of the clusters centers. The approach is evaluated in the context
of distributed sensor networks, presenting both empirical and theoretical
evidence of its advantages.

Keywords: online adaptive clustering, distributed data streams, sen-
sor networks, incremental discretization, frequent items monitoring.

1 Introduction

Data gathering and analysis have become ubiquitous, in the sense that our world
is evolving into a setting where all devices, as small as they may be, will be able
to include sensing and processing ability. Nowadays applications produce infinite
streams of data distributed across wide sensor networks. Therefore, data should
also be processed by sensor networks in a distributed fashion. Usual techniques
operate by forwarding and concentrating the entire data in a central server,
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processing it as a multivariate stream. In this work we study the problem of
continuously maintain a cluster structure over the data points generated by the
entire network, where each sensor produces a univariate stream of data. The
main problem in applying clustering to data streams is that systems should
consider data evolution, being able to compress old information and adapt to
new concepts. In this paper, we propose a new distributed algorithm which
reduces both the dimensionality and the communication burdens.

In the next section we present some related work on the research areas ad-
dressed by this paper. In section 3 our method is explained, with relevant analysis
of the overall processing. Section 4 focus on the advantages presented by our pro-
posal in terms of memory and communication resources, especially important in
distributed sensor networks. Validation of the system and experimental results
on real-world scenarios are presented in section 5. Final section concludes the
paper, with thorough discussion and conclusions, including foreseen future work.

2 Related Work

The method we present in this paper is related with three other areas of re-
search in data streams: sensor network processing, frequent items monitoring,
and distributed clustering.

2.1 Sensor Data and Networks

Sensors are usually small, low-cost devices capable of sensing some attribute of a
physical phenomenon. In terms of hardware development, the state-of-the-art is
well represented by a class of multi-purpose sensor nodes called motes [8], which
were originally developed at UC Berkeley and are being deployed and tested
by several research groups and start-up companies. Although common applica-
tions are traditionally developed on low-level programming of the motes, recent
programming languages and environments such as Regiment [21] and Enviro-
Suite [18], provide high level programming abstractions, allowing more complex
programming and usage of sensor devices as processing units for knowledge ex-
traction scenarios. Sensor networks are composed of a variable number of sensors
(depending on the application), which have several distinguishing features: (a)
the number of nodes is potentially very large and thus scalability is a problem,
(b) the individual sensors are prone to failure given the often challenging condi-
tions they experiment in the field, (c) the network topology changes dynamically,
(d) broadcast protocols are used to route messages in the network, (e) limited
power, computational, and memory capacity, and (f) lack of global identifiers [3].
In sensor network applications, data routing is usually based on two main ap-
proaches: (a) sensors broadcast advertisements for the availability of the data
and wait for interested nodes, or; (b) sinks broadcast interest in the data and
wait for replies from the sensors. Common problems with these strategies are
implosion and overlap [3].
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2.2 Frequent Items in Data Streams

The problem of finding the most frequent items in a data stream S of size N
is, roughly put, the problem to find the elements ei whose relative frequency
fi is higher than a user specified support φN , with 0 ≤ φ ≤ 1. Given the
space requirements that exact algorithms addressing this problem would need [5],
several algorithms were already proposed to find the top-k frequent elements,
being roughly classified into counter-based and sketch-based [20]. Counter-based
techniques keep counters for each individual element in the monitored set, which
is usually a lot smaller than the entire set of elements. When an element is seen
which is not currently being monitored, different algorithms take different actions
in order to adapt the monitored set accordingly. Sketch-based techniques provide
less rigid guarantees, but they do not monitor a subset of elements, providing
frequency estimators for the entire set.

Simple counter-based algorithms such as Sticky Sampling and Lossy Counting
were proposed in [19], which process the stream in reduced size. Yet, they suffer
from keeping a lot of irrelevant counters. Frequent [10] keeps only k counters for
monitoring k elements, incrementing each element counter when it is observed,
and decrementing all counters when a unmonitored element is observed. Zeroed-
counted elements are replaced by new unmonitored element. This strategy is
similar to the one applied by Space-Saving [20], which gives guarantees for the
top-m most frequent elements. Sketch-based algorithms usually focus on families
of hash functions which project the counters into a new space, keeping frequency
estimators for all elements. The guarantees are less strict but all elements are
monitored. The CountSketch algorithm [5] solves the problem with a given suc-
cess probability, estimating the frequency of the element by finding the median of
its representative counters, which implies sorting the counters. Also, GroupTest
method [6] employs expensive probabilistic calculations to keep the majority ele-
ments within a given probability of error. Although generally accurate, its space
requirements are large and no information is given about frequencies or ranking.

2.3 Clustering Data Streams

The main problem in applying clustering to data streams is that systems should
consider data evolution, being able to compress old information and adapt to
new concepts. The range of clustering algorithms that operate online over data
streams is wide, including partitional, hierarchical, density-based and grid-based
methods. A common connecting feature is the definition of unit cells or repre-
sentative points, from which clustering can be obtained with less computational
costs. In this paper we address two types of clustering procedures: point-based
clustering and grid-based clustering.

Point-Based Clustering. Several algorithms operate over summaries or sam-
ples of the original stream. Bradley et al. [4] proposed the Single Pass K-Means,
increasing the capabilities of k-means for large datasets, by using a buffer where
points of the dataset are kept in a compressed way. The STREAM [22] system
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can be seen as an extension of [4] which keeps the same goal but has as restric-
tion the use of available memory. After filling the buffer, STREAM clusters the
buffer into k clusters, retaining only the k centroids weighted by the number of
examples in each cluster. The process is iteratively repeated with new points.
The BIRCH hierarchical method [25] uses Clustering Features to keep sufficient
statistics for each cluster at the nodes of a balanced tree, the CF-tree. Given
its hierarchical structure, each non-leaf node in the tree aggregates the infor-
mation gathered in the descendant nodes. This algorithm tries to find the best
groups with respect to the available memory, while minimizing the amount of
input and output. Another use of the CF-tree appears in [1]. A different strat-
egy is used in another hierarchical method, the CURE system [17], where each
cluster is represented by a constant number of points well distributed within
the cluster, which capture the extension and shape of the cluster. This process
allows the identification of clusters with arbitrary shapes on a random sample
of the dataset, using Chernoff bounds in order to obtain the minimum number
of required examples. The same principle of error-bounded results was recently
used in VFKM to apply consecutive runs of k-means, with increasing number
of examples, until the error bounds were satisfied [11]. This strategy supports
itself on the idea of guaranteeing that the clustering definition does not differ
significantly from the one gather with infinite data. Hence, it does not consider
data evolution.

Grid-Based Clustering. The main focus of grid-based algorithms is the so
called spatial data, which model the geometric structure of objects in space.
These algorithms divide the data space in small units, defining a grid, and as-
signing each object to one of those units, proceeding to divisive and aggregative
operations hierarchically. These features make this type of methods similar to
hierarchical algorithms, with the main difference of applying operations based
on a parameter rather than the dissimilarities between objects. A sophisticated
example of this type of algorithms is STING [24], where the space area is di-
vided in cells with different levels of resolution, creating a layered structure.
The main features and advantages of this algorithm include being incremental
and able of parallel execution. Also, the idea of dense units, usually present in
density-based methods [12], has been successfully introduced in grid-based sys-
tems. The CLIQUE algorithm tries to identify sub-spaces of a large dimensional
space which can allow a better clustering of the original data [2]. It divides each
dimension on the same number of equally ranged intervals, resulting in exclusive
units. One unit is accepted as dense if the fraction of the total number of points
within the unit is higher than a parameter value. A cluster is the largest set
of contiguous dense units within a subspace. This technique’s main advantage
is the fact that it automatically finds subspaces of maximum dimensionality in
a way that high density clusters exist in those subspaces. The inclusion of the
notion of dense units in simpler grid-based methods presents several benefits.
However, in distributed systems, the increase in communication given the need
to keep sufficient statistics may be prejudicial.
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Distributed Clustering. Since current applications generate many pervasive
distributed computing environments, data mining systems must nowadays be de-
signed to work not as a monolithic centralized application but as a distributed
collaborative process. The centralization of information yields problems not only
with resources such as communication and memory, but also with privacy of
sensitive information. Instead of centralizing relevant data in a single server and
afterwards perform the data mining operations, the entire process should be dis-
tributed and, therefore, paralleled throughout the entire network of processing
units. A recent example of such techniques was proposed by Subramaniam et al.,
where an online system uses density distribution estimation to detect outliers in
distributed sensor data [23]. Recent research developments in clustering are di-
rected towards distributed algorithms for continuous clustering of examples over
distributed data streams. In [9] the authors present a distributed majority vote
algorithm which can be seen as a primitive to monitor a k-means clustering over
peer-to-peer networks. The k-means monitoring algorithm has two major parts:
monitoring the data distribution in order to trigger a new run of k-means algo-
rithm and computing the centroids actually using the k-means algorithm. The
monitoring part is carried out by an exact local algorithm, while the centroid
computation is carried out by a centralization approach. The local algorithm
raises an alert if the centroids need to be updated. At this point data is central-
ized, a new run of k-means is executed, and the new centroids are shipped back
to all peers. Cormode et al. [7] proposed different strategies to achieve the same
goal, with local and global computations, in order to balance the communica-
tion costs. They considered techniques based on the furthest point algorithm [16],
which gives a approximation for the radius and diameter of clusters with guar-
anteed cost of two times the cost of the optimal clustering. They also present
the parallel guessing strategy, which gives a slightly worse approximation but re-
quires only a single pass over the data. They conclude that, in actual distributed
settings, it is frequently preferable to track each site locally and combine the
results at the coordinator site. These methods of combining local and central
processing are paradigmatic examples of the path that distributed data mining
algorithms should traverse.

3 DGClust – Distributed Grid Clustering

In this section we present DGClust, a distributed grid clustering system for sensor
data streams. Each local sensor receives data from a given source, producing a
univariate data stream, which is potentially infinite. Therefore, each sensor’s data
is processed locally, being incrementally discretized into a univariate adaptive
grid. Each new data point triggers a cell in this grid, reflecting the current state
of the data stream at the local site. Whenever a local site changes its state, that
is, the triggered cell changes, the new state is communicated to a central site.
Furthermore, the central site keeps the global state of the entire network where
each local site’s state is the cell number of each local site’s grid. Nowadays, sensor
networks may include thousands of sensors. This scenario yields an exponential
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number of cell combinations to be monitored by the central site. However, it is
expected that only a small number of this combinations are frequently triggered
by the whole network, so, parallel to the aggregation, the central site keeps a
small list of counters of the most frequent global states. Finally, the current
clustering definition is defined and maintained by a simple adaptive partitional
clustering algorithm applied on the frequent states central points.

3.1 Notation and Formal Setup

The goal is to find k cluster centers of the data produced by a network of d local
sensors. Let X = {X1, X2, ..., Xd} be the set of d univariate data streams, each
of which is produced by one sensor in one local site. Each local site i keeps a two-
layered discretization of the univariate stream, with pi intervals in the first layer
and wi intervals in the second layer, where k < wi << pi but wi ∈ O(k). At each
time t, each local sensor produces a value Xi(t) and defines its local discretized
state si(t), drawn from the set of possible states Si, the unit cells in the univariate
grid (|Si| = wi). If no value is read, or si(t) = si(t − 1), no information is sent
to the central site. The central site monitors the global state of the network at
time t, by combining each local discretized state s(t) = 〈s1(t), s2(t), ..., sd(t)〉.
Each s(t) is drawn from a finite set of cell combinations E = {e1, e2, ..., e|E|},
with |E| =

∏d
i=1 wi. Given the exponential size of E, the central site monitors

only a subset F of the top-m most frequent elements of E, with k < |F | << |E|.
Relevant focus is given to size requirements, as |E| ∈ O(kd) but |F | ∈ O(dkβ),
with small β. Finally, the top-m frequent states central points are used in an
online adaptive partitional clustering algorithm, which defines the current k
cluster centers, being afterwards continuously adapted.

3.2 Local Adaptive Grid

Discretization of continuous attributes is an important task for certain types
of machine learning algorithms. Although discretization is a well-known topic in
data analysis and machine learning, most of the works refer to a batch discretiza-
tion where all the examples are available for discretization. Few works refer to
incremental discretization. However, it is commonly seen as an essential tool for
high-speed processing of data streams with limited memory resources [14]. For
example, grid clustering algorithms operate on discrete cells to define dense re-
gions of points [24]. In our approach, the main reason to perform discretization
of each univariate data stream in sensor networks is to considerably reduce the
communication with the central server, which tries to capture the most frequent
regions of the entire input space.

Partitional Incremental Discretization. In our approach, we apply incre-
mental discretization at each sensor univariate stream Xi using the Partition
Incremental Discretization (PiD) algorithm [13], which is composed by two lay-
ers. The first layer simplifies and summarizes the data, while the second layer
constructs the final grid. For the scope of this work, we only consider equal-width



288 P.P. Rodrigues, J. Gama, and L. Lopes

discretization. The first layer is initialized based on the number of intervals pi

(that should be much larger than the desired final number of intervals wi) and
the range of the variable. The range of the variable is only indicative, as it is used
to define the intervals in the first layer using a equal-width strategy, but it is
not rigid as layer-one bins can be split if necessary, monitoring the actual range
of the values. Each time a new value Xi(t) is read by the sensor i, we increment
the counter in the corresponding interval. After a given number of examples,
the second layer can be defined. The process of updating the first layer works
online, doing a single scan over the data stream, hence being able to process in-
finite sequences of data, processing each example in constant time and (almost)
constant space. We consider a split operator to be triggered in a given layer-one
bin as soon as the number of hits in it is above a user-defined threshold α (a
percentage of the total number of points considered so far). This split operator
generates new intervals in layer one, adapting the initial intervals with the actual
distribution of values. This is especially important to correct badly initialized
range values and to adapt to slight changes in the distribution of values. The
second layer merges the set of intervals defined by the first layer, and defines
the final univariate discretization grid 〈b1, b2, ..., bwi〉, with size wi > k linear
to the number of final clusters to find. The grid this way defined represents an
approximated histogram of the variable produced at the local site. The update
process of the second layer works online along with the first layer. For each new
example Xi(t), the system increments the counter in the second-layer cell where
the triggered first-layer cell is included, defining the discretized state si(t). Al-
gorithm 1 presents the adaptive discretization procedure executed at each local
site.

Algorithm 1. LocalAdaptiveGrid(Xi, α)
Input: univariate stream Xi and threshold value α
Output: void (sends discretized states si to central site)
1: let n ← 0
2: while Xi(t) ← read sensor(i) do
3: n ← n + 1
4: let c be the layer-one cell triggered by Xi(t)
5: countc ← countc + 1
6: if countc/n > α then
7: split cell c, dividing countc evenly by the two cells
8: update second-layer intervals 〈b1, b2, ..., bwi〉
9: send 〈b1, b2, ..., bwi〉 to central site

10: end if
11: let b be the layer-two cell triggered by c
12: countb ← countb + 1
13: send si ← 〈t, b〉 to the central site
14: end while
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3.3 Centralized Frequent State Monitoring

In this work we consider synchronous processing of sensor data. The global state
is updated at each time stamp as a combination of each local site’s state, where
each value is the cell number of each local site’s grid, s(t) = 〈s1(t), s2(t), ..., sd(t)〉.
If in that period no information arrives from a given local site i, the central site
assumes that site i stays in the previous local state (si(t) ← si(t − 1)). The
number |E| of cell combinations to be monitored by the central site is exponential
to the number of sensors, |E| = O(wd). However, only a small number of this
combinations represent states which are frequently visited by the whole network.
This way the central site keeps a small list, F , of counters of the most frequent
global states, whose central points will afterwards be used in the final clustering
algorithm, with |F | = O(dkβ), for small β.

Space-Saving Top-m Elements Monitoring. Each seen global state e ∈ E
is a frequent element fr whose counter countr currently estimates that it is the
rth most frequent state. The system applies the Space-Saving algorithm [20], to
monitor only the top-m elements. If we observe a state s(t) that is monitored in
rank r (fr = s(t)), we just increment its counter, countr. If s(t) is not monitored,
replace fm, the element that currently has the least estimated hits, countm, with
s(t), and increment countm. For each monitored element fi, we keep track of its
over-estimation, εi, resulting from the initialization of its counter when it was
inserted into the list. That is, when starting to monitor fi, set εi to the value of
the evicted counter. An element fi is guaranteed to be among the top-m elements
if its guaranteed number of hits, counti − εi, exceeds countm+1. The authors
report that, even if it is not possible to guarantee top-m elements, the algorithm
can guarantee top-m′ elements, with m′ ≈ m. Hence, suitable values for m
should be considered. Furthermore, due to errors in estimating the frequencies
of the elements, the order of the elements in the data structure might not reflect
their exact ranks. Thus, when performing clustering on the top-m elements, we
should be careful not to directly weight each point by its rank. The goal of this
strategy is to monitor top-m states, using only the guaranteed top-m elements
as points for the final clustering algorithm. One important characteristic of this
algorithm is that it tends to give more importance to recent examples, enhancing
the adaptation of the system to data evolution.

3.4 Centralized Online Clustering

The goal of DGClust is to find and continuously keep a cluster definition, report-
ing the k cluster centers. Each frequent state fi represents a multivariate point,
defined by the central points of the corresponding unit cells si for each local site
Xi. As soon as the central site has a top-m set of states, with m > k, a simple
partitional algorithm can be applied.

Initial Centers. In the general task of finding k centers given m points, there
are two major objectives: minimize the radius (maximum distance between a
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point and its closest cluster center) or minimize the diameter (maximum dis-
tance between two points assigned to the same cluster) [7]. The Furthest Point
algorithm [16] gives a guaranteed 2-approximation for both the radius and di-
ameter measures. It begins by picking an arbitrary point as the first center, c1,
then finding the remaining centers ci iteratively as the point that maximizes its
distance from the previously chosen centers {c1, ..., ci−1}. After k iterations, one
can show that the chosen centers {c1, c2, ..., ck} represent a factor 2 approxima-
tion to the optimal clustering [16]. See [7] for a proof. This strategy gives a good
initialization of the cluster centers, computed by finding the center ki of each
cluster after attracting remaining points to the closest center ci. This algorithm
is applied as soon as the system finds a set of m′ > k guaranteed top-m states.

Continuous Adaptive Clustering. It is known that a single iteration is not
enough to converge to the actual centers in simple k-means strategies. Hence
we consider two different states on the overall system operation: converged and
non-converged. At every new state s(t) that is gathered by the central site, if
the system has not yet converged, it adapts the clusters centers using the m′

guaranteed top-m states. On the other hand, if the system has converged, two
different scenarios may occur. If the current state is being monitored as one of
the m′ top-m states, then the set of points actually used in the final clustering
is the same, so the clustering centers remain the same. No update is performed.
On the other hand, if the current state has just become guaranteed top-m, then
the clusters may have change so we move into a non-converged state of the sys-
tem, updating the cluster centers. Another scenario where the clusters centers
require adaptation is when one or more local sites transmit their new grid in-
tervals, which are used to define the central points of each state. In this case
we also update and move to non-converged state. A different scenario is created
when a new state enters the top-m, replacing the least frequent one. In this case,
some of the previously guaranteed top-m may loose their guarantee. However, if
the list of frequent items is small (imposed by resources restrictions) this will
happen very frequently so we disregard this scenarios to prevent excessive com-
putation when cluster centers have already converged. Future work will focus
on these scenarios for concept drift and cluster evolution purposes. In scenarios
where clusters centers adaptation is needed, our system updates the clustering
definition by applying a single iteration of point-to-cluster assignment and clus-
ter centers computation. This process assures a smooth evolution of the cluster
centers, while it nevertheless adapts them to the most recent data, as old data
points tend to be less frequent. Algorithm 2 presents the central adaptive proce-
dure executed at the server site. The algorithm for ClusterCentersUpdate(K, F )
is omitted for simplicity and space saving. Figure 1 presents a final grid, frequent
cells and cluster centers for a specific case with d = 2, k = 5, for different values
of w and m. The flexibility of the system is exposed, as different parameter values
yield different levels of results. Moreover, the continuous update keeps track of
the most frequent cells keeping the gathered centers within acceptable bounds.
A good characteristic of the system is this ability to adapt to resource restricted
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Algorithm 2. CentralAdaptiveProcessing(L, k, m)
Input: list of local sites L = {l1, l2, ..., ld}, number of clusters k and frequent states m
Output: set K of k cluster centers
1: F ← {} (set of frequent global states)
2: K ← {} (set of k cluster centers)
3: conv ← false (are the centers stable?)
4: for each timestamp t do
5: for each local site i do
6: if si(t) has not been received then si(t) ← si(t − 1)
7: end for
8: s(t) ← 〈s1(t), s2(t), ..., sd(t)〉
9:

〈
F, m′, fs(t), εs(t)

〉
← SpaceSavingUpdate(F , m, s(t)) (as in [20])

10: if m′ > k and K = {} then
11: K ← FurthestPoint (F , k) (as in [16])
12: else
13: if not conv or fs(t) − εs(t) = fm+1 + 1 then
14: 〈K, conv〉 ← ClusterCentersUpdate(K, F )
15: end if
16: end if
17: end for
18: return K

environments: system granularity can be defined given the resources available in
the network’s processing sites.

4 Algorithm Analysis

Each univariate data stream is discretized, with only the discretized state being
forwarded to the central site. At this point, the granularity of each sensor’s grid
will directly influence the error in that dimension. Since the construction of the
second layer is directly restricted to the intervals defined in layer one, the final
histograms will also be an approximation of the exact histograms that would
be defined directly if all data was considered. Nevertheless, with this two-layer
strategy the update of the final grid is straightforward. The layer-two intervals
just need to be recomputed when the split operator in layer one is triggered.
Moreover, the number of intervals in the second layer can be adjusted individu-
ally for each sensor, in order to address different needs of data granularity and
resources requirements. In this proposal we address univariate sensor readings.
The data stream model we consider in sensor networks assumes that a sensor
value represents its state in a given moment in time. If the readings of a local sen-
sor fall consecutively in the same layer-two interval, no sound information would
be given to the central site. Thus, local sites only centralize information when a
new value triggers an interval different from the previously sent to the central
server. The central site only monitors the top-m most frequent global states, dis-
regarding infrequent states which could influence the final clusters. Finally, the
system performs partitional clustering over the m′ guaranteed top-m frequent
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Fig. 1. Example of final definition for 2 sensors data, with 5 clusters. Each coordinate
shows the actual grid for each sensor, with top-m frequent states (shaded cells), gath-
ered (circles) and real (crosses) centers, run with: (w = 6, m = 20), (w = 12, m = 60),
(w = 24, m = 180), and (w = 24, m = 180) presenting only guaranteed top-m.

states which is a sample of the actual states, being biased to dense cells. More-
over, although the furthest point algorithm may give guarantees on the initial
centers for the clustering of the frequent states, the adaptive update is biased to-
wards small changes in the concept generating the data streams. Each sensor Xi

produces a univariate adaptive grid. This process uses the PiD algorithm which,
after the initial definition of the two layers based on ni examples, in O(ni log pi)
time and O(pi) space, is continuously updated in constant O(log pi) time and
(almost) constant space. Since this is done parallel across the network, the time
complexity of the discretization of one example in the entire network is O(log p)
where p = max(pi), ∀i ∈ {1, 2, ..., d}. The central site aggregates the state of
each of the d local sites. The focus is on monitoring the top-m frequent global
states, which are kept in O(md) space (the actual m frequent states) and con-
tinuously updated in O(m) time (linear search for the current state). The initial
clustering of frequent states, and its subsequent adaptation is made in O(km)
time. Data communication occurs only in one direction, between the local sites
and the central site. All queries are answered by the central server. Also, this
communication does not include sending the original data, rather informing the
central server of the current discrete state of the univariate stream of each local
site. This feature of only communicating the state when and if it has changed
reduces the network’s communication requirements. The main reason of this is
that, in usual sensor data, sensor readings tend to be highly correlated with pre-
viously read value [15], hence tending to stay in the same discretized state. In
the worst case scenario, where all d local sites need to communicate their state to
the central site, the system processes d messages of one discrete value. However,
every time the local site Xi changes its univariate grid, the central site must be
informed on the change so that it can correctly compute the points used to find
the cluster centers, which imply sending wi values. In the worst case scenario,
the central site may have to receive O(wd) data, where w = max(wi).

5 Experimental Evaluation

Evaluation of streaming algorithms is a hot-topic in research as no standard
exists for evaluating models over streams of data. Hence the difficulty to define
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exact evaluation processes. Nevertheless, we conducted a series of experiments on
synthetic scenarios, to assess the quality of our proposal. All scenarios were gen-
erated by applying the data generator used in [11], considering each dimension
separated across sensors, in univariate streams. The global view of the network
scenarios is created by mixtures of k spherical Gaussians, with means μi in the
unit hypercube. Each scenario was generated according to three parameters: di-
mensionality d of the network, the number of mixture components k, and the
standard deviation of each sensor stream in each component σ. Each scenario
(d, k, σ) is created with 100000 examples. Given the scope of this validation, the
system’s quality is measured by assigning each of the found cluster centers to
the closest real cluster center, using a greedy strategy. The loss of the chosen
assignment is given by

LK =
k∑

i=1

d∑

j=1

(ĉij − cij)2 (1)

where ĉij and cij are the gathered and real values, respectively, for center i in
dimension j.

5.1 Parameter Sensitivity

For each scenario, the system’s sensitivity to parameters is evaluated. Studied pa-
rameters are the granularity of the univariate adaptive grid, wi, ∀i ∈ {1, 2, ..., d},
and the number of frequent states to monitor, m. We fixed pi = 1000, ∀i ∈
{1, 2, ..., d}. We look for a good relation between the scenario (k and d) and pa-
rameters (w and m). Our assumption is that parameters should follow w ∈ O(k)
and m ∈ O(dkβ), for small β (possibly β = 1). To study this possibility, we define
two factors ω and φ, where w = ωk + 1 (allows extra cell which will mostly keep
outliers) and m = φwd. As first layers in the univariate grids have size >> 20,
we set α = 0.05 stating that a first-layer cell of the univariate grid will be split if
it contains more that 5% of the total number of points. The initial range is set to
[0, 1]. We set d ∈ {2, 3, 4, 5} and σ = 0.1, varying k ∈ {3, 4, 5}, ω ∈ {1, 2, 3, 4, 5}
and φ ∈ {1, 2, 3, 4, 5}. Each scenario was evaluated with results averaged over
10 datasets. All wi are set with the same value w = ωk + 1. We vary k within
small values to inspect the ability of the system to find well-separable clusters.
After aggregating all experiments, we computed Pearson’s correlation between
the parameters (ω and φ) and the resulting loss. The ω parameter reported (as
expected) negative correlation with the loss (ρ = −0.7524), as better granular-
ity diminishes the error implied by performing clustering on a grid instead of
the real values. However, higher granularity also implies higher values for m, so
a compromise should be found to optimize computational costs. After running
some empirical tests (which will be subject of thorough evaluation in the fu-
ture), we found that ω should be larger than 1, in order to allow the existence of
infrequent cells between frequent ones, hence improving separability. For the φ
parameter, the study reported a positive correlation with loss (ρ = 0.3832). Since
this goes against the empirical intuition, we decided to try a different approach.
Let m = dw2

γ , with γ ∈ {10, 8, 6}. Tables 1 and 2 present the results gathered
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Table 1. Averaged loss over ω ∈ {2, 4} and γ ∈ {6, 8, 10}, and 10 different data sets for
each combination of parameters and scenarios, for DGCluster and Continuous K-Means

k = 2 k = 3 k = 4 k = 5 k = 10
d DGC CKM DGC CKM DGC CKM DGC CKM DGC CKM
2 0.015305 0.000003 0.152415 0.000048 0.056467 0.032453 0.011277 0.000062 0.201048 0.238827
3 0.018003 0.000010 0.181453 0.069749 0.102557 0.157503 0.279721 0.209871 0.194634 0.423646
4 0.006005 0.000012 0.004045 0.000022 0.178782 0.185916 1.010598 0.436916 0.717055 0.386985
5 0.007152 0.000015 0.007816 0.130807 0.200100 0.256851 0.678498 0.687560 0.544533 0.908984
10 0.020770 0.000034 0.146219 0.285631 0.388414 0.939210 0.910776 1.895545 2.188842 1.990172
20 0.094645 0.000065 1.200420 1.386870 0.961394 1.211905 1.610627 2.015545 7.027379 5.083694

Table 2. Averaged loss over all k ∈ {2, 3, 4, 5, 10} for each fixed parameter over 10
different data sets

d ω = 2 ω = 4 γ = 10 γ = 8 γ = 6 Continuous KM
2 0.066647 0.107959 0.072887 0.096263 0.092757 0.054279
3 0.162751 0.147796 0.151097 0.166548 0.148176 0.172156
4 0.377053 0.389541 0.381646 0.366113 0.402133 0.201970
5 0.242538 0.332701 0.295861 0.281109 0.285889 0.396843
10 0.702328 0.759680 0.748789 0.711933 0.732290 1.022118
20 2.137683 2.220103 2.188506 2.117922 2.230250 1.939616

for different scenarios, comparing with a simple centralized online k-means strat-
egy, to which we refer as Continuous K-Means, which is a simplification of the
STREAM algorithm [22]. This strategy performs a K-Means at each chunk of
examples, keeping only the centers gathered with the last chunk of data weighted
by the amount of points that were assigned to each center. Once again we note
how hard it becomes to define a clear relation between w, d and m, although for
higher values of k and d we could see some possible progressive paths towards an
improvement in the competitiveness of our proposal. However, the identification
of general parameters is always discussable. Although we plan to perform more
exhaustive sensitivity tests, in order to achieve at least acceptable ranges for the
parameters, we should stress that the flexibility included in the system allows
for better deployment in sensor networks and resource restricted environments.

5.2 Application to Physiological Sensor Data

The Physiological Data Modeling Contest Workshop (PDMC) was held at the
ICML 2004 and aimed at information extraction from streaming sensors data.
The training data set for the competition consists of approximately 10,000 hours
of this data, containing several variables: userID, sessionID, sessionTime, char-
acteristic[1..2], annotation, gender and sensor[1..9]. We have concentrated on
sensors 2 to 9, extracted by userID, resulting in several experimental scenarios
of eight sensors, one scenario per userID. For each scenario, we run the system
with different values for the parameters, and compare the results both with the
Continuous K-Means and full data K-Means, the latter serving as “real” centers
definition. Since different sensors produce readings in different scales, we inspect
the distribution of each sensor on an initial chunk of data, defining the initial
ranges to percentiles 25% and 75%. This process is acceptable in the sensor
networks framework as expert knowledge about the range is usually available.
Hence, we are also allowing the system to adapt the local grids accordingly. The
system ran with k ∈ {2, 3, 4, 5}, ω ∈ {2, 4, 6, 8, 10} and γ ∈ {10, 8, 6, 4, 2}. Also
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Table 3. Performance in terms of communicated values (% of total examples × di-
mensions), evicted states (% of total examples), cluster centers adaptations (% of to-
tal examples) and number of guaranteed top-m (% of total m) with k ∈ {2, 3, 4, 5},
ω ∈ {2, 4, 6, 8, 10} and γ ∈ {10, 8, 6, 4, 2}

k = 2 k = 3 k = 4 k = 5
Communication (%) 20.4±08.3 26.8±09.09 31.6±10.5 36.0±11.4
Evicted (%) 18.0±12.6 28.5±16.6 36.5±18.5 42.7±18.6
Updated (%) 03.2±01.6 04.3±02.8 05.9±04.5 07.8±06.6
Guaranteed (%) 24.7±17.0 17.4±14.1 12.2±10.2 10.1±09.0
Best Loss 1329.67 5222.17 9529.40 34131.75
Worst Loss 114645.7 669330.5 393919.9 554944.9
CKM Loss 1785.97 112830.4 105091.0 276932.5

monitored was the amount of communication and cluster adaptation in each run.
Table 3 presents performance results for the physiological sensor data. Given the
characteristics of sensor data, subsequent readings tend to stay in the same in-
terval. Hence the advantage of local discretization: the system transmits only
around 30% of the total amount of values, including transmissions of recalcu-
lated second layer intervals. Also, we should note that only a small part of the
points require cluster center adaptation (less than 10%). Overall we should stress
that, given the flexibility of the system, a suitable combination of parameters
can yield better results than centralizing the data, while preventing excessive
communication in the sensor network.

6 Conclusions and Future Work

In this paper, we have proposed a new algorithm to perform clustering of dis-
tributed data streams, which reduces both the dimensionality and the commu-
nication burdens. Each sensor’s data is processed locally, being incrementally
discretized into a univariate adaptive grid, with each new value triggering a spe-
cific cell of this grid, defining the local state of the sensor. Whenever a local
site change its state, that is, the triggered cell changes, the new state is com-
municated to a central site. This highly reduces the network’s communication
requirements with the central site which keeps a small list of counters of the most
frequent global states. This is extremely helpful as sensor networks may include
thousands of sensors, leading to an exponential number of cell combinations that
should be monitored by the central site. The final clustering structure is defined
and maintained by a simple partitional clustering algorithm, applied on the fre-
quent states, which is capable of online update and adaptation to the evolution of
the data. Experiments are presented in terms of sensitivity tests and application
to a real-world data set. Major characteristics of the system include: compact
representation of possibly infinite streams produced in distributed sensors, with
possibly different granularities for each sensor; possibility to adapt discretiza-
tion and central processing to resources available in the network; centralized
monitoring of the global state of the network, with lightweight maintenance of
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frequent states; and fast and adaptable clustering of frequent states to estimate
actual clusters centers. Current work is concentrated on determining acceptable
ranges for the parameters of the system and application to more real-world data.
Future work will focus on techniques to monitor the evolution of the clusters,
taking advantage from the adaptive update of clusters already implemented in
the system. Furthermore, we are preparing the deployment of the system in real
wireless sensor networks, in order to better assess the sensitivity and advantages
of the system with respect to restricted resources requirements.
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Abstract. In this paper, we aim to identify the minimal subset of dis-
crete random variables that is relevant for probabilistic classification in
data sets with many variables but few instances. A principled solution
to this problem is to determine the Markov boundary of the class vari-
able. Also, we present a novel scalable, data efficient and correct Markov
boundary learning algorithm under the so-called faithfulness condition.
We report extensive empiric experiments on synthetic and real data sets
scaling up to 139,351 variables.

1 Introduction

The identification of relevant subsets of random variables among thousands of
potentially irrelevant and redundant variables with comparably smaller sample
sizes is a challenging topic of pattern recognition research that has attracted
much attention over the last few years [1, 2, 3]. By relevant subsets of variable,
we mean the variables that conjunctly prove useful to construct an efficient
classifier from data. This contrasts with the suboptimal problem of ranking the
variables individually. Our specific aim is to solve the feature subset selection
problem with thousands of variables but few instances using Markov boundary
learning techniques. The Markov boundary of a variable T , denoted by MBT ,
is the minimal subset of U (the full set) that renders the rest of U independent
of T .

Having to learn a Bayesian network G in order to learn a Markov boundary of
T can be very time consuming for high-dimensional databases. This is particu-
larly true for those algorithms that are asymptotically correct under faithfulness
condition, which are the ones we are interested in. Fortunately, there exist algo-
rithms that search the Markov boundary of a target without having to construct
the whole Bayesian network first [3]. Hence their ability to scale up to thousands
of variables. Unfortunately, they miss many variables due to the unreliability of
the conditional independence tests when the conditioning set is large. Hence the
need to increase data-efficiency of these algorithms, that is, the ability of the
algorithm to keep the size of the conditional set as small as possible during the
search.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 298–312, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Novel Scalable and Data Efficient Feature Subset Selection Algorithm 299

In this paper, we discuss a divide-and-conquer method in order to increase
the data-efficiency and the robustness of the Markov boundary (MB for short)
discovery while still being scalable and correct under the faithfulness condition.
The proposed method aims at producing an accurate MB discovery algorithm
by combining fast, rough and moderately inaccurate (but correct) MB learners.
The proposed method is compared against two recent powerful constraint-based
algorithms PCMB [3], IAMB [4] and Inter-IAMB [5]. We call our algorithm
MBOR, it stands for ”Markov Boundary search using the OR condition”. MBOR
was designed with a view to keep the conditional test sizes of the tests as small
as possible.

The experiments on the synthetic databases focus on the accuracy and the
data efficiency of MBOR, whereas the experiments on real data also addresses its
scalability. The benchmarks used for the empiric test are: ASIA, INSURANCE,
INSULINE, ALARM, HAILFINDER and CARPO. We report the average num-
ber of missing and extra variables in the output of MBOR with various sample
sizes. The method is proved by extensive empirical simulations to be an excel-
lent trade-off between time and quality of reconstruction. To show that MBOR
is scalable, experiments are conducted on the THROMBIN database which con-
tains 139,351 features [6].

The paper is organized as follows. In Section 2, we briefly discuss the lack
of reliability of the conditional independence tests. In Section 3, we present
and discuss our proposed algorithm called MBOR. Synthetic and real data sets
from benchmarks are used in section 4 to evaluate MBOR against PCMB and
InterIAMB.

2 Preliminaries

For the paper to be accessible to those outside the domain, we recall first the
principle of Bayesian networks (BN), Markov boundaries and constraint-based
learning BN methods. A BN is a tuple < G, P >, where G =< V , E > is a
directed acyclic graph (DAG) with nodes representing the random variables V
and P a joint probability distribution on V . In addition, G and P must satisfy
the Markov condition: every variable, X ∈ V , is independent of any subset of its
non-descendant variables conditioned on the set of its parents. We denote the
conditional independence of the variable X and Y given Z, in some distribution P
with X ⊥P Y |Z. The independence constraints implied by the Markov condition
necessarily hold in the joint distribution represented by any Bayesian network
with structure G. They can be identified by the d-separation criterion (See Pearl
1988). We use X ⊥G Y |Z to denote the assertion that the DAG G imposes the
constraint, via d-separation, that for all values z of the set Z, X is independent
of Y given Z = z. We say that P is faithful with respect to G iff the d-separations
in the DAG identify all and only the conditional independencies in P .

A Markov blanket MT of the T is any set of variables such that T is condition-
ally independent of all the remaining variables given MT . A Markov boundary,
MBT , of T is any Markov blanket such that none of its proper subsets is a
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Markov blanket of T . Suppose < G, P >, satisfies the faithfulness condition,
then for all variable T , the set of parents of T , the children of T , and parents
of children of T , is the unique Markov boundary of T . We denote by PCT , the
set of parents and children of T in G, and by SPT , the set of spouses of T in G.
The spouses of T are the parents of the children of T . We denote by dSep(X),
the set that d-separates X from the (implicit) target T .

The identification of variable Markov boundary is a challenging topic of pat-
tern recognition research. In recent years, there has been great interest in auto-
matically inducing the Markov boundary from data using constraint-based (CB
for short) learning procedures. The correctness, scalability and data efficiency of
these methods have been proved and also illustrated by extensive experiments
[3]. By correct (or sound), we mean that, under the assumptions that inde-
pendence test are reliable and that the learning database is a sample from a
distribution P faithful to a DAG G, the algorithm returns the correct Markov
boundary. The (ideal) assumption that the independence tests are reliable means
that they decide (in)dependence iff the (in)dependence holds in P . Despite their
great efficiency and scalability, these CB methods suffer from several drawbacks
as we will see in the next section.

3 Problems with Constraint-Based MB Discovery

CB methods have the advantage of possessing clear stopping criteria and de-
terministic search procedures. On the other hand, they are prone to several
instabilities: namely if a mistake is made early on in the search, it can lead to
incorrect edges which may in turn lead to bad decisions in the future, which can
lead to even more incorrect edges. This instability has the potential to cascade,
creating many errors in the final graph [7]. We discuss next two well-known
sources of test failure.

3.1 Conditional Independence Test Failures with Sparse Data

CB procedures systematically check the data for independence relationships to
infer the structure. The association between two variables X and Y given a con-
ditioning set Z is a measure of the strength of the dependence with respect to
D. It is usually implemented with a statistical measure of association. Typically,
the algorithms run a χ2 independence test in order to decide on dependence or
independence, that is, upon the acceptance or rejection of the null hypothesis
of conditional independence. If the p-value of the test is smaller than a spe-
cific significance level, we reject the null hypothesis and consider that the two
variables in the test are dependent. Insufficient data presents a lot of problems
when working with statistical inference techniques like the independence test
mentioned earlier. This occurs typically when the expected counts in the contin-
gency table are small. The decision of accepting or rejecting the null hypothesis
depends implicitly upon the degree of freedom which increases exponentially
with the number of variables in the conditional set. So the larger the size of the
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conditioning test, the less accurate are the estimates of conditional probabilities
and hence the less reliable are the independence tests.

3.2 Almost Deterministic Relationships

Another difficulty arises when true- or almost-deterministic relationships (ADR)
are observed among the variables. Loosely speaking, a relationship is said to be
almost deterministic (and denoted by X ⇒ Y ) when the fraction of tuples that
violate the deterministic dependency is at most equal to some threshold. True DR
are source of unfaithfulness but the existence of ADR among variables doesn’t
invalidate the faithfulness assumption. The existence of ADR in the data may
arise incidentally in smaller data samples. To remedy the problem, the variables
that are almost-deterministically related to others may simply be excluded from
the discovery process. However, if they are to be excluded, they first need to
be identified before the DAG construction. This yields two problems. First, the
identification is already exponentially complex. Second, a variable may have both
deterministic and probabilistic relationships with other variables. On the other
hand if we neither exclude deterministic variables nor handle appropriately the
problem, then the unfaithful nature of deterministic nodes brings missing or
extra edges to the acquired structure.

3.3 Practical Alternatives

Several proposals have been discussed in the literature in order to reduce the
cascading effect of early errors that causes many errors to be present in the final
graph. The general idea is to keep the size of the conditional sets as small as
possible in the course of the learning process. For instance, Fast-IAMB [4] con-
ducts significantly fewer conditional tests compared to IAMB [5] while MMMB
[8] and PCMB [3] are more data efficient because MBT can be identified by
conditioning on sets much smaller than those used by IAMB. Another solution
is to determine if enough data is available for the test to be deemed reliable. Fol-
lowing the approach in [9] Inter-IAMB considers a test to be reliable when the
number of (complete) instances in D is at least five time the number of degrees
of freedom df and skips it otherwise. This means that the number of instances
required by the test is at least exponential in the size of the conditional set,
because df is exponential in the size of the conditional set. In [10], they consider
that 80% of the cells should have expected values greater than five. If the test is
not considered as reliable, the variables are assumed to be independent without
actually performing the test. This rule is rather arbitrary and errors may occur
well before the lack of data is detected.

As a heuristic, the idea is generally to reduce the degree of freedom of the
statistical conditional independence test by some ways. The aim is twofold: to
improve the data efficiency and to allow an early detection of ADR. Various
strategies exist to reduce the degrees of freedom [11]. In [12] for instance, if
the reduced degree of freedom is small, then an ADR Z ⇒ X is suspected, a
”safe choice” is taken : dependence is assumed X⊥P Y |Z for all Y . Similarly, in
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[13, 14], association rules miners are used to detect ADR and in [15, 16], the
ADR are detected during the MB discovery. Once the ADR are detected, any
CB algorithm can be used to construct a DAG such that, for every pair X and
Y in V, (X, Y ) is connected in G if X and Y remains dependent conditionally
on every set S ⊆ V \ {X, Y } such that S �⇒ X and S �⇒ Y .

4 New Method

In this section, we present in detail our learning algorithm called MBOR. We
recall that MBOR was designed in order to endow the search procedure with the
ability to: 1) handle efficiently data sets with thousands of variables but very
few instances, 2) be correct under faithfulness condition, 3) handle implicitly
some approximate deterministic relationships (ADR) without detecting them.
We discuss next how we tackle each problem.

First of all, MBOR scales up to hundreds of thousands of variables in reason-
able time because it searches the Markov boundary of the target without having
to construct the whole Bayesian network first. Like PCMB [3] and MMMB [8],
MBOR takes a divide-and-conquer approach that breaks the problem of identify-
ing MBT into two subproblems : first, identifying PCT and, second, identifying
the parents of the children (the spouses SPT ) of T . According to Peña et al.,
this divide-and-conquer approach is supposed to be more data efficient than
IAMB [5] and its variants, e.g., Fast-IAMB [10] and Interleaved-IAMB [4], be-
cause MBT can be identified by conditioning on sets much smaller than those
used by IAMB. Indeed, IAMB and its variants seek directly the minimal subset
of U (the full set) that renders the rest of U independent of T , given MBT .
Moreover, MBOR keeps the size of the conditional sets to the minimum possible
without sacrificing the performance as discussed next.

The advantage of the divide-and-conquer strategy in terms of data efficiency
does not come without some cost. MMMB [8] and PCMB [3] apply the ”AND
condition” to prove correctness under faithfulness condition. In other words, two
variables X and Y are considered as neighbors if Y ∈ PCX AND X ∈ PCY .
We believe this condition is far too severe and yields too many false negatives
in the output. Instead, MBOR stands for ”Markov Boundary search using the
OR condition”. This ”OR condition” is a major difference between MBOR and
all the above mentioned correct divide-and-conquer algorithms: two variables X
and Y are considered as neighbors with MBOR if Y ∈ PCX OR X ∈ PCY .
Clearly, the OR condition makes it easier for true positive nodes to enter the
Markov boundary, hence the name and the practical efficiency of our algorithm.
Moreover, the OR condition is a simple way to handle some ADR. For illustra-
tion, consider the sub-graph X ⇒ T → Y , since X ⇒ T is an ADR, T ⊥ Y |X so
Y will not be considered as a neighbor of T . As Y still sees T in its neighborhood,
Y and T will be considered as adjacent. The main difficulty was to demonstrate
the correctness under the faithfulness condition despite the OR condition. The
proof is provided in the next section.
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MBOR (Algorithm 1) works in three steps and it is based on four subrou-
tines called PCSuperset, SPSuperset and MBtoPC (Algorithms 2-4). Before we
describe the algorithm step by step, we recall that the general idea underlying
MBOR is to use a weak MB learner to create a stronger MB learner. By weak
learner, we mean a simple and fast method that may produce many mistakes
due to its data inefficiency. In other words, the proposed method aims at pro-
ducing an accurate MB discovery algorithm by combining fast and moderately
inaccurate (but correct) MB learners. The weak MB learner is used in MBtoPC
(Algorithm 4) to implement a correct Parents and Children learning procedure.
It works in two steps. First, the weak MB learner called CorrectMB is used at line
1 to output a candidate MB. CorrectMB may be implemented by any algorithm
of the IAMB family. In our implementation, we use Inter-IAMB for its simplicity
and performance [5]. The key difference between IAMB and Inter-IAMB is that
the shrinking phase is interleaved into the growing phase in Inter-IAMB. The
second step (lines 3-6) of MBtoPC removes the spouses of the target.

In phase I, MBOR calls PCSuperset to extract PCS, a superset for the parents
and children, and then calls SPSuperset to extract SPS, a superset for the target
spouses (parents of children). Filtering reduces as much as possible the number of
variables before proceeding to the MB discovery. In PCSuperset and SPSuperset,
the size of the conditioning set Z in the tests is severely restricted: card(Z) ≤ 1 in
PCSuperset (lines 3 and 10) and card(Z) ≤ 2 in SPSuperset (lines 5 and 11). As
discussed before, conditioning on larger sets of variables would increase the risk
of missing variables that are weakly associated to the target. It would also lessen
the reliability of the independence tests. So the MB superset, MBS (line 3), is
computed based on a scalable and highly data-efficient procedure. Moreover, the
filtering phase is also a way to handle some ADR. For illustration, consider the
sub-graph Z ⇒ Y → T ⇐ X , since X ⇒ T and Z ⇒ Y are ADRs, T ⊥ Y |X
and Y ⊥ T |Z, Y would not be considered as a neighbor of T and vice-versa. The
OR-condition in Phase II would not help in this particular case. Fortunately, as
Phase I filters out variable Z, Y and T will be considered as adjacent

Phase II finds the parents and children in the restricted set of variables us-
ing the OR condition. Therefore, all variables that have T in their vicinity are
included in PCT (lines 7-8).

Phase III identifies the target’s spouses in MBS in exactly the same way
PCMB does [3]. Note however that the OR condition is not applied in this last
phase because it would not be possible to prove its correctness anymore.

5 Proof of Correctness Under Faithfulness Condition

Several intermediate theorems are required before we demonstrate MBOR’s
correctness under faithfulness condition. Indeed, as MBS is a subset of U, a
difficulty arises: a marginal distribution PV of V ⊂ U may not satisfy the
faithfulness condition with any DAG even if PU does. This is an example of
embedded faithfulness, which is defined as follow:
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Algorithm 1. MBOR
Require: T : target; D : data set (U is the set of variables)
Ensure: [PC,SP]: Markov boundary of T

Phase I: Find MB superset (MBS)
1: [PCS,dSep] = PCSuperSet(T, D)
2: SPS = SPSuperSet(T, D,PCS,dSep)
3: MBS = PCS ∪ SPS
4: D = D(MBS ∪ T ) i.e., remove from data set all variables in U/{MBS ∪ T}

Phase II: Find parents and children of the target
5: PC = MBtoPC(T, D)
6: for all X ∈ PCS \ PC do
7: if T ∈ MBtoPC(X, D) then
8: PC = PC ∪ X
9: end if

10: end for

Phase III: Find spouses of the target
11: SP = ∅
12: for all X ∈ PC do
13: for all Y ∈ MBtoPC(X, D) \ {PC ∪ T} do
14: Find minimal Z ⊂ MBS\{T ∪ Y } such that T ⊥ Y |Z
15: if (T �⊥ Y |Z ∪ X) then
16: SP = SP ∪ Y
17: end if
18: end for
19: end for

Definition 1. Let P be a distribution of the variables in V where V ⊂ U and let
G =< U,E > be a DAG. < G, P > satisfies the embedded faithfulness condition if
G entails all and only the conditional independencies in P , for subsets including
only elements of V.

We obtain embedded faithfulness by taking the marginal of a faithful distribution
as shown by the next theorem:

Theorem 1. Let P be a joint probability of the variables in U with V ⊆ U
and G =< U,E >. If < G, P > satisfies the faithfulness condition and PV is
the marginal distribution of V, then < G, PV > satisfies the embedded faithful
condition.

The proof can be found in [17]. Note that every distribution doesn’t admit an
embedded faithful representation. This property is useful to prove the correctness
of our MBOR under the faithfulness condition. Let PCU

X denote the variables
Y ∈ U such that there is no set Z ∈ U\{X, Y } such that X ⊥P Y |Z. If < G, P >
satisfies the faithfulness condition, PCU

X are the parents and children of X in
U. Otherwise, PCU

X is the unique set of the variables that remains dependent
on X conditioned on any set Z ∈ U \ {X, Y }.
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Algorithm 2. PCSuperSet
Require: T : target; D : data set (U is the set of variables)
Ensure: PCS: PC superset of T ; dSep: d-separation set;

Phase I: Remove X if T ⊥ X
1: PCS = U \ T
2: for all X ∈ PCS do
3: if (T ⊥ X) then
4: PCS = PCS \ X
5: dSep(X) = ∅
6: end if
7: end for

Phase II:Remove X if T ⊥ X|Y
8: for all X ∈ PCS do
9: for all Y ∈ PCS \ X do

10: if (T ⊥ X | Y ) then
11: PCS = PCS \ X
12: dSep(X) = Y
13: end if
14: end for
15: end for

Algorithm 3. SPSuperSet
Require: T : target; D : data set (U is the set of variables); PCS: PC superset of T ;

dSep: d-separation set;
Ensure: SPS: SP superset of T ;

1: SPS = ∅
2: for all X ∈ PCS do
3: SPSX = ∅
4: for all Y ∈ U \ {T ∪ PCS} do
5: if (T �⊥ Y |dSep(Y ) ∪ X) then
6: SPSX = SPSX ∪ Y
7: end if
8: end for
9: for all Y ∈ SPSX do

10: for all Z ∈ SPSX \ Y do
11: if (T ⊥ Y |X ∪ Z) then
12: SPSX = SPSX \ Y
13: end if
14: end for
15: end for
16: SPS = SPS ∪ SPSX

17: end for
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Algorithm 4. MBtoPC
Require: T : target; D : data set
Ensure: PC: Parents and children of T ;

1: MB = CorrectMB(T, D)
2: PC = MB
3: for all X ∈ MB do
4: if ∃Z ⊂ (MB \ X) such that T ⊥ X | Z then
5: PC = PC \ X
6: end if
7: end for

Theorem 2. Let U be a set of random variables and G =< U,E >. If < G, P >
satisfies the faithfulness condition, then every target T admits a unique Markov
boundary MBU

T . Moreover, for all V such that MBU
T ⊆ V ⊆ U, T admits a

unique Markov boundary over V and MBV
T = MBU

T .

Proof: If MBU
T is the Markov boundary of T in U, then T is independent of

V \ {MBU
T ∪ T } conditionally on MBU

T so MBU
T is a Markov blanket in V.

Moreover, none of the proper subsets of MBU
T is a Markov blanket of T in V,

so MBU
T is also a Markov boundary of T in V. So if it is not the unique MB

for T in V there exists some other set ST not equal to MBU
T , which is a MB

of T in V. Since MBU
T �= ST and MBU

T cannot be a subset of ST , there is
some X ∈ MBU

T such that X �∈ ST . Since ST is a MB for T , we would have
T ⊥P X |ST . If X is a parent or child of T , we would not have T ⊥G X |ST

which means we would have a conditional independence which is not entailed by
d-separation in G which contradicts the faithfulness condition. If X is a parent
of a child of T in G, let Y be their common child in U. If Y ∈ ST we again would
not have T ⊥G X |ST . If Y �∈ ST we would have T ⊥P Y |ST because ST is a MB
of T in V but we do not have T ⊥G Y |ST because T is a parent of Y in G. So
again we would have a conditional independence which is not a d-separation in
G. This proves that there can not be such set ST . �

Theorem 3. Let U be a set of random variables and T a target variable. Let
G =< U,E > be a DAG such that < G, P > satisfies the faithfulness condition.
Let V be such that MBU

T ⊆ V ⊆ U then, PCV
T = PCU

T .

Proof: Clearly PCU
T ⊆ PCV

T as MBU
T ⊆ V ⊆ U. If X ∈ PCV

T and X �∈ PCU
T ,

∃Z ⊂ MBU
T \ X such that T ⊥P X |Z because all non adjacent nodes may be

d-separated in G by a subset of its Markov boundary. As MBU
T = MBV

T owing
to Theorem 2, so X and T can be d-separated in V \ {X, T }. Therefore, X
cannot be adjacent to T in V. �

Theorem 4. Let U be a set of random variables and T a target variable. Let
G =< U,E > be a DAG such that < G, P > satisfies the faithfulness condition.
Let V be such that MBU

T ⊆ V ⊆ U. Under the assumption that the independence
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tests are reliable, MBtoPC(T,V) returns PCU
T . Moreover, let X ∈ V \ T , then

T is in the output of MBtoPC(X,V, D) iff X ∈ PCU
T .

Proof: We prove first that MBtoPC(T,V) returns PCU
T . In the first stage of

MBtoPC, CorrectMB(T,V) seeks a minimal set ST ∈ V \ T that renders V \ ST

independent of T conditionally on ST . This set is unique owing to Theorem 2,
therefore ST = MBV

T = MBU
T . In the backward phase, MBtoPC removes the

variables X ∈ MBV
T such that ∃Z ⊂ (MBV

T \X) for which T ⊥ X | Z. These vari-
ables are the spouses of T in G, so MBtoPC(T,V) returns PCU

T . Now, if X �∈ PCU
T

then X �∈ PCV
T owing to Theorem 3. So there is a set Z ⊂ V \ {X, Y } such that

T ⊥ X | Z. Therefore, X cannot be in the output of MBtoPC(T,V). �

Theorem 5. Under the assumptions that the independence tests are reliable and
that the database is a sample from a probability distribution P faithful to a DAG
G, MBOR(T ) returns MBU

T .

Proof: Let MBS be the MB superset constructed at line 3 of MBOR. It is
straightforward to show that MBU

T ⊂ MBS. So the Markov boundary of T in
MBS is that of U owing to Theorem 2 so the problem is well defined. In Phase
II at line 7, if T is in the output of MBtoPC(X,V, D) then X should be in the
output of MBtoPC(T,V, D) owing to Theorem 4. So phase II ends up with the
PCU

T . In Phase III, lines 11-19 identify all and only the spouse of T in G when
the faithfulness condition is asssumed as shown in [3]. When the assumption
doesn’t hold anymore for < G, P ‘V >, we need to show that a fake spouse will
not enter the set SP. In phase III line 12, it is easy to see that MBtoPC(X,V, D)
returns a set PCV

X that may differ from PCU
X . Suppose Y �∈ PCU

X and Y is in
the output of MBtoPC(X,V, D). This means that there exists at least one active
path between X and Y in G that contains a node in U \ V. At lines 13-14, Y is
considered as spouse of T if there is a set Z ⊂ MBS\{T ∪ Y } so that T ⊥ Y |Z
and T �⊥ Y |Z ∪ X . Therefore, this path in G should necessarily be of the type
T → X ← A � B � Y where � denotes an active path otherwise we would
not have T �⊥ Y |Z ∪ X . As A is a spouse of T , A ∈ MBU

T and so A is in V.
Suppose B is not in V, then A still d-separates X and Y so Y cannot be in the
output of MBtoPC(X,V, D) since we found a set Z ⊆ V such that X �⊥P Y |Z.
So Y is included in SP at line 16 iff Y is a spouse of T in U. �.

6 Experimental Validation

In this section, we compare the performance of InterIAMB, PCMB and MBOR
through experiments on synthetic and real databases with very few instances
compared to the number of variables. They are written in MATLAB and all
the experiments are run on a Intel Core 2 Duo T77500 with 2Gb RAM running
Windows Vista. To implement the conditional independence test, we calculate
the G2 statistic as in [11], under the null hypothesis of the conditional inde-
pendence. The significance level of the test in all compared algorithms is 0.05
except on the high-dimensional THROMBIN data where it is 0.0001. All three
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algorithms are correct under the faithfulness condition and are also scalable.
We do not consider MMMB and HITON-MB because we are not interested in
any algorithm that does not guarantee the correctness under faithfulness as-
sumption. We do not consider GS because IAMB outperforms it [5]. Even if
PCMB was also shown experimentally in [3] to be more accurate than IAMB
and its variants, we consider InterIAMB because it is used as a subroutine in
MBOR.

It might very well happen that several variables have the same association
value with the target in data sets with very few instances. In this particular
case, somewhat arbitrary (in)dependence decisions are taken. This can be seen
as a source of randomness inherent to all CB procedures. To handle this prob-
lem, our implementation breaks ties at random: a random permutation of the
variables is carried out before MBOR is run. This explains the variability of
MBOR with very few instances and/or extremely large number of variables (e.g.,
THROMBIN).

6.1 Synthetic Data

Figure 1 illustrates the results of our experiments on six common BN benchmarks
: BREAST-CANCER or ASIA (8 nodes/8 arcs), INSURANCE (27/52), INSU-
LINE (35/52), ALARM (37/46), HAILFINDER (56/66) and CARPO (61/74).
These benchmarks are available from the UCI Machine Learning Repository. All
three algorithms have been run on each variable for all data sets. Figure 1 (upper
part) summarizes graphically the results in terms of missing and extra nodes in
the output of the MB averaged over 10 runs for 200, 500 and 1000 i.i.d. samples.
The upper part shows the average false positive and and lower part shows the
false negative rates. The overall accuracy is very similar for nodes with Markov
boundaries with less than 4 variables. For larger MBs, however, the advantages
of MBOR against the other two algorithms are far more noticeable. For instance,
MBOR consistently outperforms the other algorithms on variable IPA in the IN-
SULINE benchmark as may be seen in Table 2. Figure 2 (lower part) show the
performance for nodes with more than 4 variables. Results are averaged over all
the above mentioned benchmarks. As observed, MBOR reduces drastically the
average number of false negatives compared to PCMB and InterIAMB (up to
40% on INSULINE). This benefit comes at very little expense: the false positive
rate is slightly higher. This is not a surprise as PCMB makes it harder for true
positives to enter the output.

Table 1. INSULINE benchmark : number of extra and missing variables for PCMB,
Inter-IAMB and MBOR for variable IPA run on 1000 instances. Results are averaged
over 10 runs.

Algorithm false positive false negative
PCMB 0.4 11.8
InterIAMB 0 12.6
MBOR 2.1 2.1
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Fig. 1. Upper plot : average missing (lower part) and extra (upper part) variables
for learning Markov boundaries of all variables of ASIA, INSURANCE, INSULINE,
ALARM, HAILFINDER and CARPO networks. The results of PCMB, InterIAMB and
MBOR are shaded in white, gray and black respectively. For each benchmark the bars
show the results on 200, 500 and 1000 instances respectively. All results are averaged
over 10 runs. Lower plot : results are averaged over all benchmarks for nodes that have
a MB with more than 4 variables in the MB, for 500, 1000 and 2000 i.i.d. samples.

6.2 Real Data

In this section, we assess the performance of the probabilistic classification
using the feature subset output by MBOR. To this purpose, we consider sev-
eral categorical data bases from the UCI Machine Learning Repository in or-
der to evaluate the accuracy of MBOR against InterIAMB and PCMB. The
database description and the results of the experiments with the Car Evalua-
tion, Chess, Molecular Biology, SPECT heart, Tic-Tac-Toe, Wine and Waveform
are shown in Table 1. Performance is assessed by hit rate (correct classification
rate), relative absolute error (R.A.E.), and Kappa Statistics obtained by 10-fold
cross-validation. Kappa can be thought of as the chance-corrected proportional
agreement, and possible values range from +1 (perfect agreement) via 0 (no
agreement above that expected by chance) to -1 (complete disagreement). As
may be seen, the classification performance by naive Bayes classifier on the fea-
tures selected by MBOR has always outperformed that of InterIAMB and PCMB
by a noticeable margin, especially on the Molecular Biology database.

6.3 Real Data : Thrombin Database

Our last experiments demonstrate the ability of MBOR to solve a real world FSS
problem involving thousands of features. We consider the THROMBIN database
which was provided by DuPont Pharmaceuticals for KDD Cup 2001. It is exem-
plary of a real drug design [6]. The training set contains 1909 instances charac-
terized by 139,351 binary features. The accuracy of a Naive Bayesian classifier
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Fig. 2. INSULINE benchmark : Markov boundary of the variable IPA

Table 2. Feature selection performance using several UCI datasets in terms of clas-
sification performance using 10-fold cross-validation by naive Bayes classifier on the
features selected by InterIAMB, PCMB and MBOR. By ”hit rate”, we mean correct
classification rate.

Data Sets Inst. Attr. Accuracy
Algorithms

InterIAMB PCMB MBOR

1728 6
Hit Rate 79.11% 79.11% 85.36%

Car Evaluation Kappa 0.5204 0.5204 0.6665
Rel. abs. error. 56.59% 56.59% 49.88%

Chess
3196 36

Hit Rate 94.37% 92.43% 93.15%
(King-Rook vs. Kappa 0.8871 0.8479 0.8624
King-Pawn) Rel. abs. error 45.09% 47.23% 44.51%
Molecular Biology

3190 61
Hit Rate 74.01% 74.01% 95.61%

(Splice-junction Kappa 0.5941 0.5941 0.9290
Gene Sequences) Rel. abs. error 56.94% 56.94% 10.27%

SPECT Heart 267 22
Hit Rate 76.40% 79.40% 84.27%
Kappa 0.2738 0 0.4989
Rel. abs. error 77.83% 93.92% 71.71%

958 9
Hit Rate 67.95% 67.95% 72.44%

Tic-Tac-Toe Endgame Kappa 0.1925 0.1951 0.3183
Rel. abs. error 85.62% 85.75% 82.53%

178 13
Hit Rate 94.38% 94.38% 98.88%

Wine Kappa 0.9148 0.9148 0.9830
Rel. abs. error 19.08% 19.08% 2.67%

5000 21
Hit Rate 76.42% 76.42% 81.32%

Waveform - Version 1 Kappa 0.6462 0.6462 0.7196
Rel. abs. error 44.50% 44.50% 29.43%

was computed as the average of the accuracy on true binding compounds and
the accuracy on true non-binding compounds on the 634 compounds of the test
set. As the data is unbalanced, the accuracy is calculated as the average of true
positive rate and the true negative rate. A significance level of 0.0001 avoids
better than 0.01 the spurious dependencies that may exist in the data due to
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the large number of features. MBS with α = 0.0001 returns a set of 21 variables,
SPS select 39 variables and MBOR outputs 5 variables on average in about 3h
running time.

Note shown here, the 10 runs return each time a different MB, all of them
containing 5 features. They mostly differ by one or two variables. MBOR scores
between 36% (really bad) to 66% with an average 53% on average which seems
really deceiving compared to PCMB and IAMB that achieves respectively 63%
and 54% as shown in [3]. Nonetheless, MBOR is highly variable and was able to
identify 3 different MBs that outperform those found by IAMB and 90% of those
by PCMB. For instance, the MB which scores 66% contains the two variables
20973, 63855. These two variables, when used conjunctly, score 66,9% which is
impressive according to [6, 3] for such a small feature set. Note that a MB with
the four features obtained by the winner of KDD cup 2001 scores 67% accuracy.

The execution time was not reported as it is too dependent on the specific
implementation. We were unable to run PCMB on the Thrombin database in
reasonable time with our MATLAB implementation. On synthetic data, MBOR
runs (say) 30% faster than PCMB.

7 Discussion and Conclusion

We discussed simple solutions to improve the data efficiency of current constraint-
based Markov boundary discovery algorithms. We proposed a novel approach
called MBOR that combines the main advantages of PCMB and IAMB while still
being correct under faithfulness condition. Our experimental results show a clear
benefit in several situations: densely connected DAGs, weak associations or ap-
proximate functional dependencies among the variables. Though not discussed
here, a topic of considerable interest would be to ascertain the data distributions
for which MBOR, PCMB or the stochastic variant of IAMB termed KIAMB pro-
posed in [3], is most suited. This needs further substantiation through more ex-
periments and analysis.
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Abstract. Robustness or stability of feature selection techniques is a
topic of recent interest, and is an important issue when selected feature
subsets are subsequently analysed by domain experts to gain more in-
sight into the problem modelled. In this work, we investigate the use
of ensemble feature selection techniques, where multiple feature selec-
tion methods are combined to yield more robust results. We show that
these techniques show great promise for high-dimensional domains with
small sample sizes, and provide more robust feature subsets than a sin-
gle feature selection technique. In addition, we also investigate the effect
of ensemble feature selection techniques on classification performance,
giving rise to a new model selection strategy.

1 Introduction

Feature selection is an important preprocessing step in many machine learning
applications, where it is often used to find the smallest subset of features that
maximally increases the performance of the model. Besides maximizing model
performance, other benefits of applying feature selection include the ability to
build simpler and faster models using only a subset of all features, as well as gain-
ing a better understanding of the processes described by the data, by focusing
on a selected subset of features [1].

Feature selection techniques can be divided into three categories, depending
on how they interact with the classifier. Filter methods directly operate on the
dataset, and provide a feature weighting, ranking or subset as output. These
methods have the advantage of being fast and independent of the classification
model, but at the cost of inferior results. Wrapper methods perform a search in
the space of feature subsets, guided by the outcome of the model (e.g. classifi-
cation performance on a cross-validation of the training set). They often report
better results than filter methods, but at the price of an increased computational
cost [2]. Finally, embedded methods use internal information of the classifica-
tion model to perform feature selection (e.g. use of the weight vector in support
vector machines). They often provide a good trade-off between performance and
computational cost [1,3].

During the past decade, the use of feature selection for knowledge discovery
has become increasingly important in many domains that are characterized by
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a large number of features, but a small number of samples. Typical examples of
such domains include text mining, computational chemistry and the bioinformat-
ics and biomedical field, where the number of features (problem dimensionality)
often exceeds the number of samples by orders of magnitude [3]. When using fea-
ture selection in these domains, not only model performance but also robustness
of the feature selection process is important, as domain experts would prefer a
stable feature selection algorithm over an unstable one when only small changes
are made to the dataset. Robust feature selection techniques would allow do-
main experts to have more confidence in the selected features, as in most cases
these features are subsequently analyzed further, requiring much time and effort,
especially in biomedical applications.

Surprisingly, the robustness (stability) of feature selection techniques is an im-
portant aspect that received only relatively little attention during the past. Re-
cent work in this area mainly focuses on the stability indices to be used for feature
selection, introducing measures based on Hamming distance [4], correlation coef-
ficients [5], consistency [6] and information theory [7]. Kalousis and coworkers also
present an extensive comparative evaluation of feature selection stability over a
number of high-dimensional datasets [5]. However, most of this work only focuses
on the stability of single feature selection techniques, an exception being the work
of [4] which describes an example combining multiple feature selection runs.

In this work, we investigate whether the use of ensemble feature selection
techniques can be used to yield more robust feature selection techniques, and
whether combining multiple methods has any effect on the classification perfor-
mance. The rationale for this idea stems from the field of ensemble learning,
where multiple (unstable) classifiers are combined to yield a more stable, and
better performing ensemble classifier. Similarly, one could think of more robust
feature selection techniques by combining single, less stable feature selectors. As
this issue is especially critical in large feature/small sample size domains, the
current work focuses on ensemble feature selection techniques in this area.

The rest of this paper is structured as follows. Section 2 introduces the
methodology used to assess robustness of the algorithms we evaluated. Sub-
sequently, we introduce ensemble feature selection techniques in section 3 and
present the results of our experiments in section 4. We conclude with some final
remarks and ideas for future work.

2 Robustness of Feature Selection Techniques

The robustness of feature selection techniques can be defined as the variation in
feature selection results due to small changes in the dataset. When applying fea-
ture selection for knowledge discovery, robustness of the feature selection result
is a desirable characteristic, especially if subsequent analyses or validations of se-
lected feature subsets are costly. Modification of the dataset can be considered
at different levels: perturbation at the instance level (e.g. by removing or adding
samples), at the feature level (e.g. by adding noise to features), or a combination
of both. In the current work, we focus on perturbations at the instance level.
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2.1 Estimating Stability with Instance Perturbation

To measure the effect of instance perturbation on the feature selection results,
we adopt a subsampling based strategy. Consider a dataset X = {x1, . . . , xM}
with M instances and N features. Then k subsamples of size �xM� (0 < x < 1)
are drawn randomly from X , where the parameters k and x can be varied.
Subsequently, feature selection is performed on each of the k subsamples, and
a measure of stability or robustness is calculated. Here, following [5], we take
a similarity based approach where feature stability is measured by comparing
the outputs of the feature selectors on the k subsamples. The more similar all
outputs are, the higher the stability measure will be. The overall stability can
then be defined as the average over all pairwise similarity comparisons between
the different feature selectors:

Stot =
2

∑k
i=1

∑k
j=i+1 S(fi, fj)

k(k − 1)

where fi represents the outcome of the feature selection method applied to sub-
sample i (1 ≤ i ≤ k), and S(fi, fj) represents a similarity measure between fi
and fj .

To generalize this approach to all feature selection methods, it has to be noted
that not all feature selection techniques report their result in the same form, and
we can distinguish between feature weighting, feature ranking and feature subset
selection. Evidently, a feature weighting can be converted to a feature ranking
by sorting the weights, and a ranking can be converted to a feature subset by
choosing an appropriate threshold. For the remainder of the paper, we choose
the similarity function S(. , .) to compare only results of the same type. Thus, fi
can be considered a vector of length N , where f j

i represents (a) the weight for
feature j in the case of comparing feature weightings, (b) the rank of feature j
in the case of feature ranking (the worst feature is assigned rank 1, the best one
rank N) and (c) f j

i = 1 if the feature is present in the subset, and zero otherwise
in the case of feature subset selection.

2.2 Similarity Measures

Appropriate similarity measures for feature weighting, ranking and subset selec-
tion can be derived from different correlation coefficients. For feature weighting,
the Pearson correlation coefficient can be used:

S(fi, fj) =

∑
l(f

l
i − μfi)(f l

j − μfj )
√∑

l(f
l
i − μfi)2

∑
l(f

l
j − μfj )2

For feature ranking, the Spearman rank correlation coefficient can be used:

S(fi, fj) = 1 − 6
∑

l

(f l
i − f l

j)
2

N(N2 − 1)
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For feature subsets, we use the Jaccard index:

S(fi, fj) =
|fi ∩ fj |
|fi ∪ fj |

=

∑
l I(f l

i = f l
j = 1))

∑
l I(f l

i + f l
j > 0)

where the indicator function I(.) returns 1 if its argument is true, and zero
otherwise.

Finally, it is important to note that robustness of feature selection results
should not be considered per se, but always in combination with classification
performance, as domain experts are not interested in a strategy that yields very
robust feature sets, but returns a badly performing model. Hence, these two
aspects need always be investigated together.

3 Ensemble Feature Selection Techniques

In ensemble learning, a collection of single classification or regression models
is trained, and the output of the ensemble is obtained by aggregating the out-
puts of the single models, e.g. by majority voting in the case of classification,
or averaging in the case of regression. Dietterich [8] shows that the result of the
ensemble might outperform the single models when weak (unstable) models are
combined, mainly because of three reasons: a) several different but equally opti-
mal hypotheses can exist and the ensemble reduces the risk of choosing a wrong
hypothesis, b) learning algorithms may end up in different local optima, and
the ensemble may give a better approximation of the true function, and c) the
true function cannot be represented by any of the hypotheses in the hypothesis
space of the learner and by aggregating the outputs of the single models, the
hypothesis space may be expanded.

3.1 The Ensemble Idea for Feature Selection

Similar to the case of supervised learning, ensemble techniques might be used
to improve the robustness of feature selection techniques. Indeed, in large fea-
ture/small sample size domains it is often reported that several different feature
subsets may yield equally optimal results [3], and ensemble feature selection may
reduce the risk of choosing an unstable subset. Furthermore, different feature se-
lection algorithms may yield feature subsets that can be considered local optima
in the space of feature subsets, and ensemble feature selection might give a better
approximation to the optimal subset or ranking of features. Finally, the repre-
sentational power of a particular feature selector might constrain its search space
such that optimal subsets cannot be reached. Ensemble feature selection could
help in alleviating this problem by aggregating the outputs of several feature
selectors.

3.2 Components of Ensemble Feature Selection

Similar to the construction of ensemble models for supervised learning, there
are two essential steps in creating a feature selection ensemble. The first step
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involves creating a set of different feature selectors, each providing their output,
while the second step aggregates the results of the single models. Variation in
the feature selectors can be achieved by various methods: choosing different fea-
ture selection techniques, instance level perturbation, feature level perturbation,
stochasticity in the feature selector, Bayesian model averaging, or combinations
of these techniques [8,9]. Aggregating the different feature selection results can
be done by weighted voting, e.g. in the case of deriving a consensus feature rank-
ing, or by counting the most frequently selected features in the case of deriving
a consensus feature subset.

In this work, we focus on ensemble feature selection techniques that work by
aggregating the feature rankings provided by the single feature selectors into a
final consensus ranking. Consider an ensemble E consisting of s feature selec-
tors, E = {F1, F2, . . . , Fs}, then we assume each Fi provides a feature ranking
fi = (f1

i , . . . , fN
i ), which are aggregated into a consensus feature ranking f by

weighted voting:

f l =
s∑

i=1

w(f l
i )

where w(.) denotes a weighting function. If a linear aggregation is performed
using w(f l

i ) = f l
i , this results in a sum where features contribute in a linear way

with respect to their rank. By modifying w(f l
i ), more or less weight can be put

to the rank of each feature. This can be e.g. used to accommodate for rankings
where top features can be forced to influence the ranking significantly more than
lower ranked features.

4 Experiments

In this section, we present the results of our analysis of ensemble feature selec-
tion techniques on large feature/small sample size domains. First, the data sets
and the feature selection techniques used in this analysis are briefly described.
Subsequently, we analyze two aspects of ensemble feature selection techniques:
robustness and classification performance. All experiments were run using Java-
ML1, an open source machine learning library.

4.1 Data Sets

Datasets were taken from the bioinformatics and biomedical domain, and can
be divided into two parts: microarray datasets (MA) and mass spectrometry
(MS) datasets (Table 1). For each domain, three datasets were included, typ-
ically consisting of several thousands of features and tens of instances in the
case of microarray datasets, and up to about 15,000 features and a few hun-
dred of instances in the case of mass spectrometry datasets. Due to their high
dimensionality and low sample size, these datasets pose a great challenge for
both classification and feature selection algorithms. Another important aspect
1 Available at http://java-ml.sourceforge.net
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Table 1. Data set characteristics. Sample to dimension rate (SDR) is calculated as
100M/N .

Name # Class 1 # Class 2 # Features SDR Reference
M

A

Colon 40 22 2000 3.1 [15]
Leukemia 47 25 7129 1.0 [16]
Lymphoma 22 23 4026 1.1 [17]

M
S

Ovarian 162 91 15154 1.7 [18]
Prostate 69 253 15154 2.1 [19]
Pancreatic 80 101 6771 2.7 [20]

of this data is the fact that the outcome of feature selection techniques is an
essential prerequisite for further validation, such as verifying links between par-
ticular genes and diseases. Therefore, domain experts require the combination
of feature selection and classification algorithm to yield both a high accuracy as
well as robustness of the selected features.

4.2 Feature Selection Techniques

In this work, we focus on the application of filter and embedded feature selection
techniques. We discarded wrapper approaches because they commonly require
on the order of N2 classification models being built if a complete ranking of N
features is desired. Filter methods require no model being built, and embedded
models only build a small amount of models. Thus, the wrapper approach, cer-
tainly when used in the ensemble setting is computationally not feasible for the
large feature sizes we are dealing with. We choose a benchmark of four feature
selection techniques: two filter methods and two embedded methods. For the fil-
ter methods, we selected one univariate and one multivariate method. Univariate
methods consider each feature separately, while multivariate methods take into
account feature dependencies, which might yield better results. The univariate
method we choose was the Symmetrical Uncertainty (SU, [10]):

SU(F, C) = 2
H(F ) − H(F |C)
H(F ) + H(C)

where F and C are random variables representing a feature and the class re-
spectively, and the function H calculates the entropy. As a multivariate method,
we choose the RELIEF algorithm [11], which estimates the relevance of features
according to how well their values distinguish between the instances of the same
and different classes that are near each other. Furthermore, the computational
complexity of RELIEF O(MN) scales well to large feature/small sample size
data sets, compared to other multivariate methods which are often quadratic
in the number of features. In our experiments, five neighboring instances were
chosen. When using real-valued features, equal frequency binning was used to
discretize the features.
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As embedded methods we used the feature importance measures of Random
Forests [12] and linear support vector machines (SVM). In a Random Forest
(RF), feature importance is measured by randomly permuting the feature in
the out-of-bag samples and calculating the percent increase in misclassification
rate as compared to the out-of-bag rate with all variables intact. In our feature
selection experiments we used forests consisting of 10 trees.

For a linear SVM, the feature importance can be derived from the weight
vector of the hyperplane [13], a procedure known as recursive feature elimination
(SVM RFE). In this work, we use SVM RFE as a feature ranker: first a linear
SVM is trained on the full feature set, and the C-parameter is tuned using an
internal cross-validation of the training set. Next, features are ranked according
to the absolute value of their weight in the weight vector of the hyperplane, and
the 10% worst performing features are discarded. The above procedure is then
repeated until the empty feature set is reached.

4.3 Ensemble Feature Selection Techniques

For each of the four feature selection techniques described above, an ensemble
version was created by instance perturbation. We used bootstrap aggregation
(bagging, [14]) to generate 40 bags from the data. For each of the bags, a separate
feature ranking was performed, and the ensemble was formed by aggregating the
single rankings by weighted voting, using linear aggregation.

4.4 Robustness of Feature Selection

To assess the robustness of feature selection techniques, we focus here on com-
paring feature rankings and feature subsets, as these are most often used by
domain experts. Feature weightings are almost never used, and instead con-
verted to a ranking or subset. Furthermore, directly comparing feature weights
may be problematic as different methods may use different scales and intervals
for the weights.

To compare feature rankings, the Spearman rank correlation coefficient was
used, while for feature subsets the Jaccard index was used. The last one was
analyzed for different subset sizes: the top 1% and top 5% best features of the
rankings were chosen.

To estimate the robustness of feature selection techniques, the strategy ex-
plained in section 2.1 was used with k = 10 subsamples of size 0.9M (i.e. each
subsample contains 90% of the data). This percentage was chosen because we
use small sample datasets and thus cannot discard too much data when build-
ing models, and further because we want to assess robustness with respect to
relatively small changes in the dataset. Then, each feature selection algorithm
(both the single and the ensemble version) was run on each subsample, and the
results were averaged over all pairwise comparisons.

Table 2 summarizes the results of the robustness analysis across the different
datasets, using the linear aggregation method for ensemble feature selection.
For each feature selection algorithm, the Spearman correlation coefficient (Sp)
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Table 2. Robustness of the different feature selectors across the different datasets.
Spearman correlation coefficient, Jaccard index on the subset of 1% and 5% best fea-
tures are denoted respectively by Sp, JC1 and JC5.

Dataset SU Relief SVM RFE RF

Colon
Single Ensemble Single Ensemble Single Ensemble Single Ensemble

Sp 0.61 0.76 0.62 0.85 0.7 0.81 0.91 0.99
JC5 0.33 0.49 0.44 0.64 0.47 0.45 0.44 0.79
JC1 0.3 0.55 0.45 0.56 0.44 0.5 0.01 0.64

Leukemia
Sp 0.68 0.76 0.58 0.79 0.73 0.79 0.97 0.99
JC5 0.48 0.57 0.39 0.54 0.53 0.58 0.8 0.91
JC1 0.54 0.6 0.44 0.55 0.49 0.57 0.36 0.8

Lymphoma
Sp 0.59 0.74 0.49 0.76 0.77 0.81 0.96 0.99
JC5 0.31 0.49 0.35 0.53 0.54 0.54 0.74 0.9
JC1 0.37 0.55 0.42 0.56 0.43 0.46 0.22 0.73

Ovarian
Sp 0.93 0.95 0.91 0.97 0.91 0.95 0.96 0.99
JC5 0.76 0.79 0.66 0.78 0.75 0.79 0.7 0.93
JC1 0.84 0.85 0.85 0.88 0.8 0.84 0.1 0.83

Pancreatic
Sp 0.57 0.65 0.46 0.73 0.69 0.77 0.9 0.99
JC5 0.2 0.24 0.16 0.3 0.43 0.41 0.52 0.76
JC1 0.13 0.15 0.09 0.19 0.41 0.36 0.01 0.48

Prostate
Sp 0.88 0.91 0.9 0.96 0.81 0.92 0.96 0.99
JC5 0.68 0.7 0.61 0.71 0.6 0.63 0.72 0.88
JC1 0.67 0.7 0.52 0.64 0.6 0.6 0.13 0.78

Average
Sp 0.71 0.8 0.66 0.84 0.77 0.84 0.94 0.99
JC5 0.46 0.55 0.44 0.58 0.55 0.57 0.65 0.86
JC1 0.47 0.57 0.46 0.57 0.53 0.56 0.14 0.71

and Jaccard index on the subset of 1% (JC1) and 5% best features (JC5) are
shown. In general, it can be observed that ensemble feature selection provides
more robust results than a single feature selection algorithm, the difference in
robustness being dependent on the dataset and the algorithm.

RELIEF is one of the less stable algorithms, but clearly benefits from an en-
semble version, as well as the Symmetrical Uncertainty filter method. SVM RFE
on the other hand proves to be a more stable feature selection method, and cre-
ating an ensemble version of this method only slightly improves robustness. For
Random Forests, the picture is a bit more complicated. While for Sp and JC5, a
single Random Forest seems to outperform the other methods, results are much
worse on the JC1 measure. This means that the very top performing features
vary a lot with regard to different data subsamples. Especially for knowledge
discovery, the high variance in the top selected features by Random Forests may
be a problem. However, also Random Forests clearly benefit from an ensemble
version, the most drastic improvement being made on the JC1 measure. Thus,
it seems that ensembles of Random Forests clearly outperform other feature
selection methods regarding robustness.

The effect of the number of feature selectors on the robustness of the ensemble
is shown in Figure 1. In general, robustness is mostly increased in the first steps,
and slows down after about 20 selectors in the ensemble, an exception being
the Random Forest. In essence, a single Random Forest can already be seen
as an ensemble feature selection technique, averaging over the different trees in
the forest, which can explain the earlier convergence of ensembles of Random
Forests.
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Fig. 1. Robustness in function of the ensemble size. Robustness is measured using the
Jaccard index on the 1% top ranked features.

One could wonder to what extent an ensemble of Random Forests would be
comparable to just one single Random Forest consisting of more trees. Prelim-
inary experiments on the datasets analysed in this work suggest that larger
Random Forests often lead to less robust results than smaller ones. Hence, if
robust feature selection results are desired, it would be computationally cheaper
to average over a number of small Random Forests in an ensemble way, rather
than creating one larger Random Forest.

4.5 Robustness Versus Classification Performance

Considering only robustness of a feature selection technique is not an appropriate
strategy to find good feature rankings or subsets, and also model performance
should be taken into account to decide which features to select. Therefore, fea-
ture selection needs to be combined with a classification model in order to get
an estimate of the performance of the feature selector-classifier combination.
Embedded feature selection methods like Random Forests and SVM RFE have
an important computational advantage in this respect, as they combine model
construction with feature selection.

To analyze the effect on classification performance using single versus ensem-
ble feature selection, we thus set up a benchmark on the same datasets as used
to assess robustness. Due to their capacity to provide a feature ranking, as well
as their state-of-the-art performance, Random Forests and linear SVMs were
included as classifiers, as well as the distance based k-nearest neighbor algo-
rithm (KNN). The number of trees in the Random Forest classifier was set to
50, and the number of nearest neighbors for KNN was set to 5.
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Table 3. Performance comparison for the different feature selector-classifier combi-
nations. Each entry in the table represents the average accuracy using 10-fold cross-
validation.

Dataset SU RELIEF SVM RFE RF All

Colon

Single Ensemble Single Ensemble Single Ensemble Single Ensemble features
SVM 0.87 0.89 0.91 0.91 0.93 0.96 0.87 0.74 0.87
RF 0.89 0.91 0.86 0.89 0.8 0.86 0.79 0.67 0.79
KNN 0.81 0.87 0.87 0.87 0.87 0.94 0.83 0.7 0.79

Leukemia
SVM 0.98 0.96 0.98 0.99 1.0 0.99 0.91 0.88 1.0
RF 1.0 0.99 1.0 1.0 0.98 0.98 0.94 0.94 0.85
KNN 0.99 0.98 0.98 0.96 1.0 0.99 0.88 0.83 0.86

Lymphoma
SVM 0.96 1.0 0.94 1.0 1.0 1.0 0.9 0.78 0.94
RF 0.94 0.94 0.94 0.94 0.94 0.94 0.84 0.72 0.74
KNN 0.98 0.98 0.92 0.98 1.0 1.0 0.84 0.74 0.68

Ovarian
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.82 1.0
RF 0.99 0.98 0.98 0.98 1.0 0.99 0.95 0.73 0.92
KNN 0.97 0.97 0.97 0.97 0.99 0.99 0.96 0.66 0.92

Pancreatic
SVM 0.54 0.56 0.59 0.62 0.75 0.81 0.58 0.57 0.64
RF 0.66 0.66 0.63 0.64 0.6 0.68 0.53 0.52 0.55
KNN 0.57 0.57 0.64 0.63 0.6 0.61 0.53 0.48 0.55

Prostate
SVM 0.94 0.94 0.95 0.96 0.96 0.98 0.93 0.8 0.96
RF 0.94 0.95 0.94 0.95 0.92 0.95 0.9 0.82 0.89
KNN 0.96 0.95 0.94 0.94 0.97 0.97 0.87 0.82 0.89

Average
SVM 0.88 0.89 0.90 0.91 0.94 0.96 0.86 0.77 0.90
RF 0.90 0.91 0.89 0.9 0.87 0.9 0.83 0.73 0.79
KNN 0.88 0.89 0.89 0.89 0.91 0.92 0.82 0.71 0.78

For each classifier, we analyzed all combinations with the four feature selec-
tion algorithms explained in section 4.4. Classification performance was assessed
using a 10-fold cross-validation setting, using accuracy as the performance mea-
sure. For each fold, feature selection was performed using only the training part
of the data, and a classifier was built using the 1% best features returned by the
feature selector, as it was often observed in these domains that only such a small
amount of features was relevant [3]. For this experiment, k = 40 bootstraps of
each training part of the fold were used to create the ensemble versions of the
feature selectors. This model was then evaluated on the test part of the data
for each fold, and results were averaged over all 10 folds. The results of this
experiment are displayed in Table 3.

Averaged over all datasets, we can see that the best classification results
are obtained using the SVM classifier, using the ensemble version of RFE as
feature selection mechanism. Also for the other classifiers, the combination with
the ensemble version of RFE performs well over all datasets. Given that the
ensemble version of RFE was also more robust than the single version (Table 2,
JC1 rows), this method can thus be used to achieve both robust feature subsets
and good classification performance.

In general, it can be observed that the performance of ensemble feature selec-
tion techniques is about the same (or slightly better) than the version using a
single feature selector, an exception being the Random Forest feature selection
technique. Comparing the performance of the Random Forest ensemble feature
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selection version to the single version, it is clear that the substantial increase
in robustness (see Table 2, JC1 rows) comes at a price, and results in lower
accuracies for all datasets.

Comparing the results of ensemble feature selection to a classifier using the
full feature set (last column in Table 3), it can be observed that in most cases
performance is increased, an exception again being the Random Forest feature
selector. However, this performance is now obtained at the great advantage of
using only 1% of the features. Furthermore, the selected features are robust,
greatly improving knowledge discovery and giving more confidence to domain
experts, who generally work by iteratively investigating the ranked features in a
top-down fashion.

If robustness of the feature selection results is of high importance, then a
combined analysis of classification performance and robustness, like the one
we presented here, would be advisable. In the case of single and ensemble
methods performing equally well, the generally more robust ensemble method
can then be chosen to yield both good performance and robustness. In other
cases, an appropriate trade-off between robustness and classification perfor-
mance should be chosen, possibly taking into account the preference of domain
experts.

4.6 Automatically Balancing Robustness and Classification
Performance

In order to provide a formal and automatic way of jointly evaluating the trade-
off between robustness and classification performance, we use an adaptation of
the F-measure [21]. The F-measure is a well known evaluation performance in
data mining, and represents the harmonic mean of precision and recall.

In a similar way, we propose the robustness-performance trade-off (RPT) as
being the harmonic mean of the robustness and classification performance.

RPTβ =
(β2 + 1) robustness performance
β2 robustness + performance

The parameter β controls the relative importance of robustness versus classifi-
cation performance, and can be used to either put more influence on robustness
or on classification performance. A value of β = 1 is the standard formulation,
treating robustness and classification performance equally important.

Table 4 summarizes the results for the different feature selector-classifier com-
binations when only 1% of the features is used (RPT1). For the robustness
measure, the Jaccard index was used, while for classification performance the
accuracy was used. It can be observed that in almost all cases, the ensem-
ble feature selection version results in a better RPT measure. The best RPT
values were obtained using the ensemble version of the Random Forest feature
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Table 4. Harmonic mean of robustness and classification performance (RPT1) for the
different feature selector-classifier combinations using 1% of the features

Dataset SU RELIEF SVM RFE RF

Colon

Single Ensemble Single Ensemble Single Ensemble Single Ensemble
SVM 0.45 0.68 0.6 0.69 0.6 0.66 0.02 0.69
RF 0.45 0.69 0.59 0.69 0.57 0.63 0.02 0.65
KNN 0.44 0.67 0.59 0.68 0.58 0.65 0.02 0.67

Leukemia
SVM 0.7 0.74 0.61 0.71 0.66 0.72 0.52 0.84
RF 0.7 0.75 0.61 0.71 0.65 0.72 0.52 0.86
KNN 0.7 0.74 0.61 0.7 0.66 0.72 0.51 0.81

Lymphoma
SVM 0.53 0.71 0.58 0.72 0.6 0.63 0.35 0.75
RF 0.53 0.69 0.58 0.7 0.6 0.62 0.35 0.72
KNN 0.54 0.7 0.58 0.71 0.6 0.63 0.35 0.73

Ovarian
SVM 0.91 0.92 0.92 0.94 0.89 0.91 0.18 0.82
RF 0.91 0.91 0.91 0.93 0.89 0.91 0.18 0.78
KNN 0.9 0.91 0.91 0.92 0.88 0.91 0.18 0.74

Pancreatic
SVM 0.21 0.24 0.16 0.29 0.53 0.5 0.02 0.52
RF 0.22 0.24 0.16 0.29 0.49 0.47 0.02 0.5
KNN 0.21 0.24 0.16 0.29 0.49 0.45 0.02 0.48

Prostate
SVM 0.78 0.8 0.67 0.77 0.74 0.74 0.23 0.79
RF 0.78 0.81 0.67 0.76 0.73 0.74 0.23 0.8
KNN 0.79 0.81 0.67 0.76 0.74 0.74 0.23 0.8

Average
SVM 0.6 0.68 0.59 0.69 0.67 0.69 0.22 0.74
RF 0.6 0.68 0.59 0.68 0.65 0.68 0.22 0.72
KNN 0.6 0.68 0.59 0.68 0.66 0.68 0.22 0.71

selector, which can be explained by the very high robustness values (see Table 2),
compared to the other feature selectors.

5 Conclusions and Future Work

In this work we introduced the use of ensemble methods for feature selection.
We showed that by constructing ensemble feature selection techniques, robust-
ness of feature ranking and feature subset selection could be improved, using
similar techniques as in ensemble methods for supervised learning. When an-
alyzing robustness versus classification performance, ensemble methods show
great promise for large feature/small sample size domains. It turns out that the
best trade-off between robustness and classification performance depends on the
dataset at hand, giving rise to a new model selection strategy, incorporating
both classification performance as well as robustness in the evaluation strategy.
We believe that robustness of feature selection techniques will gain importance
in the future, and the topic of ensemble feature selection techniques might open
many new avenues for further research. Important questions to be addressed
include the development of stability measures for feature ranking and feature
subset selection, methods for generating diversity in feature selection ensembles,
aggregation methods to find a consensus ranking or subset from single feature
selection models and the design of classifiers that jointly optimize model perfor-
mance and feature robustness.
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Abstract. E�ective visualization is vital for understanding a complex network,
in particular its dynamical aspect such as information di�usion process. Existing
node embedding methods are all based solely on the network topology and some-
times produce counter-intuitive visualization. A new node embedding method
based on conditional probability is proposed that explicitly addresses di�usion
process using either the IC or LT models as a cross-entropy minimization prob-
lem, together with two label assignment strategies that can be simultaneously
adopted. Numerical experiments were performed on two large real networks, one
represented by a directed graph and the other by an undirected graph. The results
clearly demonstrate the advantage of the proposed methods over conventional
spring model and topology-based cross-entropy methods, especially for the case
of directed networks.

1 Introduction

Analysis of the structure and function of complex networks, such as social, computer
and biochemical networks, has been a hot research subject with considerable atten-
tion [10]. A network can play an important role as a medium for the spread of var-
ious information. For example, innovation, hot topics and even malicious rumors can
propagate through social networks among individuals, and computer viruses can di�use
through email networks. Previous work addressed the problem of tracking the propaga-
tion patterns of topics through network spaces [1, 5], and studied e�ective “vaccination”
strategies for preventing the spread of computer viruses through networks [2, 11].
Widely-used fundamental probabilistic models of information di�usion through net-
works are the independent cascade (IC) model and the linear threshold (LT) model
[5, 8]. Researchers have recently investigated the problem of finding a limited number
of influential nodes that are e�ective for the spread of information through a network un-
der these models [8, 9]. In these studies, understanding the flow of information through
networks is an important research issue.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 326–341, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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This paper focuses on the problem of visualizing the information di�usion process,
which is vital for understanding its characteristic over a complex network. Existing node
embedding methods such as spring model method [7] and cross entropy method [14] are
solely based on the network topology. They do not take account how information dif-
fuses across the network. Thus, it often happens that the visualized information flow do
not match our intuitive understanding, e.g., abrupt information flow gaps, inconsistency
between the nodes distance and the reachability of information, irregular pattern of in-
formation spread, etc. This sometimes happens when visualizing the di�usion process
for a network represented by a directed graph.

Thus, it is important that node embedding explicitly reflects the di�usion process to
produce more natural visualization. We have devised a new node embedding method
that incorporates conditional probability of information di�usion between two nodes, a
target source node where the information is initially issued and a non-target influenced
node where the information has been received via intermediate nodes. Our postulation is
that good visualization should satisfy the two conditions: path continuity, i.e. any infor-
mation di�usion path is continuous and path separability, i.e. each di�erent information
di�usion path is clearly separated from each other. To this end, the above node embed-
ding is coupled with two label assignment strategies, one with emphasis on influence of
initially activated nodes, and the other on degree of information reachability.

Extensive numerical experiments were performed on two large real networks, one
generated from a large connected trackback network of blog data, resulting in a di-
rected graph of 12� 047 nodes and 53� 315 links, and the other, a network of people,
generated from a list of people within a Japanese Wikipedia, resulting in an undirected
graph of 9� 481 nodes and 245� 044 links. The results clearly indicate that the proposed
probabilistic visualization method satisfies the above two conditions and demonstrate
its advantage over the well-known conventional methods: spring model and topology-
based cross-entropy methods, especially for the case of a directed network. The method
appeals well to our intuitive understanding of information di�usion process.

2 Information Di�usion Models

We mathematically model the spread of information through a directed network G �

(V� E) under the IC or LT model, where V and E (� V � V) stands for the sets of all the
nodes and links, respectively. We call nodes active if they have been influenced with
the information. In these models, the di�usion process unfolds in discrete time-steps
t � 0, and it is assumed that nodes can switch their states only from inactive to active,
but not from active to inactive. Given an initial set S of active nodes, we assume that the
nodes in S have first become active at time-step 0, and all the other nodes are inactive
at time-step 0.

2.1 Independent Cascade Model

We define the IC model. In this model, for each directed link (u� v), we specify a real
value �u�v with 0 � �u�v � 1 in advance. Here �u�v is referred to as the propagation
probability through link (u� v). The di�usion process proceeds from a given initial active
set S in the following way. When a node u first becomes active at time-step t, it is
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given a single chance to activate each currently inactive child node v, and succeeds with
probability �u�v. If u succeeds, then v will become active at time-step t � 1. If multiple
parent nodes of v first become active at time-step t, then their activation attempts are
sequenced in an arbitrary order, but all performed at time-step t. Whether or not u
succeeds, it cannot make any further attempts to activate v in subsequent rounds. The
process terminates if no more activations are possible.

For an initial active set S , let �(S ) denote the number of active nodes at the end of
the random process for the IC model. Note that �(S ) is a random variable. Let �(S )
denote the expected value of �(S ). We call �(S ) the influence degree of S .

2.2 Linear Threshold Model

We define the LT model. In this model, for every node v � V , we specify, in advance, a
weight �u�v (� 0) from its parent node u such that�

u��(v)

�u�v � 1�

where �(v) � �u � V; (u� v) � E�	 The di�usion process from a given initial active set
S proceeds according to the following randomized rule. First, for any node v � V , a
threshold 
v is chosen uniformly at random from the interval [0� 1]. At time-step t, an
inactive node v is influenced by each of its active parent nodes, u, according to weight
�u�v. If the total weight from active parent nodes of v is at least threshold 
v, that is,�

u��t(v)

�u�v � 
v�

then v will become active at time-step t�1. Here, �t(v) stands for the set of all the parent
nodes of v that are active at time-step t. The process terminates if no more activations
are possible.

The LT model is also a probabilistic model associated with the uniform distribution
on [0� 1]�V �. Similarly to the IC model, we define a random variable �(S ) and its expected
value �(S ) for the LT model.

2.3 Influence Maximization Problem

Let K be a given positive integer with K � �V �. We consider the problem of finding a set
of K nodes to target for initial activation such that it yields the largest expected spread
of information through network G under the IC or LT model. The problem is referred
to as the influence maximization problem, and mathematically defined as follows: Find
a subset S � of V with �S �� � K such that �(S �) � �(S ) for every S � V with �S � � K.

For a large network, any straightforward method for exactly solving the influence
maximization problem su�ers from combinatorial explosion. Therefore, we approxi-
mately solve this problem. Here, UK � �u1� 	 	 	 � uK� is the set of K nodes to target for
initial activation, and represents the approximate solution obtained by this algorithm.
We refer to UK as the greedy solution.

Using large collaboration networks, Kempe et al. [8] experimentally demonstrated
that the greedy algorithm significantly outperforms node-selection heuristics that rely
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on the well-studied notions of degree centrality and distance centrality in the sociology
literature. Moreover, the quality of UK is guaranteed:

� (UK) �

�
1 


1
e

�
�
�
S �

K
�
�

where S �
K stands for the exact solution to this problem.

To implement the greedy algorithm, we need a method for calculating ��(Uk � �v�);
v � V �Uk� for 1 � k � K. However, it is an open question to exactly calculate influence
degrees by an eÆcient method for the IC or LT model [8]. Kimura et al. [9] presented
the bond percolation method that eÆciently estimates influence degrees ��(Uk � �v�);
v � V � Uk�. Therefore, we estimate the greedy solution UK using their method.

3 Visualization Method

We especially focus on visualizing the information di�usion process from the target
nodes selected to be a solution of the influence maximization problem. To this end,
we propose a visualization method that has the following characteristics: 1) utilizing
the target nodes as a set of pivot objects for visualization, 2) applying a probabilistic
algorithm for embedding all the nodes in the networks into an Euclidean space, and
3) varying appearance of the embedded nodes on the basis of two label assignment
strategies. In what follows, we describe some details of the probabilistic embedding
algorithm and the label assignment strategies.

3.1 Probabilistic Embedding Algorithm

Let UK � �uk : 1 � k � K� � V be a set of target nodes, which maximizes an
expected number of influenced nodes in the network based on an information di�usion
model such as IC or LT. Let vn � UK be a non-target node in the network, then we
can consider the conditional probability pk�n � p(vn�uk) that a node vn is influenced
when one target node uk alone is set to an initial information source. Here note that
we can regard pk�n as a binomial probability with respect to a pair of nodes uk and vn.
In our visualization approach, we attempt to produce embedding of the nodes so as
to preserve the relationships expressed as the conditional probabilities for all pairs of
target and non-target nodes in the network. We refer to this visualization strategy as the
conditional probability embedding (CE) algorithm.

Objective Function. Let �xk : 1 � k � K� and �yn : 1 � n � N� be the embedding
positions of the corresponding K target nodes and N � �V �
K non-target nodes in an M
dimensional Euclidean space. Hereafter, the xk and yn are called target and non-target
vectors, respectively. As usual, we define the Euclidean distance between xk and yn as
follows:

dk�n � xk 
 yn
2
�

M�
m�1

(xk�m 
 yn�m)2	

Here, we introduce a monotonic decreasing function �(s) � [0� 1] with respect to s � 0,
where �(0) � 1 and �(�) � 0.
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Since �(dk�n) can also be regarded as a binomial probability with respect to xk and yn,
we can introduce a cross-entropy (cost) function between pk�n and �(dk�n) as follows:

�k�n � 
pk�n ln �(dk�n) 
 (1 
 pk�n) ln(1 
 �(dk�n))	

Since �k�n is minimized when �(dk�n) � pk�n, this minimization with respect to xk and yn

is consistent with our problem setting. In this paper, we employ a function of the form

�(s) � exp
�



s
2

�

as the monotonic decreasing function, but note that our approach is not restricted to this
form. Then, the total cost function (objective function) can be defined as follows:

� �
1
2

N�
n�1

K�
k�1

pk�ndk�n 


N�
n�1

K�
k�1

(1 
 pk�n) ln(1 
 �(dk�n))	 (1)

Namely, our approach is formalized as a minimization problem of the objective function
defined in (1) with respect to �xk : 1 � k � K� and �yn : 1 � n � N�.

Learning Algorithm. As the basic structure of our learning algorithms, we adopt a
coordinate strategy just like the EM (Expectation-Maximization) algorithm. First, we
adjust the target vectors, so as to minimize the objective function by freezing the non-
target vectors, and then, we adjust the non-target vectors by freezing the target vectors.
These two steps are repeated until convergence is obtained.

In the former minimization step for the CE algorithm, we need to calculate the
derivative of the objective function with respect to xn as follows:

�xk �
��

�xk
�

N�
n�1

pk�n 
 �(dk�n)
1 
 �(dk�n)

(xk 
 yn)	 (2)

Since xk� (k� � k) disappears in (2), we can update xk without considering the other
target vectors. In the latter minimization step for the CE algorithm, we need to calculate
the following derivative,

�yn �
��

�yn
�

K�
k�1

pk�n 
 �(dk�n)
1 
 �(dk�n)

(yn 
 xk)	

In this case, we update yn by freezing the other non-target vectors. Overall, our algo-
rithm can be summarized as follows:

1. Initialize vectors x1� 	 	 	 � xK and y1� 	 	 	 � yN .
2. Calculate gradient vectors �x1 � 	 	 	 ��xK .
3. Update target vectors x1� 	 	 	 � xK .
4. Calculate gradient vectors �y1 � 	 	 	 ��yN .
5. Update non-target vectors y1� 	 	 	 � yN .
6. Stop if maxk�n��xk� �yn� � .
7. Return to 2.

Here, a small positive value  controls the termination condition.
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3.2 Label Assignment Strategies

In an attempt to e�ectively understand information di�usion process, we propose two
label assignment strategies, on which the appearance of the embedded target and non-
target nodes depends. The first strategy assigns labels to non-target nodes according to
the standard Bayes decision rule.

l1(vn) � arg max
1�k�K

�pk�n�

It is obvious that this decision naturally reflects influence of the target nodes. Note
that the target node identification number k corresponds to the order determined by the
greedy method, i.e., l1(uk) � k.

In the second strategy, we introduce the following probability quantization by noting
0 � max1�k�K �pk�n� � 1,

l2(vn) �
�

 logb max

1�k�K
�pk�n�

	
� 1�

where [x] returns the greatest integer not greater than x, and b stands for the base of
logarithm. To each node belonging to Z � �vn : max1�k�K�pk�n� � 0�, we assign as the
label the maximum number determined by the nodes not belonging to Z. We believe
that this quantization reasonably reflects the degree of information reachability. Here
note that l2(uk) � 1 because it always becomes active at time step t � 0. These labels
are further mapped to colors scales according to some monotonic mapping functions.

4 Experimental Evaluation

4.1 Network Data

In our experiments, we employed two sets of real networks used in [9], which exhibit
many of the key features of social networks. We describe the details of these network
data.

The first one is a trackback network of blogs. Blogs are personal on-line diaries
managed by easy-to-use software packages, and have rapidly spread through the World
Wide Web [5]. Bloggers (i.e., blog authors) discuss various topics by using trackbacks.
Thus, a piece of information can propagate from one blogger to another blogger through
a trackback. We exploited the blog “Theme salon of blogs” in the site “goo” 2, where a
blogger can recruit trackbacks of other bloggers by registering an interesting theme.
By tracing up to ten steps back in the trackbacks from the blog of the theme “JR
Fukuchiyama Line Derailment Collision”, we collected a large connected trackback
network in May, 2005. The resulting network had 12� 047 nodes and 53� 315 directed
links, which features the so-called “power-law” distributions for the out-degree and in-
degree that most real large networks exhibit. We refer to this network data as the blog
network.

2 
��������������������	����
����
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The second one is a network of people that was derived from the “list of people”
within Japanese Wikipedia. Specifically, we extracted the maximal connected compo-
nent of the undirected graph obtained by linking two people in the “list of people” if
they co-occur in six or more Wikipedia pages. The undirected graph is represented by
an equivalent directed graph by regarding undirected links as bidirectional ones3. The
resulting network had 9� 481 nodes and 245� 044 directed links. We refer to this network
data as the Wikipedia network.

Newman and Park [12] observed that social networks represented as undirected
graphs generally have the following two statistical properties that are di�erent from
non-social networks. First, they show positive correlations between the degrees of ad-
jacent nodes. Second, they have much higher values of the clustering coeÆcient C than
the corresponding configuration models (i.e., random network models). For the undi-
rected graph of the Wikipedia network, the value of C of the corresponding configura-
tion model was 0	046, while the actual measured value of C was 0	39, and the degrees
of adjacent nodes were positively correlated. Therefore, the Wikipedia network has the
key features of social networks.

4.2 Experimental Settings

In the IC model, we assigned a uniform probability � to the propagation probability
�u�v for any directed link (u� v) of a network, that is, �u�v � �. We, first, determine the
typical value of � for the blog network, and use it in the experiments. It is known that
the IC model is equivalent to the bond percolation process that independently declares
every link of the network to be “occupied” with probability � [10]. Let J denote the
expected fraction of the maximal strongly connected component (SCC) in the network
constructed by the occupied links. Note that J is an increasing function of �. We focus
on the point �� at which the average rate of change of J, dJ�d�, attains the maximum,
and regard it as the typical value of � for the network. Note that �� is a critical point
of dJ�d�, and defines one of the features intrinsic to the network. Figure 1 plots J as a
function of �. Here, we estimated J using the bond percolation method with the same
parameter value as below [9]. From this figure we experimentally estimated �� to be 0.2
for the blog network. In the same way, we experimentally estimated �� to be 0.05 for
the Wikipedia network.

In the LT model, we uniformly set weights as follows. For any node v of a network,
the weight �u�v from a parent node u � �(v) is given by �u�v � 1���(v)�	

Once these parameters were set, we estimated the greedy solution UK � �u1� 	 	 	 � uK�

of targets and the conditional probabilities �pk�n; 1 � k � K, 1 � n � N� using the bond
percolation method with the parameter value 10� 000 [9]. Here, the parameter represents
the number of bond percolation processes for estimating the influence degree �(S ) of a
given initial active set S .

4.3 Brief Description of Other Visualization Methods Used for Comparison

We have compared the proposed method with the two well known methods: spring
model method [7] and standard cross-entropy method [14].

3 For simplicity, we call a graph with bi-directional links an undirected graph.
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Fig. 1. The fraction J of the maximal SCC as a function of the propagation probability �

Spring model method assumes that there is a hypothetical spring between each con-
nected node pair and locates nodes such that the distance of each node pair is closest to its
minimum path length at equilibrium. Mathematically it is formulated as minimizing (3).

�(x) �
�V ��1�
u�1

�V ��
v�u�1

�u�v
�
gu�v 
 ��xu 
 xv��

�2
� (3)

where gu�v is the minimum path length between node u and node v, and �u�v is a spring
constant which is normally set to 1�(2g2

u�v). Standard cross-entropy method first defines
a similarity �(��xu 
 xv��

2) � exp(
��xu 
 xv��
2�2) between the embedding coordinates xu

and xv and uses the corresponding element au�v of the adjacency matrix as a measure of
distance between the node pair, and tries to minimize the total cross entropy between
these two. Mathematically it is formulated as minimizing (4).

�(x) �
�V ��1�
u�1

�V ��
v�u�1




au�v log �(��xu 
 xv��

2) 
 (1 
 au�v) log(1 
 �(��xu 
 xv��
2))

�
� (4)

Here, note that we used the same function � as before.
As is clear from the above formulation, both methods are completely based on graph

topology. They are both non-linear optimization problem and easily solved by a stan-
dard coordinate descent method. Here note that the applicability of the spring model
method and cross-entropy method is basically limitted to undirected networks. Thus, in
order to obtain the embedding results by using these methods we neglected the direction
in the directed blog network and regarded it as undirected one.

4.4 Experimental Results

Two label assignment strategies are independent to each other. They can be used ei-
ther separately or simultaneously. Here, we used a color mapping to both, and thus,
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use them separately. The visualization results are shown in four figures, each with six
network figures. In each of these four figures, the left three show the results of the first
visualization strategy (method 1) and the right three the results of the second visualiza-
tion strategy (method 2), and the top two show the results of the proposed method (CE
algorithm), the middle two the results of spring model and the bottom two the results
of the topology-based cross entropy method. The first two figures (Figs. 2 and 3) cor-
responds to the results of blog network and the last two (Figs. 4 and 5) the results of
Wikipedia network. For each, the results of the IC model comes first, followed by the
results of the LT model.

The most influential top ten nodes are chosen as the target nodes, and the rest are all
non-target nodes. In the first visualization strategy, the color of a non-target node indi-
cates which target node is most influential to the node, whereas in the second visualiza-
tion strategy, it indicates how easily the information di�uses from the most influential
target node to reach the node. Note that a non-target node is influenced by multiple tar-
get nodes probabilistically, but here the target with the highest conditional probability
is chosen. Thus, the most influential target node is determined for each non-target node.

Observation of the results of the proposed method (Figs. 2a, 2b, 3a, 3b, 4a, 4b, 5a,
and 5b) indicates that the proposed method has the following desirable characteristics:
1) the target nodes tend to be allocated separately from each other, and from each tar-
get node, 2) the non-target nodes that are most a�ected by the same target node are
laid out forming a band and 3) the reachability changes continuously from the highest
at the target node to the lowest at the other end of the band. From this observation, it
is confirmed that the two conditions we postulated are satisfied for the both di�usion
models. Observation 2) above, however, needs further clarification. Note that our vi-
sualization does not necessarily cause the information di�usion to neighboring nodes
to be in the form of a line in the embedded space. For example, if there is only one
source (K�1), the information would di�use concentrically. A node in general receives
information from multiple sources. The fact that the embedding result forms a line, on
the contrary, reveals an important characteristic that little information is coming from
the other sources for the networks we analyzed.

In the proposed method, non-target nodes that are readily influenced are easily iden-
tified, whereas those that are rarely influenced are placed together. Overlapping of the
color well explains the relationship between each target and a non-target node. For ex-
ample, in Figures 3a and 3b it is easily observed that the e�ect of the target nodes
5, 2 on non-target nodes interferes with the three bands that are spread from the tar-
get nodes 8, 3, 10, and non-target nodes overlap as they move away from the target
nodes, demonstrating that a simple two-dimensional visualization facilitates how dif-
ferent node groups overlap and how the information flows from di�erent target nodes
interfere each other. The same observation applies for the target nodes 6, 1, 9, 7. On
the contrary, the target node 4 has its own e�ect separately. A similar argument is pos-
sible for relationship within target nodes. For example, in Figures 2a target nodes 4,
5, 6, 8 are located in relatively near positions compared with the other target nodes.
It is crucial to abstract and visualize the essence of information di�usion by deleting
the unnecessary details (node to node di�usion). A good explanation for the overlap
like the above is not possible by other visualization methods. Further, the visualization
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results of both IC and LT models are spatially well balanced. In addition, there are no
significant di�erences on the results of visualization between the directed network and
undirected network. Both are equally good.

Observation of the results of the spring model (Figs. 2c, 2d, 3c, 3d, 4c, 4d, 5c, and
5d) and the topology-based cross entropy method (Figs. 2e, 2f, 3e, 3f, 4e, 4f, 5e, and 5f)
reveals the followings. The clear di�erence of these from the proposed method is that it
is not that easy to locate the target nodes. This is true, in particular, for the spring model.
It is slightly easier for the standard cross-entropy method because the target nodes are
placed in the cluster centers, but clusters often overlap, which makes visualization less
understandable. It is also noted that those nodes with high reachability, i.e., nodes with
red, which should be placed separately due to the influence of di�erent target nodes
are placed in mixture. Further, unlike the proposed method, there is clear di�erence
between the IC model and the LT model. In the IC model, we can easily recognize non-
target nodes with high reachability, which cover a large portion of the network, whereas
in the LT model, such nodes covering only a small portion are almost invisible in the
network. In contrast, we can easily pick up such non-target nodes with high reachability
even for the LT model in the proposed method.

We observe that the standard cross-entropy method is in general better than the spring
model method in terms of the clarity of separability. The standard cross-entropy method
does better for the IC model than for the LT model, and is comparable to the proposed
method in terms of the clarity of reachability. However, the results of the standard
cross-entropy method (e.g., Fig. 2f) are unintuitive, where the high reachability non-
target nodes are placed away from the target nodes, and some target node forms several
isolated clusters. We believe that this point is an intrinsic limitation of the standard
cross-entropy method.

The concept of our visualization is based on the notion that how the information
di�uses should primarily determine how the visualization is made, irrespective of the
graph topology. We observe that the visualization which is based solely on the topol-
ogy has intrinsic limitation when we deal with a huge network from the point of both
computational complexity (e.g., the spring model does not work for a network with mil-
lions nodes) and understandability. Overall, we can conclude that the proposed method
provides better visualization which is more intuitive and easily understandable.

5 Related Work and Discussion

As defined earlier, let K and N be the numbers of target and non-target nodes in a
network. Then the computational complexity of our embedding method amounts to
O(NK), where we assume the number of learning iterations and the embedding di-
mension to be constants. This reduced complexity greatly expands the applicability of
our method over the other representative network embedding methods, e.g., the spring
model method [7] and the standard cross-entropy method [14], both of which require
the computational complexity of O(N2) under the setting that K � N.

In view of computational complexity, our visualization method is closely related
to those conventional methods, such as FastMap or Landmark Multidimensional Scal-
ing (LMDS), which are based on the Nyström approximation [13]. Typically, these



336 K. Saito, M. Kimura, and H. Motoda

(a) Proposed method 1 (b) Proposed method 2

(c) Spring model method 1 (d) Spring model method 2

(e) Toplogy-based cross-entropy method 1 (f) Toplogy-based cross-entropy method 2

(g) Class-label assignment (h) Color-map assignment

Fig. 2. Visualization of IC model for blog network
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(a) Proposed method 1 (b) Proposed method 2

(c) Spring model method 1 (d) Spring model method 2

(e) Toplogy-based cross-entropy method 1 (f) Toplogy-based cross-entropy method 2

(g) Class-label assignment (h) Color-map assignment

Fig. 3. Visualization of LT model for blog network
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(a) Proposed method 1 (b) Proposed method 2

(c) Spring model method 1 (d) Spring model method 2

(e) Toplogy-based cross-entropy method 1 (f) Toplogy-based cross-entropy method 2

(g) Class-label assignment (h) Color-map assignment

Fig. 4. Visualization of IC model for Wikipedia network
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(a) Proposed method 1 (b) Proposed method 2

(c) Spring model method 1 (d) Spring model method 2

(e) Toplogy-based cross-entropy method 1 (f) Toplogy-based cross-entropy method 2

(g) Class-label assignment (h) Color-map assignment

Fig. 5. Visualization of LT model for Wikipedia network
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methods randomly select a set of pivot (or landmark) objects, then produce the em-
bedding results so as to preserve relationships between all pairs of pivot and non-pivot
objects. In contrast, our method selects target (pivot) nodes based on the information
di�usion models.

Our method adopts the basic idea of the probabilistic embedding algorithms includ-
ing Parametric Embedding (PE) [6] and Neural Gas Cross-Entropy (NG-CE) [4]. The
PE method attempts to uncover classification structures by use of posterior probabili-
ties, while the NG-CE method is restricted to visualize the codebooks of the neural gas
model. Our purpose, on the other hand, is to e�ectively visualize information di�usion
process. The two visualization strategies we proposed match this aim.

We are not the first to try to visualize the information di�usion process. Adar and
Adamic [1] presented a visualization system that tracks the flow of URL through blogs.
However, same as above, their visualization method did not incorporate an information
di�usion model. Further, they laid out only a small number of nodes in a tree structure,
and it is unlikely that their approach scales up to a large network.

Finally we should emphasize that unlike most representative embedding methods for
networks [3], our visualization method is applicable to large-scale directed graphs while
incorporating the e�ect of information di�usion models. In this paper, however, we also
performed our experiments using the undirected (bi-directional) Wikipedia network.
This is because we wanted to include favorable evaluation for the comparison meth-
ods. As noted earlier, we cannot directly apply the conventional embedding methods to
directed graphs without some topology modification such as link addition or deletion.

6 Conclusion

We proposed an innovative probabilistic visualization method to help understand com-
plex network. The node embedding scheme in the method, formulated as a model-based
cross-entropy minimization problem, explicitly take account of information di�usion
process, and therfore, the resulting visualization is more intuitive and easier to under-
stand than the state-of-art approaches such as the spring model method and the standard
cross-entropy method. Our method is eÆcient enough to be applied to large networks.
The experiments performed on a large blog network (directed) and a large Wikipedia
network (undirected) clearly demonstrate the advantage of the proposed method. The
proposed method is confirmed to satisfy both path continuity and path separability con-
ditions which are the important requirement for the visualization to be understandable.
Our future work includes the extension of the proposed approach to the visualization of
growing networks.
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Abstract. When labeled examples are not readily available, active
learning and transfer learning are separate efforts to obtain labeled ex-
amples for inductive learning. Active learning asks domain experts to
label a small set of examples, but there is a cost incurred for each an-
swer. While transfer learning could borrow labeled examples from a dif-
ferent domain without incurring any labeling cost, there is no guarantee
that the transferred examples will actually help improve the learning
accuracy. To solve both problems, we propose a framework to actively
transfer the knowledge across domains, and the key intuition is to use
the knowledge transferred from other domain as often as possible to help
learn the current domain, and query experts only when necessary. To
do so, labeled examples from the other domain (out-of-domain) are ex-
amined on the basis of their likelihood to correctly label the examples
of the current domain (in-domain). When this likelihood is low, these
out-of-domain examples will not be used to label the in-domain exam-
ple, but domain experts are consulted to provide class label. We derive
a sampling error bound and a querying bound to demonstrate that the
proposed method can effectively mitigate risk of domain difference by
transferring domain knowledge only when they are useful, and query do-
main experts only when necessary. Experimental studies have employed
synthetic datasets and two types of real world datasets, including re-
mote sensing and text classification problems. The proposed method is
compared with previously proposed transfer learning and active learning
methods. Across all comparisons, the proposed approach can evidently
outperform the transfer learning model in classification accuracy given
different out-of-domain datasets. For example, upon the remote sens-
ing dataset, the proposed approach achieves an accuracy around 94.5%,
while the comparable transfer learning model drops to less than 89% in
most cases. The software and datasets are available from the authors.

1 Introduction

Supervised learning methods require sufficient labeled examples in order to con-
struct accurate models. However, in real world applications, one may easily
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(a) Transfer learning (b) Active learning (c) Actively transfer

Fig. 1. Different models to resolve label deficiency

encounter those situations in which labeled examples are deficient, such as data
streams, biological sequence annotation or web searching, etc. To alleviate this
problem, two separate approaches, transfer learning and active learning, have
been proposed and studied. Transfer learning mainly focuses on how to utilize the
data from a related domain called out-of-domain, to help learn the current domain
called in-domain, as depicted in Fig 1(a). It can be quite effective when the out-of-
domain dataset is very similar to the in-domain dataset. As a different solution,
active learning does not gain knowledge from other domains, but mainly focuses
on selecting a small set of essential in-domain instances for which it requests labels
from the domain experts, as depicted in Fig 1(b). However, both transfer learn-
ing and active learning have some practical constraints. For transfer learning, if
the knowledge from the out-of-domain is essentially different from the in-domain,
the learning accuracy might be reduced, and this is called the “domain difference
risk”. For active learning, the obvious issue is the cost associated with the answer
from domain experts.

Our Method. To mitigate domain difference risk and reduce labeling cost, we pro-
pose a framework that can actively transfer the knowledge from out-of-domain to
in-domain, as depicted in Fig 1(c). Intuitively, in daily life, we normally first try
to use our related knowledge in learning, but if the related knowledge is unable
to guide, we turn to teachers. For example, when learning a foreign language,
one normally associates it with the mother tongue. This transfer is easy between,
for example, Spanish and Portuguese. But it is not so obvious between Chinese
and English. In this situation, one normally pays a teacher instead of picking
up himself. The proposed framework is based on these intuitions. We first select
an instance that is supposed to be essential to construct an inductive model
from the new or in-domain dataset, and then a transfer classifier, trained with
labeled data from in-domain and out-of-domain dataset, is used to predict this
unlabeled in-domain example. According to defined transfer confidence measure,
this instance is either directly labeled by the transfer classifier or labeled by the
domain experts if needed. In order to guarantee the performance when “import-
ing” out-of-domain knowledge, the proposed transfer classifier is bounded to be
no worse than an instance-based ensemble method in error rate (Section 3 and
Theorem 1).

Contributions. The most important contributions of the proposed approach can
be summarized as follows:
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Table 1. Symbol definition

Symbol Definition
U Unlabeled in-domain dataset
L Labeled in-domain dataset
O Labeled out-of-domain dataset
ML The in-domain classifier that is trained on L
MO The out-of-domain classifier that is trained on O
T The transfer classifier (Fig 3 and Equ. 1)
F(x) A decision function (Equ. 3 and Equ. 4)
� The actively transfer learner (Algorithm 1)

The following are some symbols only used in Fig 3
L+ L+ = {x|x ∈ L ∧ MO(x) = “+′′}
L− L− = {x|x ∈ L ∧ MO(x) = “−′′}
ML+

The classifier that is trained on L+

ML−
The classifier that is trained on L−

– We propose a framework that can transfer the knowledge across domains
actively. We derive the bounds in Theorem 2 and Theorem 3 to prove that
the proposed framework not only can mitigate the domain difference risk by
transferring out-of-domain knowledge only when they are useful, but also
reduce labeling cost by querying fewer examples labeled by experts as com-
pared with traditional active learners.

– We also propose a transfer classifier whose error is bounded.
– Most of the previous active learners can be directly adopted in the pro-

posed framework without changing their original preferences and strategies
to select essential examples.

2 Actively Transfer

The main flow of proposed approach AcTraK (Actively Transfer Knowledge) is
summarized in Fig 2 and Algorithm 1, and the most important symbols are in
Table 1. The key idea is to use the out-of-domain data to predict in-domain data
as often as possible. But when the prediction confidence is too low, in-domain
experts are consulted to provide the label. To do so, the algorithm first applies
a traditional active learner to select a critical instance x from the in-domain
dataset, then a transfer classifier is trained and used to classify this selected
example. According to the prediction confidence of the transfer classifier, the
algorithm decides how to label the instance, either using the predicted label given
by the transfer classifier or asking domain experts to label. Then, the process is
iteratively performed to select and label important examples. Shown as Fig 2,
the essential elements of the proposed algorithm are the “transfer classifier” and
the “decision function”, as described below.

Transfer Classifier. Given an unlabeled in-domain dataset U , a small set of la-
beled in-domain examples L, as well as a labeled out-of-domain dataset O, a
transfer classifier is constructed from both O and L to classify unlabeled ex-
amples in U . In previous work on transfer learning, out-of-domain dataset O is
assumed to share similar distributions with in-domain dataset U ∪ L ([3][16]).
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Input: Unlabeled in-domain dataset: U ;
Labeled in-domain dataset: L;
Labeled out-of-domain dataset: O;
Maximum number of examples
labeled by experts: N.

Output: The actively transfer learner: �
Initial the number of examples that have1

been labeled by experts: n ← 0;
repeat2

x ← select an instance from U by a3

traditional active learner;
Train the transfer classifier T (Fig 3);4

Predict x by T(x) (Fig 3 and Equ. 1);5

Calculate the decision function F(x)6

(Details in Equ. 3 and Equ. 4);
if F(x) = 0 then7

y ← label by T(x);8

else9

y ← label by the experts;10

n ← n + 1;11

end12

L ← L ∪ {(x, y)};13

until n≥N14

Train the learner � with L15

Return the learner �.16

Algorithm 1. Framework Fig. 2. Algorithm flow

Thus, exploring the similarities and exploiting them is expected to improve ac-
curacy. However, it is unclear on how to formally determine whether the out-
of-domain dataset shares sufficient similarity with the in-domain dataset, and
how to guarantee transfer learning improves accuracy. Thus, in this paper, we
propose a transfer learning model whose expected error is bounded.

Intuitively, if one uses the knowledge in out-of-domain dataset O to make
prediction for an in-domain example x, and then double check the predicted
label with an in-domain classifier to see if the prediction is the same, it is more
likely that the predicted label is correct. Before discussing in detail, we define
some common notations. Let MO denote the out-of-domain classifier trained
on the out-of-domain dataset O. Also, let Lt denote a set of labeled data from
in-domain, but they are labeled as yt by the out-of-domain classifier MO (yt is
the label of the tth class). Formally, Lt = {x|x ∈ L ∧ MO(x) = yt}. Note that
the true labels of examples in Lt are not necessarily yt, but they just happen to
be labeled as class yt by the out-of-domain classifier. We illustrate the transfer
classifier for a binary-class problem in Fig 3. There are two classes, “+” and “-”,
and L+ = {x|x ∈ L ∧ MO(x) = “+”}, and L− = {x|x ∈ L ∧ MO(x) = “-”}.
The transfer classifier T(x) executes the following steps to label an instance x:
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Fig. 3. Transfer classifier in Algorithm 1

1. Classify x with the out-of-domain classifier MO to obtain P (L+|x,MO) and
P (L−|x,MO).

2. Classifyxwiththe in-domainclassifiersML+ andML− toobtainP (+|x,ML+
)

and P (+|x,ML−
).

3. The transfer probability for x being “+” is
PT (+|x)
= P (L+|x,MO) × P (+|x,ML+

) + P (L−|x,MO) × P (+|x,ML−
)

Omitting the explicit dependency on models the above formula can be simplified
as:

PT (+|x) = P (+|L+,x) × P (L+|x) + P (+|L−,x) × P (L−|x) (1)

Under 0-1 loss, when PT (+|x) > 0.5, x is classified as “+”. This transfer classifier
just described has the following important property.

Theorem 1. Let ε1 and ε2 denote the expected error of the in-domain classifiers
ML+ and ML− respectively, and let εt denote the expected error of the transfer
classifier T(x). Then,

min(ε1, ε2) ≤ εt ≤ 1
2
(ε1 + ε2) (2)

Proof. ∀x ∈ U , we consider the situations in which the transfer classifier T(x)
assigns it the wrong label. Let the true label of x be “+”. Further assume that
“+” examples are more likely classified into L+ or P (L+|x) ≥ P (L−|x). Thus,
the probability that x is mistakenly labeled as “-” is:
εt(x) = P (−|x)
= P (L−|x) × P (−|L−,x) + (1 − P (L−|x)) × P (−|L+,x)
= P (−|L+,x) + P (L−|x) × (P (−|L−,x) − P (−|L+,x))

Since P (−|L−,x) = P (x|L−,−)P (L−,−)
P (L−|x)P (x) > P (x|L+,−)P (L+,−)

P (L+|x)P (x) = P (−|L+,x),

then P (−|x) ≥ P (−|L+,x) = min(P (−|x,ML+
), P (−|x,ML−

)). In addition,
since P (L+|x) ≥ P (L−|x), we have 0 ≤ P (L−|x) ≤ 1

2 . Then, P (−|x) ≤
P (−|x,ML+

) + 1
2 (P (−|x,ML−

) − P (−|x,ML+
)) = 1

2 (P (−|x,ML+
) + P (−|x,

ML−
)). Thus, we have min(ε1, ε2) ≤ εt ≤ 1

2 (ε1 + ε2). �
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Hence, Theorem 1 indicates that if the out-of-domain knowledge is similar to
the current domain, or P (L−|x) is small, the model obtains the expected error
close to εt = min(ε1, ε2). When the out-of-domain knowledge is different, the
expected error is bounded by 1

2 (ε1 + ε2). In other words, in the worst case, the
performance of the transfer classifier is no worse than the average performances
of the two in-domain classifiers ML+

and ML−
.

Decision Function. After the transfer classifier T(x) predicts the selected exam-
ple x, a decision function F(x) is calculated and further decides how to label the
example. In the following situations, one should query the experts for the class
label in case of mislabeling.

– When the transfer classifier assigns x with a class label that is different from
that given by an in-domain classifier.

– When the transfer classifier’s classification is low in confidence.
– When the size of the labeled in-domain dataset L is very small.

Recall that ML is the in-domain classifier trained on labeled in-domain dataset
L. According to the above considerations, we design a “querying indicator” func-
tion θ(x) to reflect the necessity to query experts.

θ(x) =
(
1 + α(x)

)−1

α(x) =
(
1 − [[ML(x) �= T(x)]]

)
· PT (T(x) = y|x) · exp(− 1

|L| )
(3)

where [[π]] = 1 if π is true. And PT (T(x) = y|x) is the transfer probability
given by the transfer classifier T(x). Thus, 0 ≤ α(x) ≤ 1 and it reflects the
confidence that the transfer classifier has correctly labeled the example x: it
increases with the transfer probability PT (T(x) = y|x), and α(x) = 0 if the two
classifiers ML(x) and T(x) have assigned different labels to x. Hence, the larger
of α(x), the less we need to query the experts to label the example. Formally, the
“querying indicator” function θ(x) requires θ(x) ∝ α(x)−1. Moreover, because
mislabeling of the first few selected examples can exert significant negative effect

on accuracy, we further set θ(x) =
(
1+α(x)

)−1
so as to guarantee the possibility

(necessity) to query experts is greater than 50%. In other words, labeling by the
experts is the priority and we trust the label given by the transfer classifier only
when its confidence reflected by α(x) is very high. Thus, the proposed algorithm
asks the experts to label the example with probability θ(x). Accordingly, with
the value of θ(x), we randomly generate a real number R within 0 to 1, and then
the decision function F(x) is defined as

F(x) =

{
0 if R > θ(x)
1 otherwise

(4)

According to Eq. 4, if the randomly selected real number R > θ(x), F(x) = 0,
and it means Algorithm 1 labels the example by the transfer classifier; otherwise,
the example is labeled by the domain experts. In other words, AcTraK labels
the example x by transfer classifier with probability 1 − θ(x).
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2.1 Formal Analysis of AcTraK

We have proposed the approach AcTraK to transfer knowledge across domains
actively. Now, we formally derive its sampling error bound to demonstrate its
ability to mitigate domain difference risk, which guarantees that out-of-domain
examples are transferred to label in-domain data only when they are useful.
Additionally, we prove its querying bound to validate the claim that AcTraK
can reduce labeling cost by querying fewer examples labeled by experts by any
based level active learner incorporated into the framework.

Theorem 2. In the algorithm AcTraK (Algorithm 1), let εt denote the ex-
pected error of the transfer classifier, and let N denote the maximum number of
examples labeled by experts, then the sampling error ε for AcTraK satisfies

ε ≤ ε2
t

1 + (1 − εt) × exp(−|N |−1)
(5)

Proof. The proof for Theorem 2 is straightforward. According to the transfer
classifier T(x) and the decision function F(x) described above, AcTraK makes
wrong decision only when both the transfer classifier T(x) and the in-domain
classifier ML agree on the wrong label. And in this case, AcTraK has probability
1 − θ(x) to trust the classification result given by T(x), where θ(x) is defined in
Eq. 3. Thus, the sampling error for AcTraK can be written as ε ≤ (εt)2(1−θ(x)).
Moreover, in this situation, θ(x) = 1

1+(1−εt)e
− 1

|L|
≥ 1

1+(1−εt)e
− 1

N
. Thus, ε ≤

ε2
t (1 − θ(x)) ≤ ε2

t×(1−εt)×exp(−|N |−1)
1+(1−εt)×exp(−|N |−1) ≤ ε2

t

1+(1−εt)×exp(−|N |−1) . �

Theorem 3. In the algorithm AcTraK (Algorithm 1), let εt and εi denote the
expected error of the transfer classifier and in-domain classifier respectively. And
let α = εt + εi. Then for an in-domain instance, the probability that AcTraK
queries the label from the experts (with cost) satisfies:

P [Query] ≤ α +
1 − α

1 + (1 − εt) × exp(− 1
|N |)

(6)

Proof. According to the labeling-decision function F(x), AcTraK will query the
experts to label the instance when T(x) and ML hold different predictions on
the classification result. Even when the two classifiers agree on the result, it
still has probability θ(x) to query the experts. Thus, P [Query] = εi(1 − εt) +
εt(1 − εi) + [εtεi + (1 − εt)(1 − εi)]θ(x) = θ(x) + (εt + εi − 2εtεi)(1 − θ(x)) ≤
α + (1 − α)θ(x) ≤ α + 1−α

1+(1−εt)×exp(− 1
|N| )

. �

From Theorem 2, we can find that the sampling error of the proposed approach
AcTraK is bounded by O( ε2

t

1−εt
), where εt is the expected error of the transfer

classifier, and εt is also bounded according to Theorem 1. Thus, the proposed
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(a) U (b) O1 (c) O2 (d) O3 (e) O4

Fig. 4. Synthetic dataset

method AcTraK can effectively bound the sampling error to reduce the domain
difference risk. In addition, we derive Theorem 3 to understand why AcTraK
can query fewer examples labeled by experts as compared with traditional active
learners. From Theorem 3, we can see that the querying probability of AcTraK
is bounded, and the querying bound decreases with the decreasing εt. In other
words, the more accurate of the transfer classifier, the less likely will AcTraK
query the experts to label the instance. Hence, one can perceive that AcTraK
can actively decide how to gain its knowledge.

3 Experiments

We first design synthetic datasets to demonstrate how AcTraK mitigates the
domain difference risk that can make transfer learning fail, and then study how
out-of-domain knowledge can help AcTraK to query fewer examples labeled by
experts, as compared with traditional active learner. Then several transfer learn-
ing problems composed from remote sensing and text classification datasets are
used for evaluation. We use SVM as the basic learners, and logistic regression to
simulate the classification probabilities. Furthermore, for active learner employed
in AcTraK, we adopt ERS (Error Reduction Sampling method [11]). AcTraK is
compared with both a transfer learning model TrAdaBoost ([4]) and the ac-
tive learning model ERS ([11]). These are some of the most obvious choices,
commonly adopted in the research community.

3.1 Synthetic Datasets

We design synthetic datasets to empirically address the following questions:

1. Domain difference risk: can AcTraK overcome domain difference if the out-
of-domain knowledge is significantly different from the current domain?

2. Number of examples labeled by experts: do experts label fewer examples in
AcTraK under the help of out-of-domain knowledge?

We generate five two-dimensional datasets shown in Fig 4 (electronic copy
of this paper contains color figures). Fig 4(a) draws the in-domain dataset U ,
which has two labeled examples highlighted by “�”. Importantly, four out-of-
domain datasets with different distributions are plotted in Fig 4(b)∼Fig 4(e).
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(a) Results with O1 (b) Results with O2 (c) Results with O3

(d) Results with O4 (e) AcTraK VS. ERS

Fig. 5. Results on synthetic dataset
Note: To resolve label deficiency, TrAdaBoost does not query experts but passively
trains with the in-domain and all the labeled out-of-domain data. Thus, the its learning
curve is straight line.

Fig 4(b) presents a dataset O1, similarly distributed as the in-domain dataset
U . But the dataset O2 is clearly different from U though they may still share
some similarity. Fig 4(d) plots an “XOR” dataset O3. In addition, we include
the dataset O4 depicted as Fig 4(e), which has a similar “shape” but totally
reversed class labels with the in-domain dataset U . Thus, four experiments are
conduced by using the same in-domain dataset U but different out-of-domain
datasets O1 ∼ O4. We vary the number of examples labeled by experts up to 50.
Moreover, to reveal how domain difference affects transfer learning, we also run
on AdaBoost, or boosting without transferring knowledge from other domains.
Each experiment is repeated 10 times and average results are reported. For both
TrAdaBoost and AdaBoost, the iteration is set to be 100. For the sake of clarity,
we plot the most distinctive results in Fig 5.

Can AcTraK Overcome Domain Difference? Fig 5(a) to Fig 5(d) plot the perfor-
mance comparison of AcTraK vs. TrAdaBoost as they are given the four out-of-
domain datasets. The result given by AdaBoost is to compare with TrAdaBoost
to study effect of domain difference. It is important to note that, to resolve la-
bel deficiency, TrAdaBoost does not query the experts but trains on in-domain
and all labeled out-of-domain data for many iterations (100 in our experiment).
Thus, its result is a straight line. From Fig 5, TrAdaBoost is effective when the
out-of-domain dataset is O1 or Fig 4(b), which shares similar distribution with
the in-domain dataset. In this case, TrAdaBoost obviously outperforms the orig-
inal AdaBoost. However, when the out-of-domain dataset distributes differently
from the in-domain dataset, the classification accuracy given by TrAdaBoost
significantly drops: 0.82 when the out-of-domain dataset is O2; 0.57 when the
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(a) With O1 (b) With O2 (c) With O3

Fig. 6. Examples (in U) labeled by the transfer classifier

out-of-domain dataset is O3 and only 0.51 when with O4 (the last two results
are just slightly better than random guessing). Importantly, these numbers are
even worse than the original AdaBoost that achieves an accuracy of 0.85 with-
out using the knowledge from O2, O3 or O4. It is obvious that the culprit is the
domain differences from these datasets.

Importantly under these same challenging situations, from Fig 5(b) to
Fig 5(d), this domain difference does not significantly affect the proposed al-
gorithm AcTraK. The classification accuracies of AcTraK with different out-of-
domain datasets are over 0.9 when the number of examples labeled by experts is
12, demonstrating its ability to overcome domain difference risk. It is interesting
to notice that when the out-of-domain dataset is O4, AcTraK acts similar as
that with O1. This is because that the transfer classifier described in Fig 3 is not
sensitive to the actual “name” of the labels of the out-of-domain dataset. For
example, if L+ in Fig 3 actually includes most examples with class label −, the
term P (−|x, L+) will be likely large and make the final classification result more
likely to be −. Thus, with respect to their similar structure, O4 is homogeneous
with O1 to some extend. Hence, we do not consider O4 but O3 as the most
different distributed dataset with the in-domain dataset U in this experiment.
And owing to the limited space and the homogeneity of O1 and O4 to AcTraK,
the result of O4 is omitted in the following of the paper.

Importantly, Fig 5 shows that, even with the dataset O2 and O3, AcTraK can
ensure the accuracy. It is mainly due to the actively transfer strategy: it does not
all depend on the out-of-domain dataset passively. To further reveal this active
strategy in AcTraK, we plot the examples labeled by the transfer classifier in
Fig 6. The examples mislabeled by the transfer classifier are marked with circles.
Shown in Fig 6, when the out-of-domain dataset is O1, the most similar to the
in-domain dataset, the transfer classifier help label more examples than those
with O2 or O3. Especially when the out-of-domain dataset is O3, the transfer
classifier help label only 3 examples and this is due to domain difference.

The sampling error bound of AcTraK under domain difference is derived in
Theorem 2. We calculate these bounds and compare them with the actual sam-
pling errors in Table 2. It is important to mention that the actual sampling error
or sampling error bound discussed here is the labeling error for the selected ex-
amples, but not the accuracy results given in Fig 5, which is the accuracy on the
whole in-domain dataset. To calculate the actual sampling error of AcTraK, for
example, when the out-of-domain dataset is O2, there are a total of 9 examples
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Table 2. Sampling error bound and querying bound on synthetic dataset

Datasets Error of T(x) Sampling error Sampling error bound Querying rate Querying bound
O1 0.00 0.000 0.000 71.43% 75.25%
O2 0.18 0.017 0.017 84.75% 85.45%
O3 0.34 0.037 0.070 94.34% 93.72%

labeled by the transfer classifier with one mislabeled, as depicted in Fig 6(b).
Thus, the actual sampling error of AcTraK is 1

50+9 = 0.017, and we compare it
with the bound calculated according to Theorem 2. The results are summarized
in Table 2. The sampling error bound given in Theorem 2 is obviously tight for
the synthetic dataset. Moreover, it is evident that AcTraK can effectively reduce
sampling error. For instance, when the true error of the transfer classifier T(x)
is 0.34 with the dataset O3, AcTraK bounds its sampling error as 0.07 and gets
the actual error 0.04. Thus, it can be concluded that AcTraK can effectively
resolve domain difference by bounding the sampling error shown as Theorem 2.

Do Experts Label Fewer Examples in AcTraK? In the proposed approach Ac-
TraK, knowledge transferred from other domain is used to help label the exam-
ples. In other words, it saves the number of examples to ask the experts. Thus,
compared with traditional active learner, AcTraK is expected to reduce the
number of examples labeled by experts, thus to reduce labeling cost. We present
Fig 5(e) to demonstrate this claim by comparing AcTraK with the traditional
active learner ERS. It is important to note that the original ERS only works on
the in-domain dataset. Thus, there is only one result plotted for ERS in Fig 5(e)
but three for AcTraK with different out-of-domain datasets. From Fig 5(e), we
can see that in most cases, “AcTraK-O1” and “AcTraK-O2” can evidently out-
perform ERS by reaching the same accuracy but with fewer examples labeled
by experts. And this is because that some of the examples have been labeled by
the transfer classifier under the help of the out-of-domain datasets. Additionally,
the out-of-domain dataset O1 seems more helpful than O2 to AcTraK, due to
the similar distribution between O1 and the in-domain dataset.

When we use the XOR dataset O3 to be the out-of-domain dataset, the learn-
ing curve of AcTraK overlaps with that of ERS depicted as Fig 5(e). It implies
that the transfer learning process is unable to help label examples in this case,
and both AcTraK and ERS select the same examples and label them all by ex-
perts. Depicted as Fig 4(a) and Fig 4(d), the distribution of O3 is significantly
different from the in-domain dataset U , and thus AcTraK judiciously drops the
knowledge transferred from O3 but queries the experts instead in order to avoid
mislabeling. This is formally discussed in Theorem 3, in which we have shown
that the bound of the probability to query experts increases when the transfer
classifier can not confidently label the examples. We also calculate these query-
ing bounds and the actual querying rates in Table 2. The querying bound given
in Theorem 3 is tight. Moreover, we can clearly see that AcTraK queries the
experts with probability 94% when the out-of-domain dataset is O3. It explains
why AcTraK can not outperform ERS with O3 in Fig 5(e): the transfer classifier
has too little chance (1 − 94% = 6%) to label the examples. Additionally, the
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querying bound of O1 is less than that of O2. In other words, AcTraK may label
more examples by the transfer classifier when the out-of-domain dataset is O1.
It explains why O1 is more helpful than O2 to AcTraK in Fig 5(e).

3.2 Real World Dataset

Fig. 7. IEA

We use two sets of real world datasets, remote sensing
problem as well as text classification problem, to empiri-
cally evaluate the proposed method. But we first employ
an evaluation metric to compare two active learners. One
mainly cares about the performance with the increasing
number of examples labeled by experts, shown by the
learning curves of A1 and A2 in Fig 7. A superior ac-
tive learner is supposed to gain a higher accuracy under
the same number of queried examples, or reach the same
classification accuracy with fewer labeled examples. This
is shown by n1 vs. n2 in Fig 7. Thus, the superiority
of A1 compared with A2 can be reflected by the area
surrounded by the two learning curves, highlighted by
dotted lines in Fig 7. In order to qualify this difference,
we employ an evaluation metric IEA(*) (Integral Evalua-
tion on Accuracy), and apply it to evaluate the proposed method in the following
experiments.

Definition 1. Given a classifier M, two active learners A1 and A2, let A(n)
denote the classification accuracy of M trained on the dataset selected by the
active learner A when the number of examples labeled by experts is n. Then,

IEA(A1, A2, ν) =

ν∫

0

(A1(n) − A2(n))dn =
ν∑

n=0

(A1(n) − A2(n))Δn (7)

Remote Sensing Problem. The remote sensing problem is based on data collected
from real landmines1. In this problem, there are a total of 29 sets of data, col-
lected from different landmine fields. Each data is represented as a 9-dimensional
feature vector extracted from radar images, and the class label is true mine or
false mine. Since each of the 29 datasets are collected from different regions that
may have different types of ground surface conditions, these datasets are con-
sidered to be dominated by different distributions. According to [17], datasets
1 to 10 are collected at foliated regions while datasets 20 to 24 are collected
from regions that are bare earth or desert. Then, we combine the datasets 1 to
5 as the unlabeled in-domain dataset, while the datasets 20 to 24 as the labeled
out-of-domain dataset respectively. Furthermore, we also combine datasets 6 to
10 as another out-of-domain dataset that is assumed to have a very similar dis-
tribution with the in-domain dataset. We conduct the experiment 10 times and
1 http://www.ee.duke.edu/∼lcarin/LandmineData.zip
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Table 3. Accuracy comparisons on remote sensing (landmine) dataset

Out-of-domain Dataset SVM TrAdaBoost(100 iterations) AcTraK IEA(AcTraK, ERS, 100)
Dataset 20 57% 89.76% 94.49% +0.101
Dataset 21 57% 86.04% 94.48% +0.108
Dataset 22 57% 90.5% 94.49% +0.103
Dataset 23 57% 88.42% 94.49% +0.123
Dataset 24 57% 90.7% 94.49% +0.12

Dataset 6-10 57% 94.76% 94.49% +0.134
Note: The results of AcTraK under the 4th column is when only one example is
labeled by experts.

randomly select two examples (one with label “true” while the other with label
“false”) as the initial training set each time. The experiment results are averaged
and summarized in Table 3.

The first 5 rows of Table 3 show that AcTraK outperforms TrAdaBoost when
the in-domain dataset is not so similar to the out-of-domain dataset (Dataset 20
to Dataset 24). Moreover, AcTraK also outperforms the active learner ERS in
all cases. When the in-domain dataset is similar with the out-of-domain dataset
(Dataset 6-10), AcTraK achieves the highest gain on ERS, demonstrating domain
transfer can improve learning and reduce number of examples labeled by experts.

Text Classification Problem. Another set of experiment on text classification
problem uses the 20 Newsgroups. It contains approximately 20,000 newsgroup
documents, partitioned across 20 different newsgroups. We generate 6 cross-
domain learning tasks. 20 Newsgroups has a two-level hierarchy so that each
learning task involves a top category classification problem but the training and
test data are drawn from different sub categories. For example, the goal is to dis-
tinguish documents from two top newsgroup categories: rec and talk. So a train-
ing set involves documents from “rec.autos”, and “talk.politics.misc” whereas
the test set includes sub-categories “rec.sport.baseball” “talk.religions.misc”, etc.
The strategy is to split the sub-categories among the training and the test sets
so that the distributions of the two sets are similar but not exactly the same.
The tasks are generated in the same way as in [4] and more details can be found
there. Similar to other experiments, each of the in-domain datasets has only
2 randomly selected labeled examples, one positive and another negative. Re-
ported results in Table 4 are averaged over 10 runs. The results of the first two
datasets are also plotted in Fig 8.

It is important to note that the classification results of AcTraK shown in Fig 4
is when the number of examples labeled by experts is 250. It is relatively small
in size since each dataset in our experiment has 3500 to 3965 unlabeled docu-
ments ([4]). As summarized in Table 4, TrAdaBoost can increase the learning
accuracy in some cases, such as with the dataset “comp vs. talk”. However, one
can hardly guarantee that the exclusive use of transfer learning is enough to learn
the current task. For example, when the dataset is “comp vs. sci”, TrAdaBoost
does not increase the accuracy significantly. But the proposed algorithm AcTraK
can achieve an accuracy 78% compared with 57.3% given by TrAdaBoost. It im-
plies the efficiency of AcTraK to actively gain its knowledge both from transfer
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(a) rec vs. talk (b) rec vs. sci

Fig. 8. Comparisons with ERS on 20 Newsgroups dataset

Table 4. Accuracy comparisons on 20 Newsgroups dataset

Dataset SVM TrAdaBoost(100 iterations) AcTraK IEA(AcTraK, ERS, 250)
rec vs. talk 60.2% 72.3% 75.4% +0.91
rec vs. sci 59.1% 67.4% 70.6% +1.83

comp vs. talk 53.6% 74.4% 80.9% +0.21
comp vs. sci 52.7% 57.3% 78.0% +0.88
comp vs. rec 49.1% 77.2% 82.1% +0.35
sci vs. talk 57.6% 71.3% 75.1% +0.84

learning and domain experts, while TrAdaBoost adopts the passive strategy to
thoroughly depend on transfer learning. In addition, from Table 4 and Fig 8,
we find that AcTraK can effectively reduce the number of examples labeled by
experts as compared with ERS. For example, upon the dataset “rec vs. talk”, to
reach the accuracy 70%, AcTraK is with 160 examples labeled by experts while
ERS needs over 230 such examples.

4 Related Work

Transfer learning utilizes the knowledge from other domain(s) to help learn the
current domain so as to resolve label deficiency. One of the main issues in this
area is how to resolve the different data distributions. One general approach
proposed to solve the problem with different data distributions is based on in-
stance weighting (e.g., [2][4][5][10][7]). The motivation of these methods are to
“emphasize” those “similar” and discriminated instances. Another line of work
tries to change the representation of the observation x by projecting them into
another space in which the projected instances from different domains are similar
to each other (e.g., [1][12]). Most of the previous work assume that the knowl-
edge transferred from other domain(s) can finally help the learning. However,
this assumption can be easily violated in practice. The knowledge transferred
from other domains may reduce the learning accuracy due to implicit domain
differences. We call it the domain difference risk, and we effectively solve the
problem by actively transfer the knowledge across domains to help the learning
only when they are useful.

Active learning is another way to solve label deficiency. It mainly focuses on
carefully selecting a few additional examples for which it requests labels, so as
to increase the learning accuracy. Thus, different active learners use different
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selection criteria. For example, uncertainty sampling (e.g., [9][18]) selects the
example on which the current learner has lower certainty; Query-by-Committee
(e.g., [6][13]) selects examples that cause maximum disagreement amongst an
ensemble of hypotheses, etc. There are also some other topics proposed in recent
years to resolve different problems in active learning, such as the incorporation
of ensemble methods (e.g., [8]), the incorporation of model selection (e.g., [15]),
etc. It is important to mention that the examples selected by the previous active
learners are more or less uncertain to be labeled directly by the in-domain clas-
sifier. Then in this paper, we use the knowledge transferred from other domain
to help label these selected examples, so as to reduce labeling cost.

5 Conclusion

We propose a new framework to actively transfer the knowledge from other do-
main to help label the instances from the current domain. To do so, we first select
an essential example and then apply a transfer classifier to label it. But if the
classification given by the transfer classifier is of low confidence, we ask domain
experts instead to label the example. We develop Theorem 2 to demonstrate
that this strategy can effectively resolve domain difference risk by transferring
domain knowledge only when they are useful. Furthermore, we also derive Theo-
rem 3 to prove that the proposed framework can reduce labeling cost by querying
fewer examples labeled by experts, as compared with traditional active learn-
ers. In addition, we also propose a new transfer learning model adopted in the
framework, and this transfer learning model is bounded to be no worse than an
instance-based ensemble method in error rate, proven in Theorem 1. There are
at least two important advantages of the proposed approach. First, it effectively
solves the domain difference risk problem that can easily make transfer learning
fail. Second, most of previous active learning models can be directly adopted in
the framework to reduce the number of examples labeled by experts.

We design a few synthetic datasets to study how the proposed framework re-
solves domain difference and reduce the number of examples labeled by experts.
The proposed sampling error bound in Theorem 2 and querying bound in Theo-
rem 3 are also empirically demonstrated to be tight bounds in this experiment.
Furthermore, two categories of real world datasets, including remote sensing and
text classification datasets have been used to generate several transfer learning
problems. Experiment shows that the proposed method can significantly out-
perform the comparable transfer learning model by resolving domain difference.
For example, with one of the text classification datasets, the proposed method
achieves an accuracy 78.0%, while the comparable transfer learning model drops
to 57.3%, due to domain difference. Moreover, the proposed method can also
effectively reduce labeling cost by querying fewer examples labeled by experts
as compared with the traditional active learner. For instance, in an experiment
on the text classification problem, the comparable active learner requires over
230 examples labeled by experts to gain the accuracy 70%, while the proposed
method is with at most 160 such examples to reach the same accuracy.
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Abstract. We present a unified view of matrix factorization that frames
the differences among popular methods, such as NMF, Weighted SVD,
E-PCA, MMMF, pLSI, pLSI-pHITS, Bregman co-clustering, and many
others, in terms of a small number of modeling choices. Many of these ap-
proaches can be viewed as minimizing a generalized Bregman divergence,
and we show that (i) a straightforward alternating projection algorithm
can be applied to almost any model in our unified view; (ii) the Hessian
for each projection has special structure that makes a Newton projection
feasible, even when there are equality constraints on the factors, which
allows for matrix co-clustering; and (iii) alternating projections can be
generalized to simultaneously factor a set of matrices that share dimen-
sions. These observations immediately yield new optimization algorithms
for the above factorization methods, and suggest novel generalizations of
these methods such as incorporating row and column biases, and adding
or relaxing clustering constraints.

1 Introduction

Low-rank matrix factorization is a fundamental building block of machine learn-
ing, underlying many popular regression, factor analysis, dimensionality reduc-
tion, and clustering algorithms. We shall show that the differences between many
of these algorithms can be viewed in terms of a small number of modeling choices.
In particular, our unified view places dimensionality reduction methods, such as
singular value decomposition [1], into the same framework as matrix co-clustering
algorithms like probabilistic latent semantic indexing [2]. Moreover, recently-
studied problems, such as relational learning [3] and supervised/semi-supervised
matrix factorization [4], can be viewed as the simultaneous factorization of sev-
eral matrices, where the low-rank representations share parameters. The model-
ing choices and optimization in the multiple-matrix models are very similar to
the single-matrix case.

The first contribution of this paper is descriptive: our view of matrix fac-
torization subsumes many single- and multiple-matrix models in the literature,
using only a small set of modeling choices. Our basic single-matrix factorization
model can be written X ≈ f(UV T ); choices include the prediction link f , the
definition of ≈, and the constraints we place on the factors U and V . Different
combinations of these choices also yield several new matrix factorization models.
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The second contribution of this paper is computational: we generalize the al-
ternating projections technique for matrix factorization to handle constraints on
the factors—e.g., clustering or co-clustering, or the use of margin or bias terms.
For most common choices of ≈, the loss has a special property, decomposability,
which allows for an efficient Newton update for each factor. Furthermore, many
constraints, such as non-negativity of the factors and clustering constraints, can
be distributed across decomposable losses, and are easily incorporated into the
per-factor update. This insight yields a common algorithm for most factoriza-
tion models in our framework (including both dimensionality reduction and co-
clustering models), as well as new algorithms for existing single-matrix models.

A parallel contribution [3] considers matrix factorization as a framework for
relational learning, with a focus on multiple relations (matrices) and large-scale
optimization using stochastic approximations. This paper, in contrast, focuses
on modeling choices such as constraints, regularization, bias terms, and more
elaborate link and loss functions in the single-matrix case.

2 Preliminaries

2.1 Notation

Matrices are denoted by capital letters, X , Y , Z. Elements, rows and columns
of a matrix are denoted Xij , Xi·, and X·j. Vectors are denoted by lower case
letters, and are assumed to be column vectors—e.g., the columns of factor U
are (u1, . . . , uk). Given a vector x, the corresponding diagonal matrix is diag(x).
A�B is the element-wise (Hadamard) product. A◦B is the matrix inner product
tr(AT B) =

∑
ij AijBij , which reduces to the dot product when the arguments

are vectors. The operator [A B] appends the columns of B to A, requiring that
both matrices have the same number of rows. Non-negative and strictly positive
restrictions of a set F are denoted F+ and F++. We denote matrices of natural
parameters as Θ, and a single natural parameter as θ.

2.2 Bregman Divergences

A large class of matrix factorization algorithms minimize a Bregman divergence:
e.g., singular value decomposition [1], non-negative matrix factorization [5], ex-
ponential family PCA [6]. We generalize our presentation of Bregman divergences
to include non-differentiable losses:

Definition 1. For a closed, proper, convex function F : R
m×n → R the gener-

alized Bregman divergence [7,8] between matrices Θ and X is

DF (Θ || X) = F (Θ) + F ∗(X) − X ◦ Θ

where F ∗ is the convex conjugate, F ∗(μ) = supΘ∈dom F [Θ ◦ μ − F (Θ)]. We
overload the symbol F to denote an element-wise function over matrices. If
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F : R → R is an element-wise function, and W ∈ R
m×n
+ is a constant weight

matrix, then the weighted decomposable generalized Bregman divergence is

DF (Θ || X, W ) =
∑

ij

Wij (F (Θij) + F ∗(Xij) − XijΘij) .

If F : R → R is additionally differentiable, ∇F = f , and wij = 1, the decompos-
able divergence is equivalent to the standard definition [9,10]:

DF (Θ || X, W ) =
∑

ij

F ∗(Xij) − F ∗(f(Θij)) − ∇F ∗(f(Θij))(Xij − f(Θij))

= DF ∗(X || f(Θ))

Generalized Bregman divergences are important because (i) they include many
common separable divergences, such as squared loss, F (x) = 1

2x2, and KL-
divergence, F (x) = x log2 x; (ii) there is a close relationship between Bregman
divergences and maximum likelihood estimation in regular exponential families:

Definition 2. A parametric family of distributions ψF = {pF (x|θ) : θ} is a
regular exponential family if each density has the form

log pF (x|θ) = log p0(x) + θ · x − F (θ)

where θ is the vector of natural parameters for the distribution, x is the vector
of minimal sufficient statistics, and F (θ) = log

∫
p0(x) · exp(θ · x) dx is the log-

partition function.

A distribution in ψF is uniquely identified by its natural parameters. It has been
shown that for regular exponential families

log pF (x|θ) = log p0(x) + F ∗(x) − DF ∗(x || f(θ)),

where the prediction link f(θ) = ∇F (θ) is known as the matching link for F
[11,12,6,13]. Generalized Bregman divergences assume that the link f and the
loss match, though alternating projections generalizes to non-matching links.

The relationship between matrix factorization and exponential families is
made clear by viewing the data matrix as a collection of samples {X11, . . . , Xmn}.
Let Θ = UV T be the parameters. For a decomposable regular Bregman diver-
gence, minimizing DF ∗(X || f(Θ)) is equivalent to maximizing the log-likelihood
of the data under the assumption that Xij is drawn from the distribution in ψF

with natural parameter Θij .

3 Unified View of Single-Matrix Factorization

Matrix factorization is both more principled and more flexible than is commonly
assumed. Our arguments fall into the following categories:
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(b) Latent conditional independence

Fig. 1. Two layer model of matrix factorization

Decomposability: Matrix factorization losses tend to be decomposable, ex-
pressible as the sum of losses for each element in the matrix, which has both
computational and statistical motivations. In many matrices the ordering of rows
and columns is arbitrary, permuting the rows and columns separately would not
change the distribution of the entries in the matrix. Formally, this idea is known
as row-column exchangeability [14,15]. Moreover, for such matrices, there exists a
function ϕ such that Xij = ϕ(μ, μi, μj , εij) where μ represents behaviour shared
by the entire matrix (e.g., a global mean), μi and μj per-row and per-column
effects, and εij per-entry effects. The εij terms lead naturally to decomposable
losses. The computational benefits of decomposability are discussed in Sect. 5.

Latent Independence: Matrix factorization can be viewed as maximum like-
lihood parameter estimation in a two layer graphical model, Fig. 1. If the rows
of X are exchangeable, then each training datum corresponds to x = Xi·, whose
latent representation is z = Ui·, and where Θi· = Ui·V T are the parameters of
p(x|z). Most matrix factorizations assume that the latents are marginally inde-
pendent of the observations, Fig. 1(a); an alternate style of matrix factorizations
assumes that the latents are conditionally independent given the observations,
Fig. 1(b), notably exponential family harmoniums [16].

Parameters vs. Predictions: Matrix factorizations can be framed as minimiz-
ing the loss with respect to model parameters; or minimizing the loss with respect
to reconstruction error. Since many common losses are regular Bregman diver-
gences, and there is a duality between expectation and natural parameters—
DF ∗(x || f(θ)) = DF (θ || f−1(x)), the two views are usually equivalent. This
allows one to view many plate models, such as pLSI, as matrix factorization.

Priors and Regularizers: Matrix factorizations allow for a wide variety of pri-
ors and regularizers, which can both address overfitting and the need for pooling
information across different rows and columns. Standard regression regularizers,
such as the �p norm of the factors, can be adapted. Hierarchical priors can be
used to produce a fully generative model over rows and columns, without resort-
ing to folding-in, which can easily lead to optimistic estimates of test errors [17].

Bayesian stance: The simplest distinction between the Bayesian and maxi-
mum a posteriori/maximum likelihood approaches is that the former computes
a distribution over U and V , while the latter generates a point estimate. Latent
Dirichlet allocation [18] is an example of Bayesian matrix factorization.

Collective matrix factorization assumes that the loss is decomposable and that
the latents are marginally independent. Our presentation assumes that the prior
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is simple (non-hierarchical) and estimation is done via regularized maximum
likelihood. Under these assumptions a matrix factorization can be defined by
the following choices, which are sufficient to include many popular approaches:

1. Data weights W ∈ R
m×n
+ .

2. Prediction link f : R
m×n → R

m×n.
3. Hard constraints on factors, U, V ∈ C.
4. Weighted loss between X and X̂ = f(UV T ), D(X || X̂, W ) ≥ 0.
5. Regularization penalty, R(U, V ) ≥ 0.

Given these choices the optimization for the model X ≈ f(UV T ) is

argmin
(U,V )∈C

D(X || f(UV T ), W ) + R(U, V )

Prediction links allow nonlinear relationships between Θ = UV T and the data
X . We focus on the case where D is a generalized Bregman divergences and f is
the matching link. Constraints, weights, and regularizers, along with the ensuing
optimization issues, are discussed in Sect. 5.

3.1 Models Subsumed by the Unified View

To justify our unified view we discuss a representative sample of single matrix
factorizations (Table 1) and how they can be described by their choice of loss,
link, constraints, weights, and regularization. Notice that all the losses in Table 1
are decomposable, and that many of the factorizations are closely related to lin-
ear models for independent, identically distributed (iid) data points: SVD is the
matrix analogue of linear regression; E-PCA/G2L2M are the matrix analogues
of generalized linear models; MMMF is the matrix analogue of ordinal regression
under hinge loss1 h; k-medians is the matrix analogue of quantile regression [19],
where the quantile is the median; and �1-SVD is the matrix analogue of the
LASSO [20]. The key difference between the regression/clustering algorithm and
its matrix analogue is changing the assumption from iid observations, where each
row of X is drawn from a single distribution, to row exchangeability.

Many of the models in Table 1 differ in the loss, the constraints, and the
optimization. In many cases the loss and link do not match, and the optimization
is non-convex in Θ, which is usually far harder than minimizing a similar convex
problem. We speculate that replacing the non-matching link in pLSI with its
matching link may yield an alternative that is easier to optimize.

Similarities between matrix factorizations have been noted elsewhere, such as
the equivalence of pLSI and NMF with additional constraints [21]. pLSI requires
that the matrix be parameters of a discrete distribution, 1◦X = 1. Adding an or-
thogonality constraint to �2-NMF yields a relaxed form of k-means [22]. Orthog-
onality of a column factors V T V = I along with integrality of Vij corresponds to
hard clustering the columns of X , at most one entry in Vi· can be non-zero. Even
without the integrality constraint, orthogonality plus non-negativity still implies
1 In Fast-MMMF a smoothed, differentiable version of hinge loss is used, hγ .
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a stochastic (clustering) constraint: ∀i
∑

� Vi� = 1, Vi� ≥ 0. In the k-means algo-
rithm, U acts as the cluster centroids and V as the clustering indicators, where
the rank of the decomposition and the number of clusters is k. In alternating
projections, each row update for a factor with the clustering constraint reduces
to assigning hard or soft cluster membership to each point/column of X .

A closely related characterization of matrix factorization models, which re-
lates NMF, pLSI, as well as Bayesian methods like Latent Dirichlet Allocation,
is Discrete PCA [23]. Working from a Bayesian perspective the regularizer and
divergence are replaced with a prior and likelihood. This restricts one to rep-
resenting models where the link and loss match, but affords the possibility of
Bayesian averaging where we are restricted to regularized maximum likelihood.
We speculate that a relationship exists between variational approximations to
these models and Bregman information [12], which averages a Bregman diver-
gence across the posterior distribution of predictions.

Our unified view of matrix factorization is heavily indebted to earlier work on
exponential family PCA and G2L2M. Our approach on a single matrix differs in
several ways from G2L2Ms: we consider extensions involving bias/margin terms,
data weights, and constraints on the factors, which allows us to place matrix
factorizations for dimensionality reduction and co-clustering into the same al-
ternating Newton-projections approach. Even when the loss is a regular Bregman
divergence, which corresponds to a regular exponential family, placing con-
straints on U and V , and thus on Θ, leads to models which do not correspond
to regular exponential families. For the specific case of log-loss and its match-
ing link, Logistic PCA proposes alternating projections on a lower bound of
the log-likelihood. Max-margin matrix factorization is one of the more elaborate
models: ordinal ratings {1, . . . , R}2 are modeled using R − 1 parallel separat-
ing hyperplanes, corresponding to the binary decisions Xij ≤ 1, Xij ≤ 2, Xij ≤
3, . . . , Xij ≤ R − 1. The per-row bias term Bir allows the distance between hy-
perplanes to differ for each row. Since this technique was conceived for user-item
matrices, the biases capture differences in each user. Predictions are made by
choosing the value which minimizes the loss of the R − 1 decision boundaries,
which yields a number in {1, . . . , R} instead of R.

4 Collective Matrix Factorization

A set of related matrices involves entity types E1, . . . , Et, where the elements
of each type are indexed by a row or column in at least one of the matrices.
The number of entities of type Ei is denoted ni. The matrices themselves are
denoted X(ij) where each row corresponds to an element of type Ei and each
column to an element of type Ej . If there are multiple matrices on the same
types we disambiguate them with the notation X(ij,u), u ∈ N. Each data matrix
is factored under the model X(ij) ≈ f (ij)(Θ(ij)) where Θ(ij) = U (i)(U (j))T for
low rank factors U (i) ∈ R

ni×kij . The embedding dimensions are kij ∈ N. Let k be
the largest embedding dimension. In low-rank factorization k � min(n1, . . . , nt).
2 Zeros in the matrix are considered missing values, and are assigned zero weight.
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Table 1. Single matrix factorization models. dom Xij describes the types of values
allowed in the data matrix. Unweighted matrix factorizations are denoted Wij = 1. If
constraints or regularizers are not used, the entry is marked with a em-dash.

Method dom Xij Link f(θ) Loss D(X|X̂ = f(Θ), W ) Wij

SVD [1] R θ ||W � (X − X̂)||2F ro 1
W-SVD [24,25] R θ ||W � (X − X̂)||2F ro ≥ 0
k-means [26] R θ ||W � (X − X̂)||2F ro 1
k-medians R θ

∑
ij |Wij

(
Xij − X̂ij

)
| 1

�1-SVD [27] R θ
∑

ij |Wij

(
Xij − X̂ij

)
| ≥ 0

pLSI [2] 1 ◦ X = 1 θ
∑

ij Wij

(
Xij log Xij

X̂ij

)
1

NMF [5] R+ θ
∑

ij Wij

(
Xij log Xij

Θij
+ Θij − Xij

)
1

�2-NMF [28,5] R+ θ ||W � (X − X̂)||2F ro 1
Logistic PCA [29] {0, 1} (1 + e−θ)−1 ∑

ij Wij

(
Xij log Xij

X̂ij
+

(1 − Xij) log 1−Xij

1−X̂ij

)
1

E-PCA [6] many many decomposable Bregman (DF ) 1
G2L2M [8] many many decomposable Bregman (DF ) 1
MMMF [30] {0, . . . , R} min-loss

∑R−1
r=1

∑
ij:Xij �=0 Wij ·h(Θij −Bir) 1

Fast-MMMF [31] {0, . . . , R} min-loss
∑R−1

r=1

∑
ij:Xij �=0 Wij ·hγ(Θij−Bir) 1

Method Constraints U Constraints V Regularizer R(U, V ) Algorithm(s)

SVD UT U = I V T V = Λ — Gaussian
Elimination,

Power Method
W-SVD — — — Gradient, EM
k-means — V T V = I ,

Vij ∈ {0, 1}
— EM

k-medians — V T V = I ,
Vij ∈ {0, 1}

— Alternating

�1-SVD — — — Alternating
pLSI 1T U1 = 1

Uij ≥ 0
1T V = 1
Vij ≥ 0

— EM

NMF Uij ≥ 0 Vij ≥ 0 — Multiplicative
�2-NMF Uij ≥ 0 Vij ≥ 0 — Multiplicative,

Alternating
Logistic PCA — — — EM
E-PCA — — — Alternating
G2L2M — — ||U ||2F ro + ||V ||2F ro Alternating

(Subgradient,
Newton)

MMMF — — tr(UV T ) Semidefinite
Program

Fast-MMMF — — 1
2 (||U ||2F ro + ||V ||2F ro) Conjugate

Gradient
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Collective matrix factorization addresses the problem of simultaneously fac-
toring a set of matrices that are related, where the rows or columns of one matrix
index the same type as the row or column of another matrix. An example of such
data is joint document-citation models where one matrix consists of the word
counts in each documents, and another matrix consists of hyperlinks or citations
between documents. The types are documents (E1), words (E2), and cited doc-
uments (E3), which can include documents not in the set E1. The two relations
(matrices) are denoted E1 ∼ E2 and E2 ∼ E3. If a matrix is unrelated to the
others, it can be factored independently, and so we consider the case where the
schema, the links between types {Ei}i, is fully connected. Denote the schema
E = {(i, j) : Ei ∼ Ej ∧ i < j}.

We assume that each matrix in the set {X(ij)}(i,j)∈E is reconstructed under
a weighted generalized Bregman divergence with factors {U (i)}t

i=1 and constant
data weight matrices {W (ij)}(i,j)∈E . Our approach is trivially generalizable to
any twice-differentiable and decomposable loss. The total reconstruction loss on
all the matrices is the weighted sum of the losses for each reconstruction:

Lu =
∑

(i,j)∈E

α(ij)
DF (Θ(ij) || X(ij), W (ij))

where α(ij) ≥ 0. We regularize on a per-factor basis to mitigate overfitting:

L =
∑

(i,j)∈E

α(ij)
DF (Θ(ij) || X(ij), W (ij)) +

t∑

i=1

R(U (i))

Learning consists of finding factors U (i) that minimize L.

5 Parameter Estimation

The parameter space for a collective matrix factorization is large, O(k
∑t

i=1 ni),
and L is non-convex, even in the single matrix case. One typically resorts to
techniques that converge to a local optimum, like conjugate gradient or EM. A
direct Newton step is infeasible due to the number of parameters in the Hessian.
Another approximate approach is alternating projection, or block coordinate
descent: iteratively optimize one factor U (r) at a time, fixing all the other factors.
Decomposability of the loss implies that the Hessian is block diagonal, which
allows a Newton coordinate update on U (r) to be reduced to a sequence of
independent update over the rows U

(r)
i· .

Ignoring terms that are constant with respect to the factors, the gradient of
the objective with respect to one factor, ∇rL = ∂L

∂U(r) , is

∇rL =
∑

(r,s)∈E

α(rs)
(
W (rs) �

(
f (rs)

(
Θ(rs)

)
− X(rs)

))
U (s) + ∇R(U (r)). (1)

The gradient of a collective matrix factorization is the weighted sum of the
gradients for each individual matrix reconstruction. If all the per-matrix losses,
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as well as the regularizers R(·), are decomposable, then the Hessian of L with
respect to U (r) is block-diagonal, with each block corresponding to a row of
U (r). For a single matrix the result is proven by noting that a decomposable
loss implies that the estimate of Xi· is determined entirely by Ui· and V . If V is
fixed then the Hessian is block diagonal. An analogous argument applies when
U is fixed and V is optimized. For a set of related matrices the result follows
immediately by noting that Equation 1 is a linear function (sum) of per-matrix
losses and the differential is a linear operator. Differentiating the gradient of the
loss with respect to U

(r)
i· ,

∇r,iL =
∑

(r,s)∈E

α(rs)
(
W

(rs)
i· �

(
f (rs)

(
Θ

(rs)
i·

)
− X(rs)

))
U (s) + ∇R(U (r)

i· ),

yields the Hessian for the row:

∇2
r,iL =

∑

(r,s)∈E

α(rs)
(
U (s)

)T

diag
(
W

(rs)
i· � f (rs)

(
Θ

(rs)
i·

))
U (s) + ∇2R(U (r)

i· ).

Newton’s rule yields the step direction ∇r,iL · [∇2
r,iL]−1. We suggest using the

Armijo criterion [32] to set the step length. While each projection can be com-
puted fully, we found it suffices to take a single Newton step. For the single
matrix case, with no constraints, weights, or bias terms, this approach is known
as G2L2M [8]. The Hessian is a k × k matrix, regardless of how large the data
matrix is. The cost of a gradient update for U

(r)
i· is O(k

∑
j:Ei∼Ej

nj). The cost
of Newton update for the same row is O(k3 + k2 ∑

j:Ei∼Ej
nj). If the matrix is

sparse, nj can be replaced with the number of entries with non-zero weight. The
incremental cost of a Newton update over the gradient is essentially only a factor
of k more expensive when k � min(n1, . . . , nt).

If Ej participates in more than one relationship, we allow our model to use
only a subset of the columns of U (j) for each relationship. This flexibility allows
us to have more than one relation between Ei and Ej without forcing ourselves
to predict the same value for each one. In an implementation, we would store
a list of participating column indices from each factor for each relation; but for
simplicity, we ignore this possibility in our notation.

The advantages to our alternating-Newton approach include:

– Memory Usage: A solver that optimizes over all the factors simultaneously
needs to compute residual errors to compute the gradient. Even if the data is
sparse, the residuals rarely are. In contrast, our approach requires only that
we store one row or column of a matrix in memory, plus O(k2) memory to
perform the update. This make out-of-core factorizations, where the matrix
cannot be stored in RAM, relatively easy.

– Flexibility of Representation: Alternating projections works for any link
and loss, and can be applied to any of the models in Table 13. In the fol-
lowing sections, we show that the alternating Newton step can also be used

3 For integrally constrained factors, like V in k-means, the Newton projection, a con-
tinuous optimization, is replaced by an integer optimization, such as hard clustering.
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with stochastic constraints, allowing one to handle matrix co-clustering al-
gorithms. Additionally, the form of the gradient and Hessian make it easy to
replace the per-matrix prediction link with different links for each element
of a matrix.

5.1 Relationship to Linear Models

Single-matrix factorization X ≈ f(UV T ) is a bilinear form, i.e., linear when
one of the factors is fixed. An appealing property of alternating projection for
collective matrix factorization is that the projection reduces an optimization
over matrices U (r) into an optimization over data vectors U

(r)
i· —essentially linear

models where the “features” are defined by the fixed factors. Since the projection
is a linear form, we can exploit many techniques from regression and clustering
for iid data. Below, we use this relationship to adapt optimization techniques for
�1-regularized regression to matrix factorization.

5.2 Weights

Weight Wij = 0 implies that the corresponding entry in the data matrix has no
influence on the reconstruction, which allows us to handle missing values. More-
over, weights can be used to scale terms so that the loss of each matrix reconstruc-
tion in L is a per-element loss, which prevents larger data matrices from exerting
disproportionate influence. If the Bregman divergences correspond to exponen-
tial families, then we can use log-likelihood as a common scale. Even when the
divergences are not regular, computing the average value of DF (ij)/DF (rs) , given
uniform random natural parameters, provides an adequate estimate of the rela-
tive scale of the two divergences, which can be accounted for in the weights.

5.3 Regularization

The most common regularizers used in matrix factorization are �p regulariz-
ers: R(U) ∝ λ

∑
ij |uij |p, where λ controls the strength of the regularizer, are

decomposable. In our experiments we use �2-regularization:

R(U) = λ||U ||2Fro/2, ∇R(Ui·) = Ui·/λ, ∇2R(Ui·) = diag(λ−11).

The �1-regularization constraint can be reduced to an inequality constraint on
each row of the factors: |U (r)

i· | ≤ t/λ, ∃t > 0. One can exploit a variety of
approaches for �1-regularized regression (see [33] for survey) in the projection
step. For example, using the sequential quadratic programming approach (ibid),
the step direction d is found by solving the following quadratic program: Let
x = U

(r)
i· , x+ = max(0, x), x− = − min(0, x), so x = x+ − x−:

min
d

(∇r,iLu + λ1) ◦ d +
1
2
dT · ∇2

r,iLu · d

s.t. ∀i x+
i + d+

i ≥ 0

∀i x−
i + d−i ≥ 0
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5.4 Clustering and Other Equality Constraints

Inequality constraints turn the projection into a constrained optimization; but
equality constraints can be incorporated into an unconstrained optimization,
such as our Newton projection. Equality constraints can be used to place ma-
trix co-clustering into our framework. With no constraints on the factors, each
matrix factorization can be viewed as dimensionality reduction or factor anal-
ysis: an increase in the influence of one latent variable does not require a de-
crease in the influence of other latents. In clustering the stochastic constraint,
∀i

∑
j U

(r)
ij = 1, U

(r)
ij ≥ 0, implies that entities of Ei must belong to one of

k latent clusters, and that U
(r)
i· is a distribution over cluster membership. In

matrix co-clustering stochastic constraints are placed on both factors. Since the
Newton step is based on a quadratic approximation to the objective, a null space
argument ([34] Chap. 10) can be used to show that with a stochastic constraint
the step direction d for row U

(r)
i· is the solution to

[
∇2

r,iL 1
1T 0

] [
d
ν

]

=
[ −∇r,iL
1 − 1T U

(r)
i·

]

(2)

where ν is the Lagrange multiplier for the stochastic constraint. The above tech-
nique is easily generalized to p > 1 linear constraints, yielding a k + p Hessian.

5.5 Bias Terms

Under our assumption of decomposable L we have that X
(rs)
ij ≈ f(Θ(rs)

ij ), but
matrix exchangeability suggests there may be an advantage to modeling per-row
and per-column behaviour. For example, in collaborative filtering, bias terms
can calibrate for a user’s mean rating. A straightforward way to account for
bias is to append an extra column of parameters to U paired with a constant
column in V : Ũ = [U uk+1] and Ṽ = [V 1]. We do not regularize the bias. It
is equally straightforward to allow for bias terms on both rows and columns:
Ũ = [U uk+1 1] and Ṽ = [V 1 vk+1], and so Ũ Ṽ T = (UV T ) + uk+11T + 1vT

k+1.
Note that these are biases in the space of natural parameters, a special case
being a margin in the hinge or logistic loss—e.g., the per-row (per-user, per-
rating) margins in MMMF are just row biases. The above biases maintain the
decomposability of L, but there are cases where this is not true. For example, a
version of MMMF that shares the same bias for all users for a given rating—all
the elements in uk+1 must share the same value.

5.6 Stochastic Newton

The cost of a full Hessian update for U
(r)
i· is essentially k times more expensive

than the gradient update, which is independent of the size of the data. However,
the cost of computing the gradient depends linearly on the number of observa-
tions in any row or column whose reconstruction depends on U

(r)
i· . If the data

matrices are dense, the computational concern is the cost of the gradient. We
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refer readers to a parallel contribution [3], which describes a provably convergent
stochastic approximation to the Newton step.

6 Related Work

The three-factor schema E1 ∼ E2 ∼ E3 includes supervised and semi-supervised
matrix factorization, where X(12) contains one or more types of labellings of
the rows of X(23). An example of supervised matrix factorization is SVDM [35],
where X(23) is factored under squared loss and X(12) is factored under hinge
loss. A similar model was proposed by Zhu et al. [36], using a smooth variant of
the hinge loss. Supervised matrix factorization has been recently generalized to
regular Bregman divergences [4]. Another example is supervised LSI [37], which
factors both the data and label matrices under squared loss, with an orthog-
onality constraint on the shared factors. Principal components analysis, which
factors a doubly centered matrix under squared loss, has also been extended
to the three-factor schema [38]. An extension of pLSI to two related matrices,
pLSI-pHITS, consists of two pLSI models that share latent variables [39].

While our choice of a bilinear form UV T is common, it is not the only op-
tion. Matrix co-clustering often uses a trilinear form X ≈ C1ACT

2 where C1 ∈
{0, 1}n1×k and C2 ∈ {0, 1}n2×k are cluster indicator matrices, and A ∈ R

k×k con-
tains the predicted output for each combination of clusters. This trilinear form is
used in k-partite clustering [40], an alternative to collective matrix factorization
which assumes that rows and columns are hard-clustered under a Bregman di-
vergence, minimized under alternating projections. The projection step requires
solving a clustering problem, for example, using k-means. Under squared loss, the
trilinear form can also be approximately minimized using a spectral clustering
relaxation [41]. Or, for general Bregman divergences, the trilinear form can be
minimized by alternating projections with iterative majorization for the projec-
tion [42]. A similar formulation in terms of log-likelihoods uses EM [43]. Banerjee
et al. propose a model for Bregman clustering in matrices and tensors [12,44],
which is based on Bregman information instead of divergence. While the above
approaches generalize matrix co-clustering to the collective case, they make a
clustering assumption. We show that both dimensionality reduction and clus-
tering can be placed into the same framework. Additionally, we show that the
difference in optimizing a dimensionality reduction and soft co-clustering model
is small, an equality constraint in the Newton projection.

7 Experiments

We have argued that our alternating Newton-projection algorithm is a viable ap-
proach for training a wide variety of matrix factorization models. Two questions
naturally arise: is it worthwhile to compute and invert the Hessian, or is gradient
descent sufficient for projection? And, how does alternating Newton-projection
compare to techniques currently used for specific factorization models?
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While the Newton step is more expensive than the gradient step, our exper-
iments indicate that it is definitely beneficial. To illustrate the point, we use
an example of a three-factor model: X(12) corresponds to a user-movie matrix
containing ratings, on a scale of 1–5 stars, from the Netflix competition [45].
There are n1 = 500 users and n2 = 3000 movies. Zeros in the ratings matrix
correspond to unobserved entries, and are assigned zero weight. X(23) contains
movie-genre information from IMDB [46], with n3 = 22 genres. We reconstruct
X(12) under I-divergence, and use its matching link—i.e., X

(12)
ij is Poisson dis-

tributed. We reconstruct X(23) under log-loss, and use its matching link—i.e.,
X

(23)
js is Bernoulli, a logistic model. From the same starting point, we measure

the training loss of alternating projections using either a Newton step or a gra-
dient step for each projection. The results in Fig. 2 are averaged over five trials,
and clearly favour the Newton step.

The optimization over L is a non-convex problem, and the inherent complex-
ity of the objective can vary dramatically from problem to problem. In some
problems, our alternating Newton-projection approach appears to perform bet-
ter than standard alternatives; however, we have found other problems where
existing algorithms typically lead to better scores.

Logistic PCA is an example of where alternating projections can outperform
an EM algorithm specifically designed for this model [29]. We use a binarized ver-
sion of the rating matrix described above, whose entries indicate whether a user
rated a movie. For the same settings, k = 25 and no regularization, we compare
the test set error of the model learned using EM4 vs. the same model learned
using alternating projections.5 Each method is run to convergence, a change of
less than one percent in the objective between iterations, and the experiment is
repeated ten times. The test error metric is balanced error rate, the average of
the error rates on held-out positive and negative entries, so lower is better. Using
the EM optimizer, the test error is 0.1813±0.020; using alternating projections,
the test error is 0.1253 ± 0.0061 (errors bars are 1-standard deviation).

Logistic Fast-MMMF is a variant of Fast-MMMF which uses log-loss and
its matching link instead of smoothed Hinge loss, following [47]. Alternating
Newton-projection does not outperform the recommended optimizer, conjugate
gradients6. To compare the behaviour on multiple trials run to convergence, we
use a small sample of the Netflix ratings data (250 users and 700 movies). Our
evaluation metric is prediction accuracy on the held-out ratings under mean
absolute error. On five repetitions with a rank k = 20 factorization, moderate
�2-regularization (λ = 105), and for the Newton step the Armijo procedure
described above, the conjugate gradient solver yielded a model with zero error;
the alternating-Newton method converged to models with test error > 0.015.

The performance of alternating Newton-projections suffers when k is large. On
a larger Netflix instance (30000 users, 2000 movies, 1.1M ratings) an iteration

4 We use Schein et al.’s implementation of EM for Logistic PCA.
5 We use an Armijo line search in the Newton projection, considering step lengths as

small as η = 2−4.
6 We use Rennie et al.’s conjugate gradient code for Logistic Fast-MMMF.
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Fig. 2. Gradient vs. Newton steps in alternating projection

of our approach takes almost 40 minutes when k = 100; an iteration of the
conjugate gradient implementation takes 80–120 seconds.

8 Conclusion

The vast majority of matrix factorization algorithms differ only in a small num-
ber of modeling choices: the prediction link, loss, constraints, data weights, and
regularization. We have shown that a wide variety of popular matrix factor-
ization approaches, such as weighted SVD, NMF, and MMMF, and pLSI can
be distinguished by these modeling choices. We note that this unified view sub-
sumes both dimensionality reduction and clustering in matrices using the bilinear
model X ≈ f(UV T ), and that there is no conceptual difference between single-
and multiple-matrix factorizations.

Exploiting a common property in matrix factorizations, decomposability of
the loss, we extended a well-understood alternating projection algorithm to han-
dle weights, bias/margin terms, �1-regularization, and clustering constraints. In
each projection, we recommended using Newton’s method: while the Hessian
is large, it is also block diagonal, which allows the update for a factor to be
performed independently on each of its rows. We tested the relative merits of
alternating Newton-projections against plain gradient descent, an existing EM
approach for logistic PCA, and a conjugate gradient solver for MMMF.
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LNCS (LNAI), vol. 4701, pp. 286–297. Springer, Heidelberg (2007)

34. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

35. Pereira, F., Gordon, G.: The support vector decomposition machine. In: ICML,
pp. 689–696. ACM Press, New York (2006)

36. Zhu, S., Yu, K., Chi, Y., Gong, Y.: Combining content and link for classification
using matrix factorization. In: SIGIR, pp. 487–494. ACM Press, New York (2007)

37. Yu, K., Yu, S., Tresp, V.: Multi-label informed latent semantic indexing. In: SIGIR,
pp. 258–265. ACM Press, New York (2005)

38. Yu, S., Yu, K., Tresp, V., Kriegel, H.P., Wu, M.: Supervised probabilistic principal
component analysis. In: KDD, pp. 464–473 (2006)

39. Cohn, D., Hofmann, T.: The missing link–a probabilistic model of document con-
tent and hypertext connectivity. In: NIPS (2000)

40. Long, B., Wu, X., Zhang, Z.M., Yu, P.S.: Unsupervised learning on k-partite graphs.
In: KDD, pp. 317–326. ACM Press, New York (2006)
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Abstract. Spectral clustering algorithm has been shown to be more
effective in finding clusters than most traditional algorithms. However,
spectral clustering suffers from a scalability problem in both memory use
and computational time when a dataset size is large. To perform clus-
tering on large datasets, we propose to parallelize both memory use and
computation on distributed computers. Through an empirical study on
a large document dataset of 193, 844 data instances and a large photo
dataset of 637, 137, we demonstrate that our parallel algorithm can ef-
fectively alleviate the scalability problem.

Keywords: Parallel spectral clustering, distributed computing.

1 Introduction

Clustering is one of the most important subroutine in tasks of machine learning
and data mining. Recently, spectral clustering methods, which exploit pairwise
similarity of data instances, have been shown to be more effective than tradi-
tional methods such as k-means, which considers only the similarity to k centers.
(We denote k as the number of desired clusters.) Because of its effectiveness in
finding clusters, spectral clustering has been widely used in several areas such as
information retrieval and computer vision. Unfortunately, when the number of
data instances (denoted as n) is large, spectral clustering encounters a quadratic
resource bottleneck in computing pairwise similarity between n data instances
and storing that large matrix. Moreover, the algorithm requires considerable
computational time to find the smallest k eigenvalues of a Laplacian matrix.

Several efforts have attempted to address aforementioned issues. Fowlkes et
al. propose using the Nyström approximation to avoid calculating the whole
similarity matrix [8]. That is, they trade accurate similarity values for shortened
computational time. Dhillon et al. [4] assume the availability of the similarity
matrix and propose a method that does not use eigenvectors. Although these
methods can reduce computational time, they trade clustering accuracy for com-
putational speed gain, or they do not address the bottleneck of memory use. In

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 374–389, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Table 1. Notations. The following notations are used in the paper.

n number of data
d dimensionality of data
k number of desired clusters
p number of nodes (distributed computers)
t number of nearest neighbors
m Arnoldi length in using an eigensolver
x1, . . . , xn ∈ Rd data points
S ∈ Rn×n similarity matrix
L ∈ Rn×n Laplician matrix
v1, . . . , vk ∈ Rn first k eigenvectors of L

V ∈ Rn×k eigenvector matrix
e1, . . . , ek ∈ Rn cluster indicator vectors
E ∈ Rn×k cluster indicator matrix
c1, . . . , ck ∈ Rn cluster centers of k-means

this paper, we parallelize spectral clustering on distributed computers to address
resource bottlenecks of both memory use and computation time. Parallelizing
spectral clustering is much more challenging than parallelizing k-means, which
was performed by e.g., [2,5,25].

Our parallelization approach first distributes n data instances onto p dis-
tributed machine nodes. On each node, we then compute the similarities be-
tween local data and the whole set in a way that uses minimal disk I/O. These
two steps, together with parallel eigensolver and distributed tuning of parame-
ters (including σ of the Gaussian function and the initial k centers of k-means),
speed up clustering time substantially. Our empirical study validates that our
parallel spectral clustering outperforms k-means in finding quality clusters and
that it scales well with large datasets.

The remainder of this paper is organized as follows: In Section 2, we present
spectral clustering and analyze its memory and computation bottlenecks. In
Section 3, we show some obstacles for parallelization and propose our solutions
to work around the challenges. Experimental results in Section 4 show that
our parallel spectral clustering algorithm achieves substantial speedup on 128
machines. The resulting cluster quality is better than that of k-means. Section 5
offers our concluding remarks.

2 Spectral Clustering

We present the spectral clustering algorithm in this section so as to understand
the bottlenecks of its resources. To assist readers, Table 1 defines terms and
notations used throughout this paper.

2.1 Basic Concepts

Given n data points x1, . . . , xn, the spectral clustering algorithm constructs a
similarity matrix S ∈ Rn×n, where Sij ≥ 0 reflects the relationships between xi
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and xj . It then uses the similarity information to group x1, . . . , xn into k clusters.
There are many variants of spectral clustering. Here we consider a commonly
used normalized spectral clustering [19]. (For a complete account of all variants,
please see [17].) An example similarity function is the Gaussian:

Sij = exp
(

−‖xi − xj‖2

2σ2

)
. (1)

In our implementation, we use an adaptive approach to decide the parameter
σ2 (details are presented in Section 3.4). For conserving computational time,
one often reduces the matrix S to a sparse one by considering only significant
relationship between data instances. For example, we may retain Sij satisfying
that j (or i) is among the t-nearest neighbors of i (or j). Typically t is a small
number (e.g., t a small fraction of n or t = log n)1.

Consider the normalized Laplacian matrix [3]:

L = I − D−1/2SD−1/2, (2)

where D is a diagonal matrix with

Dii =
n∑

j=1

Sij .

In the ideal case, where data in one cluster are not related to those in others,
non-zero elements of S (and hence L) only occur in a block diagonal form:

L =

⎡
⎢⎣

L1
. . .

Lk

⎤
⎥⎦ .

It is known that L has k zero eigenvalues, which are also the k smallest ones [17,
Proposition 4]. Their corresponding eigenvectors, written as an Rn×k matrix,
are

V = [v1, v2, . . . , vk] = D1/2E, (3)

where vi ∈ Rn×1, i = 1, . . . , k.

E =

⎡
⎢⎣
e1

. . .
ek

⎤
⎥⎦ , (4)

where ei, i = 1, . . . , k (in different length) are vectors of all ones. As D1/2E has
the same structure as E, simple clustering algorithms such as k-means can easily
1 Another simple strategy for making S a sparse matrix is to zero out those Sij

larger than a pre-specified threshold. Since the focus of this paper is on speeding up
spectral clustering, we do not compare different methods to make a matrix sparse.
Nevertheless, our empirical study shows that the t-nearest-neighbor approach yields
good results.
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Algorithm 1. Spectral Clustering
Input: Data points x1, . . . , xn; k: number of clusters to construct.

1. Construct similarity matrix S ∈ Rn×n.
2. Modify S to be a sparse matrix.
3. Compute the Laplacian matrix L by Eq. (2).
4. Compute the first k eigenvectors of L; and construct V ∈ Rn×k, which columns

are the k eigenvectors.
5. Compute the normalized matrix U of V by Eq. (5).
6. Use k-means algorithm to cluster n rows of U into k groups.

cluster the n rows of V into k groups. Thus, what one needs is to find the first k
eigenvectors of L (i.e., eigenvectors corresponding to the k smallest eigenvalues).
However, practically eigenvectors we obtained are in the form of

V = D1/2EQ,

where Q is an orthogonal matrix. Ng et al. [19] propose normalizing V so that

Uij =
Vij√∑k
r=1 V 2

ir

, i = 1, . . . , n, j = 1, . . . , k. (5)

The row sum of U is one. Due to the orthogonality of Q, (5) is equivalent to

U = EQ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Q1,1:k
...

Q1,1:k
Q2,1:k

...

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6)

where Qi,1:k indicates the ith row of Q. Then U ’s n rows correspond to k or-
thogonal points on the unit sphere. The n rows of U can thus be easily clustered
by k-means or other simple clustering algorithms. A summary of the method is
presented in Algorithm 1.

Instead of analyzing properties of the Laplacian matrix, spectral clustering
algorithms can be derived from the graph cut point of view. That is, we partition
the matrix according to the relationship between points. Some representative
graph-cut methods are Normalized Cut [20], Min-Max Cut [7] and Radio Cut [9].

2.2 Computational Complexity and Memory Usage

Let us examine computational cost and the memory use of Algorithm 1. We
omit discussing some inexpensive steps.
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Construct the similarity matrix. Assume each Sij involves at least an inner
product between xi and xj . The cost of obtaining an Sij is O(d), where d is the
dimensionality of data. Constructing similarity matrix S requires

O(n2d) time and O(n2) memory. (7)

To make S a sparse matrix, we employ the approach of t-nearest neighbors
and retain only Sij where i (or j) is among the t-nearest neighbors of j (or i).
By scanning once of Sij for j = 1, . . . , n and keeping a max heap with size t,
we sequentially insert the similarity that is smaller than the maximal value of
the heap and then restructure the heap. Thus, the complexity for one point xi

is O(n log t) since restructuring a max heap is in the order of log t. The overall
complexity of making the matrix S to sparse is

O(n2 log t) time and O(nt) memory. (8)

Compute the first k eigenvectors. Once that S is sparse, we can use sparse
eigensolvers. In particular, we desire a solver that can quickly obtain the first k
eigenvectors of L. Some example solvers are [11,13] (see [10] for a comprehensive
survey). Most existing approaches are variants of the Lanczos/Arnoldi factor-
ization. We employ a popular eigensolver ARPACK [13] and its parallel version
PARPACK [18]. ARPACK implements an implicitly restarted Arnoldi method.
We briefly describe its basic concepts hereafter; more details can be found in the
user guide of ARPACK. The m-step Arnoldi factorization gives that

LV = V H + (a matrix of small values), (9)

where V ∈ Rn×m and H ∈ Rm×m satisfy certain properties. If the “matrix of
small values” in (9) is indeed zero, then V ’s m columns are L’s first m eigenvec-
tors. Therefore, (9) provides a way to check how good we approximate eigenvec-
tors of L. To perform this check, one needs all eigenvalues of the dense matrix
H , a procedure taking O(m3) operations. For quickly finding the first k eigen-
vectors, ARPACK employs an iterative procedure called “implicitly restarted”
Arnoldi. Users specify an Arnoldi length m > k. Then at each iteration (restarted
Arnoldi) one uses V and H of the previous iteration to conduct the eigendecom-
position of H , and finds a new Arnoldi factorization. Each Arnoldi factorization
involves at most (m − k) steps, where each step’s main computational complex-
ity is O(nm) for a few dense matrix-vector products and O(nt) for a sparse
matrix-vector product. In particular, O(nt) is for

Lv, (10)

where v is an n × 1 vector. As on average the number of nonzeros per row of L
is O(t), the cost of this sparse matrix multiply is O(nt).

Based on the above analysis, the overall cost of ARPACK is
(
O(m3) + (O(nm) + O(nt)) × O(m − k)

)
× (# restarted Arnoldi), (11)
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where O(m − k) is a value no more than m − k. Obviously, the value m selected
by users affects the computational time. One often sets m to be several times
larger than k. The memory requirement of ARPACK is O(nt)+O(nm).

k-means to cluster the normalized matrix U . Algorithm k-means aims at
minimizing the total intra-cluster variance, which is the squared error function
in the spectral space:

J =
k∑

i=1

∑
uj∈Ci

||uj − ci||2. (12)

We assume that data are in k clusters Ci, {i = 1, 2, . . . , k}, and ci ∈ Rk×1 is
the centroid of all the points uj ∈ Ci. Similar to Step 5 in Algorithm 1, we also
normalize centers ci to be of unit length.

The traditional k-means algorithm employs an iterative procedure. At each
iteration, we assign each data point to the cluster of its nearest center, and
recalculate cluster centers. The procedure stops after reaching a stable error
function value. Since the algorithm evaluates the distance between any point
and the current k cluster centers, the time complexity of k-means is

O(nk2) × # k-means iterations. (13)

Overall analysis. The step that consumes the most memory is constructing the
similarity matrix. For instance, n = 600, 000 data instances, assuming double
precision storage, requires 2.8 Tera Bytes of memory, which is not available
on a general-purpose machine. Since we make S sparse, O(nt) memory space
may suffice. However, if n is huge, say in billions, no single general-purpose
machine can handle such a large memory requirement. Moreover, the O(n2d)
computational time in (7) is a bottleneck. This bottleneck has been discussed in
earlier work. For example, the authors of [16] state that “The majority of the
time is actually spent on constructing the pairwise distance and affinity matrices.
Comparatively, the actually clustering is almost negligible.”

3 Parallel Spectral Clustering

Based on the analysis performed in Section 2.2, it is essential to conduct spectral
clustering in a distributed environment to alleviate both memory and computa-
tional bottlenecks. In this section, we discuss these challenges and then propose
our solutions. We implement our system on a distributed environment using
Message Passing Interface (MPI) [22].

3.1 Similarity Matrix and Nearest Neighbors

Suppose p machines (or nodes) are allocated in a distributed environment for our
target clustering task. Figure 1 shows that we first let each node construct n/p
rows of the similarity matrix S. We illustrate our procedure using the first node,
which is responsible for rows 1 to n/p. To obtain the ith row, we use Eq. (1) to
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n

n/p

n/p

n/p

n n

Fig. 1. The similarity matrix is distributedly stored in multiple machines

n/p

d

× d

n/p′ n/p′ n/p′

Fig. 2. Calculating n/p rows of the similarity at a node. We use matrix-matrix products
for inner products between n/p points and all data x1, . . . , xn. As data cannot be loaded
into memory, we separate x1, . . . , xn into p′ blocks.

calculate the similarity between xi and all the data points, respectively. Using
‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2xT

i xj to compute similarity between instances
xi and xj , we can precompute ‖xi‖2 for all instances and cache on all nodes to
conserve time.

Let X = [x1, . . . , xn] ∈ Rd×n and X1:n/p = [x1, . . . , xn/p]. One can perform a
matrix-matrix product to obtain XT

1:n/pX . If the memory of a node cannot store
the entire X , we can split X into p′ blocks as shown in Figure 2. When each of
the p′ blocks is memory resident, we multiply it and XT

1:n/p.
When data are densely stored, even if X can fit into the main memory, split-

ting X into small blocks takes advantage of optimized BLAS (Basic Linear Al-
gebra Subroutines) [1]. BLAS places the inner-loop data instances in CPU cache
and ensures their cache residency. Table 2 compares the computational time with
and without BLAS. It shows that blocking operation can reduce the computa-
tional time significantly.

3.2 Parallel Eigensolver

After we have calculated and stored the similarity matrix, it is important to par-
allelize the eigensolver. Section 3.1 shows that each node now stores n/p rows of
L. For the eigenvector matrix V (see (3)) generated during the call to ARPACK,
we also split it into p partitions, each of which possesses n/p rows. As mentioned
in Section 2.2, major operations at each step of the Arnoldi factorization include
a few dense and a sparse matrix-vector multiplications, which cost O(mn) and
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L × v

Fig. 3. Sparse matrix-vector multiplication. We assume p = 5 here. L and v are re-
spectively separated to five block partitions.

Table 2. Computational time (in seconds) for the similarity matrix (n = 637, 137 and
number of features d = 144)

1 machine without BLAS 1 machine with BLAS 16 machines with BLAS

3.14 × 105 6.40 × 104 4.00 × 103

O(nt), respectively. We parallelize these computations so that the complexity of
finding eigenvectors becomes:

(
O(m3) + (O(

nm

p
) + O(

nt

p
)) × O(m − k)

)
× (# restarted Arnoldi). (14)

Note that communication overhead between nodes occurs in the following three
situations:

1. Sum p values and broadcast the result to p nodes.
2. Parallel sparse matrix-vector product (10).
3. Dense matrix-vector product: Sum p vectors of length m and broadcast the

resulting vector to all p nodes.

The first and the third cases transfer only short vectors, but the sparse ma-
trix vector product may move a larger vector v ∈ Rn to several nodes. We
next discuss how to conduct the parallel sparse matrix-vector product to reduce
communication cost.

Figure 3 shows matrix L and vector v. Suppose p = 5. The figure shows that
both L and v are horizontally split into 5 parts and each part is stored on one
computer node. Take node 1 as an example. It is responsible to perform

L1:n/p,1:n × v, (15)

where v = [v1, . . . , vn]T ∈ Rn. L1:n/p,1:n, the first n/p rows of L, is stored at
node 1, but only v1, . . . , vn/p are available at node 1. Hence other nodes must
send to node 1 the elements vn/p+1, . . . , vn. Similarly, node 1 should dispatch its
v1, . . . , vn/p to other nodes. This task is a gather operation in MPI: data at each
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node are gathered on all nodes. We apply this MPI operation on distributed
computers by following the techniques in MPICH22 [24], a popular implemen-
tation of MPI. The communication cost is O(n), which cannot be reduced as a
node must get n/p elements from the other p − 1 nodes.

Further reducing the communication cost is possible only we reduce n to a
fraction of n by taking the sparsity of L into consideration. The reduction of the
communication cost depends on the sparsity and the structure of the matrix.
We defer this optimization to future investigation.

3.3 Parallel k-Means

After the eigensolver computes the first k eigenvectors of Laplacian, the matrix
V is distributedly stored. Thus the normalized matrix U can be computed in
parallel and stored on p local machines. Each row of the matrix U is regarded
as one data point in the k-means algorithm. To start the k-means procedure,
the master machine chooses a set of initial cluster centers and broadcasts them
to all machines. (See next section for our distributed initialization procedure.)
At each node, new labels of its data are assigned and local sums of clusters are
calculated without any inter-machine communication. The master machine then
obtains the sum of all points in each cluster to calculate new centers. The loss
function (12) can also be computed in parallel in a similar way. Therefore, the
computational time of parallel k-means is reduced to 1/p of that in (13). The
communication cost per iteration is on broadcasting k centers to all machines. If
k is not large, the total communication cost is usually smaller than that involved
in finding the first k eigenvectors.

3.4 Other Implementation Details

We discuss two implementation issues of the parallel spectral clustering algo-
rithm. The first issue is that of assigning parameters in Gaussian function (1),
and the second is initializing the centers for k-means.

Parameters in Gaussian function. We adopt the self-tuning technique [27]
to adaptively assign the parameter σ in (1). The original method used in [27] is

Sij = exp
(

−||xi − xj ||2
2σiσj

)
. (16)

Suppose xi has t nearest neighbors. If we sort these neighbors in ascending
order, σi is defined as the distance between xi and xit , the �t/2�th neighbor of
xi: σi = ||xi −xit ||. Alternatively, we can consider the average distance between
xi and its t nearest neighbors3. In a parallel environment, each local machine first
computes σi’s of its local data points. Then σi’s are gathered on all machines.

Initialization of k-means. Revisit (6). In the ideal case, the centers of data in-
stances calculated based on the matrix U are orthogonal to each other. Thus, an
2 http://www.mcs.anl.gov/research/projects/mpich2
3 In the experiments, we use the average distance as our self-tuning parameters.
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intuitive initialization of centers can be done by selecting a subset of {x1, . . . , xn}
whose elements are almost orthogonal [26]. To begin, we use the master machine
to randomly choose a point as the first cluster center. Then it broadcasts the
center to all machines. Each machine identifies the most orthogonal point to this
center by finding the minimal cosine distance between its points and the center.
By gathering the information of different machines, we choose the most orthog-
onal point to the first center as the second center. This procedure is repeated
to obtain k centers. The communication involved in the initialization includes
broadcasting k cluster centers and gathering k × p minimal cosine distances.

4 Experiments

We designed our experiments to validate the quality of parallel spectral clus-
tering and its scalability. Our experiments used two large datasets: 1) RCV1
(Reuters Corpus Volume I), a filtered collection of 193, 844 documents, and 2)
637, 137 photos collected from PicasaWeb, a Google photo sharing product. We
ran experiments on up to 256 machines at our distributed data centers. While not
all machines are identical, each machine was configured with a CPU faster than
2GHz and memory larger than 4GBytes. All reported results are the average of
nine runs.

4.1 Clustering Quality

To check the performance of spectral clustering algorithm, we compare it with
traditional k-means. We looked for a dataset with ground truth. RCV1 is an
archive of 804, 414 manually categorized newswire stories from Reuters Ltd [14].
The news documents are categorized with respect to three controlled vocabular-
ies: industries, topics and regions. Data were split into 23, 149 training documents
and 781, 256 test documents. In this experiment, we used the test set and cate-
gory codes based on the industries vocabulary. There are originally 350 categories
in the test set. For comparing clustering results, data which are multi-labeled
were not considered, and categories which contain less than 500 documents were
removed. We obtained 193, 844 documents and 103 categories. Each document
is represented by a cosine normalization of a log transformed TF-IDF (term
frequency, inverse document frequency) feature vector.

For both spectral and k-means, we set the number of clusters to be 103, and
Arnoldi space dimension m to be two times the number of clusters. We used the
document categories in the RCV1 dataset as the ground truth for evaluating clus-
ter quality. We measured quality via using the Normalized Mutual Information
(NMI) between the produced clusters and the ground-truth categories.

NMI between two random variables CAT (category label) and CLS (cluster
label) is defined as NMI(CAT; CLS) = I(CAT; CLS)√

H(CAT)H(CLS)
, where I(CAT; CLS) is

the mutual information between CAT and CLS. The entropies H(CAT) and
H(CLS) are used for normalizing the mutual information to be in the range of
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Table 3. NMI comparisons for k-means, spectral clustering with 100 nearest neighbors

Algorithms E-k-means S-k-means Spectral Clustering

NMI 0.2586(±0.0086) 0.2702(±0.0059) 0.2875(±0.0011)

[0, 1]. In practice, we made use of the following formulation to estimate the NMI
score [23]:

NMI =

∑k
i=1

∑k
j=1 ni,j log

(
n·ni,j

ni·nj

)
√(∑

i ni log ni

n

) (∑
j nj log nj

n

) , (17)

where n is the number of documents, ni and nj denote the number of docu-
ments in category i and cluster j, respectively, and ni,j denotes the number
of documents in category i as well as in cluster j. The NMI score is 1 if the
clustering results perfectly match the category labels, and the score is 0 if data
are randomly partitioned. The higher this NMI score, the better the clustering
quality.

We compared k-means algorithm based on Euclidean distance (E-k-means),
spherical k-means based on cosine distance (S-k-means) [6], and our parallel
spectral clustering algorithm using 100 nearest neighbors. Table 3 reports that
parallel spectral clustering algorithm outperforms E-k-means and S-k-means.
This result confirms parallel spectral clustering to be effective in finding clusters.

4.2 Scalability: Runtime Speedup

We used both the RCV1 dataset and a PicasaWeb dataset to conduct a scala-
bility experiment. The RCV1 can fit into main memory of one machine, whereas
the PicasaWeb dataset cannot. PicasaWeb is an online platform for users to up-
load, share and manage images. The PicasaWeb dataset we collected consists of
637, 137 images accompanied with 110, 342 tags.

For each image, we extracted 144 features including color, texture, and shape
as its representation [15]. In the color channel, we divided color into 12 color bins
including 11 bins for culture colors and one bin for outliers [12]. For each color
bin, we recorded nine features to capture color information at finer resolution.
The nine features are color histogram, color means (in H, S, and V channels),
color variances (in H, S, and V channels), and two shape characteristics: elonga-
tion and spreadness. Color elongation defines the shape of color, and spreadness
defines how the color scatters within the image. In the texture channel, we em-
ployed a discrete wavelet transformation (DWT) using quadrature mirror filters
[21] due to its computational efficiency. Each DWT on a image yielded four
subimages including scale-down image and its wavelets in three orientations. We
then obtained nine texture combinations from subimages of three scales (coarse,
medium, fine) and three orientations (horizontal, vertical, diagonal). For each
texture, we recorded four features: energy mean, energy variance, texture elon-
gation and texture spreadness.
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Table 4. RCV1 data set. Runtime comparisons for different number of machines.
n=193,844, k=103, m=206.

Eigensolver k-means
Machines Time (sec.) Speedup Time (sec.) Speedup

1 9.90 × 102 1.00 4.96 × 101 1.00
2 4.92 × 102 2.01 2.64 × 101 1.88
4 2.83 × 102 3.50 1.53 × 101 3.24
8 1.89 × 102 5.24 1.10 × 101 4.51
16 1.47 × 102 6.73 9.90 × 100 5.01
32 1.29 × 102 7.67 1.05 × 101 4.72
64 1.30 × 102 7.62 1.34 × 101 3.70

We first report the speedup on the RCV1 dataset in Table 4. As discussed
in Section 3.1, the computation of similarity matrix can achieve linear speedup.
In this experiment, we focus on the time of finding the first k eigenvectors and
conducting k-means. Here the k-means is referred to Step 6 in Algorithm 1.
It is important to notice that we could not ensure the quiesce of the allocated
machines at Google’s distributed data centers. There were almost always other
jobs running simultaneously with ours on each machine. Therefore, the runtime
is partially dependent on the slowest machine being allocated for the task. (We
consider an empirical setting like this to be reasonable, since no modern machine
is designed or expected to be single task.) When 32 machines were used, the par-
allel version of eigensolver achieved 7.67 times speedup. When more machines
were used, the speedup actually decreased. Similarly, we can see that paralleliza-
tion sped up k-means more than five times when 16 machines were used. The
speedup is encouraging. For a not-so-large dataset like RCV1, the Amdahl’s law
kicks in around p = 16. Since the similarity matrix in this case is not huge, the
communication cost dominates computation time, and hence further increasing
machines does not help. (We will see next that the larger a dataset, the higher
speedup our parallel implementation can achieve.)

Next, we looked into the speedup on the PicasaWeb dataset. We grouped
the data into 1, 000 clusters, where the corresponding Arnoldi space is set to be
2, 000. Note that storing the eigenvectors in Arnoldi space with 2, 000 dimensions
requires 10GB of memory. This memory configuration is not available on off-
the-shelf machines. We had to use at least two machines to perform clustering.
We thus used two machines as the baseline and assumed the speedup of two
machines is 2. This assumption is reasonable since we will see shortly that our
parallelization can achieve linear speedup on up to 32 machines.

Table 5 reports the speedups of eigensovler and k-means. We can see in the
table that both eigensolver and k-means enjoy near-linear speedups when the
number of machine is up to 32. For more than 32 machines, the speedups of
k-means are better than that of eigensolver. However both speedups became
sublinear as the synchronization and communication overheads started to slow
down the speedups. The “saturation” point on the PicasaWeb dataset is p = 128
machines. Using more than 128 machines is counter-productive to both steps.
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Table 5. Picasa data set. Runtime comparisons for different numbers of machines.
n=637,137, k=1,000, m=2,000.

Eigensolver k-means
Machines Time (sec.) Speedup Time (sec.) Speedup

1 − − − −
2 8.074 × 104 2.00 3.609 × 104 2.00
4 4.427 × 104 3.65 1.806 × 104 4.00
8 2.184 × 104 7.39 8.469 × 103 8.52
16 9.867 × 103 16.37 4.620 × 103 15.62
32 4.886 × 103 33.05 2.021 × 103 35.72
64 4.067 × 103 39.71 1.433 × 103 50.37
128 3.471 × 103 46.52 1.090 × 103 66.22
256 4.021 × 103 40.16 1.077 × 103 67.02

(a) Sample images of k-means.

(b) Sample images of spectral clustering.

Fig. 4. Clustering results of k-means and spectral clustering

From the experiments with RCV1 and PicasaWeb, we can observe that the
larger a dataset, the more machines can be employed to achieve higher speedup.
Since several computation intensive steps grow faster than the communication
cost, the larger the dataset is, the more opportunity is available for parallelization
to gain speedup.

Figure 4 shows sample clusters generated by k-means and spectral clustering.
The top two rows are clusters generated by k-means, the bottom two rows are
by spectral clustering. First, spectral clustering finds lions and leopards more
effectively. Second, in the flower cluster, spectral clustering can find flowers of
different colors, whereas k-means is less effective in doing that. Figure 5 provides
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(a) Sample images of k-means clustering.

(b) Sample images of spectral clustering with tag weighting factor α = 0.0.

(c) Sample images of spectral clustering with tag weighting factor α = 0.5.

(d) Sample images of spectral clustering with tag weighting factor α = 1.0.

Fig. 5. Clustering results of k-means and spectral clustering. The cluster topic is “base-
ball game.”

a visual comparison of the clustering results produced by four different cluster-
ing schemes (of ours). On the top is our parallel k-means. Rows 2 to 4 display
results of using parallel spectral clustering with different tag weighting settings
(α). In addition to perceptual features, tags are useful for image searching and
clustering. We use the tag weighting factor α to incorporate tag overlapping
information in constructing the similarity matrix. The more tags are overlapped
between images, the larger the similarity between the images. When the tag
weighting factor is set to zero, spectral clustering considers only the 144 percep-
tual features depicted in the beginning of this section. When tag information is
incorporated, we can see that the clustering performance improves. Though we
cannot use one example in Figure 5 to prove that the spectral clustering algo-
rithm is always superior to k-means, thanks to the kernel, spectral clustering
seems to be more effective in identifying clusters of non-linear boundaries (such
as photo clusters).

5 Conclusions

In this paper, we have shown our parallel implementation of the spectral cluster-
ing algorithm to be both correct and scalable. No parallel algorithm can escape
from the Amdahl’s law, but we showed that the larger a dataset, the more ma-
chines can be employed to use parallel spectral clustering algorithm to enjoy
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fast and high-quality clustering performance. We plan to enhance our work to
address a couple of research issues.
Nyström method. Though the Nyström method [8] enjoys a better speed and
effectively handles the memory difficulty, our preliminary result shows that its
performance is slightly worse than our method here. Due to space limitations,
we will detail further results in future work.
Very large number of clusters. A large k implies a large m in the process
of Arnoldi factorization. Then O(m3) for finding the eigenvalues of the dense
matrix H becomes the dominant term in (11). How to efficiently handle the case
of large k is thus an interesting issue.

In summary, this paper gives a general and systematic study on parallel spec-
tral clustering. We successfully built a system to efficiently cluster large image
data on a distributed computing environment.
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Abstract. Multi-label classification assigns a data item to one or sev-
eral classes. This problem of multiple labels arises in fields like acous-
tic and visual scene analysis, news reports and medical diagnosis. In a
generative framework, data with multiple labels can be interpreted as
additive mixtures of emissions of the individual sources. We propose a
deconvolution approach to estimate the individual contributions of each
source to a given data item. Similarly, the distributions of multi-label
data are computed based on the source distributions. In experiments
with synthetic data, the novel approach is compared to existing models
and yields more accurate parameter estimates, higher classification ac-
curacy and ameliorated generalization to previously unseen label sets.
These improvements are most pronounced on small training data sets.
Also on real world acoustic data, the algorithm outperforms other gen-
erative models, in particular on small training data sets.

1 Introduction

Data classification, the problem of assigning each data point to a set of categories
or classes, is the presumably best studied but still challenging machine learning
problem. Dichotomies or binary classifications distinguish between two classes,
whereas multi-class classification denotes the case of several class choices.

Multi-label classification characterizes pattern recognition settings where each
data point may belong to more than one category. Typical situations where multi-
labeled data are encountered are classification of acoustic and visual scenes, text
categorization and medical diagnosis. Examples are the well-known Cocktail-
Party problem [1], where several signals are mixed together and the objective is
to detect the original signal, or a news report about Sir Edmund Hillary, which
would probably belong to the categories Sports as well as to New Zealand. The
label set for such an article would thus be {Sports, NewZealand}.

In this paper, we restrict ourselves to generative models, where each data
item is assumed to be generated by one (in the single-label case) or several (in
the multilabel case) sources. In a probabilistic setting, the goal is to determine
which set of sources is most likely to have produced the given data.

Despite its significance for a large number of application areas, multi-label
classification has received comparatively little attention. All current approaches
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we are aware of reduce the problem to a single-label classification task. The trivial
approach for this conceptual simplification either ignores data with multiple
labels or considers those items with multiple labels as a new class [2]. Such
a modeling strategy generates models which we will denote by MNew. More
advanced approaches decompose the task into a series of independent binary
classification problems, deciding for each of the K classes whether the data at
hand belongs to it, and then combine the K classifier outputs to a solution of
the original problem. We review these approaches in Sect. 2.

All approaches have significant drawbacks. The trivial approach mainly suffers
from data sparsity, as the number of possible label sets is in O(Kdmax), where
dmax is the maximal size of the sets. Even for moderate K or dmax, this is
typically intractable. Furthermore, these methods can only assign label sets that
already were present in the training data.

The main criticism on the reduction of the multi-label task to a series of binary
decision tasks is the confusion between frequent co-occurrence and similar source
statistics – in all approaches we are aware of, the more often two sources occur
together, the more similar their statistics will be. In this way, these methods
neglect the information which multi-labeled data contains about all classes in
its label set, which deteriorates the source estimates and leads to poor recall
rates. Dependencies between multi-labels are considered in [3], but the approach
remains limited to the correlation of sources in the label sets.

In this paper, we propose a novel approach for multi-labeled data, which is
inspired by the fundamental physical principle of superposition. We assume a
source for each class and consider data with multiple labels as an additive mix-
ture of independent samples of the respective classes. A deconvolution enables us
to estimate the contributions of each source to the observed data point and thus
to use multi-labeled data for inference of the class distributions. Similarly, the
distributions of multi-label data are computed based on the source distributions.
Doing so, this approach allows us to consistently model jointly occurring single-
and multi-label data with a small amount of parameters. Such a deconvolutive
learning technique is only possible for generative models. We therefore exclude
purely discriminative classifiers from the further analysis.

In the following, we assume that data is generated by a set S of K sources.
For convenience, we assume S = {1, . . . , K}. For each data item xi ∈ IRD,
Li = {λ

(1)
i , . . . , λ

(di)
i } denotes the set of sources involved in the generation of

xi. di = deg Li = |Li| will be called the degree of the label set Li, and λ
(j)
i ∈

{1, . . . , K} for all j = 1, . . . , di. Label sets with di = 1 will be called single
labels. We denote by IL the set of all admissible label sets – in the most general
case, this is simply the power set of the classes except the empty set ∅, i.e.
IL = 2S \ {∅}, but restrictions to simplify the learning task often are available
from the application area. Finally, X = (x1, . . . , xN ) will denote a tuple of data
items, and L = (L1, . . . , LN ) the corresponding label sets.

The remainder of this paper is structured as follows: Sect. 2 reviews related
word, and Sect. 3 then presents the underlying assumption of our method.
In Sect. 4, we present the training and classification phase of the proposed
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algorithm, both in general and for the special case of Gaussian distributions.
Sect. 5 reports results of both synthetic and real world data. A summary and
outlook in Sect. 6 concludes the paper.

2 Related Work

Multi-label classification has attracted an increasing research interest in the last
decade. It was originally proposed in [4] when introducing error-correcting out-
put codes for solving multiclass learning problems. Later on, a modified entropy
formula was employed in [5] to adapt the C4.5-algorithm for knowledge discovery
in multi-label phenotype data. Given the modified entropy formula, frequently
co-occurring classes are distinguished only on the bottom of the decision tree.
Support vector machines as a further type of discriminative classifiers are em-
ployed to solve multi-label problems in [6].

An important application area for the problem at hand is text mining. Sup-
port vector machines were introduced for this task in [7] and were shown to
outperform competing algorithms such as nearest neighbor and C4.5 algorithms.
A mixture model for text classification has been presented a year later in [8],
where the word distribution of a document is represented as a mixture of the
source distributions of the categories the document belongs to.

More recent work includes an application of several multi-label learning tech-
niques to scene classification [2], where it was shown that taking data items with
multiple labels as samples of each of the classes yields to discriminative classifiers
with higher performance. This approach is called cross-training (MCross).

A similar idea is used in probabilistic learning: Each data item has the same
weight, which is then equally distributed among all classes in the label set of the
data. MProb denotes models which are generated by this technique, which are
comprehensively reviewed in [9].

The vaguely related topic of multitask learning is treated in [10]. We under-
stand multitask learning mainly as a method to classify with respect to several
different criteria (e.g. street direction and type of the markings, an example in
the mentioned paper), the multilabel classification task can be formulated as
multitask problem when class membership is coded with binary indicator vari-
ables. Each task is then to decide whether a given data item belongs to a class or
not. Insofar, we confirm the result that joint training increases the performance.
Additionally, our model provides a clearly interpretable generative model for the
data at hand, which is often not or only partially true for neural networks.

3 Generative Models for Multi-label Data

The nature of multi-labeled data is best understood by studying how such data
are generated. In the following, we contrast our view of multi-labeled data with
the standard parametric model of classification where data are generated by one
unique source, i.e., data of one specific source do not contain any information
on parameters of any other source.
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3.1 Standard Generative Model for Classification

In a standard generative model for classification, each data item xi is a sample
of a single source. The source of xi is identified by the label λi ∈ S, and the
source distribution will be denoted by Pλi . Formally, we thus have xi ∼ Pλi .

In the learning phase, a set of data points along with corresponding labels is
given. Based on this training sample, the class distributions are usually learned
such that the likelihood of the observed data, given the class labels, is maximized.
Class priors Π = (π1, . . . , πK) can also be learned based on the labels of the
training set.

When classifying a new data item xnew, the estimated label λ̂new is the one
with maximal likelihood:

λ̂new = arg max
λ∈S

L(λ|xnew , Pλ) = arg max
λ∈S

πλL(xnew|Pλ) (1)

This corresponds to a search over the set of possible labels.

3.2 A Generative Model of Multi-labeled Data

We propose an approach to classification of multi-labeled data which extends
the generative model for single-label data by interpreting multi-labeled data as
a superposition of the emissions of the individual sources. A data item xj with
label set Lj = {λ

(1)
j , . . . , λ

(dj)
j } of degree dj is assumed to be the sum of one

sample from each of the contributing sources, i.e.

xj =
dj∑

s=1

χ
λ
(s)
j

with χ
λ
(s)
j

∼ P
λ
(s)
j

(2)

The distribution of xj is thus given by the convolution of all contributing sources:

xj ∼ P
λ
(1)
j

∗ . . . ∗ P
λ
(dj )
j

=: PLj (3)

Thus, unlike in the single-label model, the distribution of data with multiple
labels is traced back to the distribution of the contributing sources. We therefore
propose the name Additive-Generative Multi-Label Model (MAdGen).

Note that it is possible to explicitly give the distribution PLj for data with
label set Lj . In contrast to MNew, which would estimate PLj based solely on the
data with this label set, we propose to compute PLj based on the distribution
of all sources contained in Lj . On the other hand, the estimation of each source
distribution is based on all data items which contain the respective source in
their label sets.

4 Learning a Generative Model for Multi-labeled Data

In the following, we will first describe the learning and classification steps in
general and then we give explicit formula for the special case of Gaussian distri-
butions. In order to simplify the notation, we will limit ourselves to the case of
data generated by at most two sources. The generalization to label sets of higher
degree is straightforward.
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4.1 Learning and Classification in the General Case

The probability distribution of multi-labeled data is given by (3). The likelihood
of a data item xi given a label set Li = {λ

(1)
i , λ

(2)
i }, is

P{λ
(1)
1 ,λ

(2)
1 }(xi) =

(
P

λ
(1)
i

∗ P
λ
(2)
i

)
(xi)

=
∫

P
λ
(1)
i

(χ)P
λ
(2)
i

(xi − χ) dχ (4)

= IEχ∼P
λ
(1)
i

[
P

λ
(2)
i

(xi − χ)
]
. (5)

In general, it may not be possible to solve this convolution integral analytically.
In such cases, the formulation as an expected value renders Monte Carlo sampling
possible to compute a numerical estimate of the data likelihood.

In the training phase, the optimal parameters θs of the distribution Ps are
chosen such that they fulfil the condition

∂

∂θs

{
∏

L∈IL

∏

i:Li=L
PL(x)

}
!= 0 for s = 1, . . . , K (6)

If the convolution integral (4) can not be expressed analytically, the formulation
as expected value ((5), and similar terms for superpositions of three and more
sources) can be used to estimate the optimal parameter set (θ1, . . . , θK).

When classifying new data, label sets are assigned according to (1). Again, if
the probability distribution of a data item xi with label sets {λ

(1)
i , λ

(2)
i } of degree

2 can not be expressed in closed form, (5) might be used to get an estimate of
P(λ(1)

i ,λ
(2)
i )(xi) by sampling χ from P

λ
(1)
i

. The generalization to label sets of degree
larger than 2 is straight forward.

The methods presented here are very general and they are applicable to all
parametric distributions. For specific distributions, a closed form expression for
the convolution integral and then analytically solving (6) for optimal param-
eter values will lead to much faster training and classification. The following
subsection exemplifies this claim for the Gaussian distributions. Similar explicit
convolution formulae can also be computed for, e.g., the chi-square or the Poisson
distribution, and approximations exist for many distributions and convolutions
of different distributions.

4.2 Gaussian Distributions

Let us assume for the remainder of this section that all source distributions are
Gaussians, i.e. Ps = N (μs, Σs) for s = 1, . . . , K. The convolution of Gaussian
distributions is again a Gaussian distribution, where the mean vectors and the
covariance matrices are added:

N (μ1, Σ1) ∗ N (μ2, Σ2) = N (μ1 + μ2, Σ1 + Σ2) . (7)
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A corresponding rule holds for convolutions of more than two Gaussians. This
property drastically simplifies the algebraic expressions in our model.

Training for Gaussian Distributions. To find the optimal values for the
means and the covariance matrices, we have to solve the ML equations

∂

∂μs

{
∏

L∈IL

∏

i:Li=L
PL(x)

}
!= 0

∂

∂Σs

{
∏

L∈IL

∏

i:Li=L
PL(x)

}
!= 0 (8)

for s = 1, . . . , K. These conditions yield a set of coupled nonlinear equations,
which can be decoupled by proceeding iteratively. As initial values, we choose
the sample mean and variance of the single-labeled training data:

μ(0)
s =

∑
i:Li={s} xi

|{i : Li = {s}}| Σ(0)
s =

∑
i:Li={s}(xi − μ

(0)
s )(xi − μ

(0)
s )T

|{i : Li = {s}}| . (9)

For simpler notation, we define the following intermediate values:

m
(t)
Li\{s} =

∑

j∈Li

j �=s

μ
(t)
j S

(t)
Li\{s} =

∑

j∈Li

j �=s

Σ
(t)
j V

(t)
iLi

= (xi − μ
(t)
Li

)(xi − μ
(t)
Li

)T ,

where upper indices indicate the iteration steps. Using an iterative approach,
the condition for the mean values yields the following update formula for μs,
s = 1, . . . , K:

μ(t)
s =

(
∑

i:Li�s

(xi − m
(t−1)
Li\{s})

(
Σ

(t−1)
Li

)−1
) (

∑

i:Li�s

(
Σ

(t−1)
Li

)−1
)−1

.

Deriving the data likelihood with respect to the covariance matrix Σs yields the
following condition:

1
2

∑

i:Li�s

((
Id − (xi − μLi)(xi − μLi)

T Σ−1
Li

)
Σ−1

Li

) != 0,

where Id denotes the identity matrix in d dimensions. With ΣLi = Σs +SLi\{s},
the left hand side of the condition can be rewritten as

∑

i:Li={s}

((
Id − ViLiΣ

−1
s

)
Σ−1

s

)
+

∑

i:Li�s
|Li|>1

((
Id − ViLi (SLi\s + Σs)−1) (SLi\s + Σs)−1)

Note that for a training set containing only single label data, the second sum
vanishes, and the condition implies estimating Σs by the sample variance. If the
training set does contain data with multiple labels, the optimality condition can
– in general – not be solved analytically, as the condition for Σs corresponds
to a polynomial which degree is twice the number of allowed label sets in IL
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containing s. In this case, the optimal value of Σ
(t)
s can either be determined

numerically, or the Taylor approximation

(SLi\s + Σs)−1 = Σ−1
s (SLi\sΣ

−1
s + Id)−1 ≈ Σ−1

s (Id − ΣsS
−1
Li\s) = Σ−1

s − S−1
Li\s

can be used. The approximation is typically quite crude, we therefore prefer using
a numerical solver to determine Σ

(t)
s for all sources s after having determined

the mean values μ
(t)
s . Whenever a sufficient number of data is available, the

covariance matrix of a source s might also be estimated purely based on the
data with s as single label.

In spite of the rather complicated optimization procedure for the covariance
matrices, we observed that the estimator for the mean values is quite robust with
respect to changes in the covariance matrix. Furthermore, the relative impor-
tance per data item for the estimation of μ

(t)
s decreases as the degree of its label

increases. If enough data with low degree label sets is available in the training
phase, the convergence of the training step can be increased by discarding data
items with high label degrees with only minor changes in the accuracy of the
parameter estimates.

Classification for Gaussian Distributions. Recall the explicit formula for
the convolution of two Gaussians (7). This relation yields a simple expression
for the likelihood of the data xnew given a particular candidate label set Lnew =
{λ

(1)
new, λ

(2)
new}:

PLnew(xnew) = N (xnew ; μ
λ
(1)
new

+ μ
λ
(2)
new

, Σ
λ
(1)
new

+ Σ
λ
(2)
new

)

Again, the assignment of the label set for the new data item is done according to
(1). As the density functions for data with multiple labels are computed based
on the single source densities, this yields more accurate density estimates namely
for data with medium to large label degree. This is the second major advantage
of the proposed algorithm.

The task of finding the most likely label set, given the data and the source
parameters, may become prohibitively expensive if a large number of sources
are observed, or if the allowed label degree is large. In the following section, we
present an approximation technique that leads to drastically reduced computa-
tion costs, while incurring a computable error probability.

4.3 Efficient Classification

In the proposed model, the classification tasks consist of choosing a subset of
given sources such that the observed data item has maximal likelihood. The
classification task thus comprises a combinatorial optimization problem. While
this type of problem is NP-hard in most cases, good approximations are possible
in the present case, as we exemplify in the following for Gaussian sources.

For Gaussian distributions with equal spherical covariance matrix Σs = σ2ID

for all sources s = 1, . . . , K, maximum likelihood classification of a new data
item xnew ∈ IRD can be reduced to
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L̂new = argmax
L∈IL

{
πL

σD(2πdL)D/2 exp
(

−||xnew − μL||22
2dLσ2

)}

= arg min
L∈IL

{
||xnew − μL||22 + dLσ2(D log(dL) − 2 log(πL))

}
, (10)

where πL is the prior probability of the label set L, and dL = |L| is its degree.
In cases where the set IL of admissible label sets is relatively small, label set

L̂new with maximal likelihood can be found directly within reasonable compu-
tation time. Such a case e.g. arises when the new data can only be assigned to a
label set that was also present in the training set, i.e. if IL is the set of all label
sets contained in the training sample.

However, in a more general setting, there are no such constraints, and the
classifier should also be able to assign a label set that was not seen during the
training phase. In this case, IL contains |2S |−1 = 2K −1 possible label sets. The
time for direct search thus grows exponentially with the number of sources K.

Our goal is therefore to determine a subset of sources S− ⊂ S which – with
high probability – have not contributed to xnew . This constraint to S− will limit
the search space for the argmin operation and consequently will speed up data
processing.

Note that all terms in (10) are positive. The label set prior typically decreases
as the degree increases, and the second term grows logarithmically in the size
of the label set. The later term thus tends to privilege smaller label sets, and
neglecting these two terms might thus yield larger label sets. This is a type of
regularization which we omit in the following, as we approximate (10) by the
following subset selection problem:

L̂new = arg min
L∈IL

{
||xnew − μL||22

}
, (11)

Defining the indicator vector β̂new ∈ {0, 1}K, with β̂
(s)
new = 1 if s ∈ L̂new and

β̂
(s)
new = 0 otherwise, for all sources s, this can be written as

β̂new = arg min
β∈{0,1}K

{
K∑

s=1

β(s)μs − xnew

}
.

Relaxing the constraints on β̂new, we get the following regression problem:

β̃new = arg min
β̃∈IRK

{
K∑

s=1

β̃(s)μs − xnew

}
.

Defining the matrix M of mean vectors as M = [μ1, . . . , μK ], we obtain the
least-squares solution for the regression problem:

β̃new = (MT M)−1MT xnew (12)

In order to reduce the size of the search space for the label set, we propose to
compute a threshold τ for the components of β̃new. Only sources s with β̃

(s)
new > τ

will be considered further as potential members of the label set L̃new .
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As we have omitted the constraints favoring small label sets, it may happen
that single sources with mean close to xnew are discarded. This effect can be
compensated by adding label sets of small degree (up to 2 is mostly sufficient)
containing only discarded classes to the reduced label set. Formally, we have
S+ = {s ∈ S|β̃(s)

new > τ}, S− = S \ S+, IL+ =
(
2S

+ \ {∅}
)

∪ S− ∪ S− × S−, and

IL replaced by IL+ in (10).
In our experiments, we found that this heuristic can drastically reduce com-

putation times in the classification task. The error probability introduced by this
technique is discussed in the following.

We assume the true label set of xnew is Lnew , with the corresponding indi-
cator vector βnew and degree dnew = |Lnew |. The heuristic introduces an error
whenever β̃

(s)
new < τ but β

(s)
new = 1 for any s ∈ Lnew . Thus,

P [error] = 1 −
∏

s∈Lnew

P [(β̃(s)
new > τ) ∧ (β(s)

new = 1)].

For the analysis, we assume that all source distributions have the same vari-
ance σ2 · Id. Then, we have xnew = Mβnew + ε, with ε ∼ N (0, dnew · σ2

Id).
Inserting this into (12), we derive

β̃new = βnew + (MT M)−1MT ε =: βnew + ε′,

where we have defined ε′ = (MT M)−1MT ε, with ε′ ∼ N (0, dnewσ2(MT M)−1).
Using the eigendecomposition of the symmetric matrix MT M , MT M = UΛUT ,
the distribution of ε′ can be rewritten as ε′ ∼ UN (0, dnewσ2Λ−1). Note that Λ
scales with the squared 2-norm of the mean vectors μ, which typically scales
with the number of dimensions D.

For the special case when U = ID, we then have

P [error] = 1 −
∏

s∈Lnew

(
1 − Φ

(
τ − 1

σ
√

dnewΛ−1
ss

))

where Φ(·) is the cumulative distribution function of the standardized Gaussian.
Summing up, the probability of an error due to the heuristic decreases whenever
the dimensionality grows (Λss grows), sources become more concentrated (σ gets
smaller), or the degree of the true label set decreases (dnew grows).

For a given classification task, Lnew will not be known. In our experiments,
we derived an upper limit dmax for the label degree from the distribution of the
label set degrees in the training set. For Λss, we used the average eigenvalue λ̄ of
the eigendecomposition of MT M . Finally, σ can be estimated from the variance
of the single labeled data.

With these estimates, we finally get

P [error] ≤ 1 −
(

1 − Φ

(
τ − 1

σ
√

dmaxλ̄−1

))dmax

(13)
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Given an acceptable error probability, this allows us to choose an appropriate
value for the threshold τ . Note that the bound is typically quite pessimistic,
as most of the real-world data samples have a large number of data with label
sets of small degree. For these data items, the effective error probability is much
lower than indicated by (13). Keeping this in mind, (13) provides a reasonable
error bound also in the general case where U �= ID.

5 Experimental Evaluation

The experiments include artificial and real-world data with multiple labels. In
the following, we first introduce a series of quality measures and then present
the results.

5.1 Performance Measures

Precision and recall are common quality measures in information retrieval and
multi-label classification. These measures are defined on each source. For a source
s and a data set X = (x1, . . . , xN ), let tps, fns, fps and tns denote the number
of true positives, true negatives, false positives and false negatives as defined in
Table 1. Then, precision and recall on source s are defined as follows:

Precisions =
tps

tps + fps
Recalls =

tps

tps + fns

Intuitively speaking, recall is the fraction of true instances of a base class cor-
rectly recognized as such, while precision is the fraction of classified instances
that are correct. The F-score is the harmonic mean of the two:

Fs =
2 · Recalls · Precisions

Recalls + Precisions

All these measures take values between 0 (worst) and 1 (best).
Furthermore, we define the Balanced Error Rate (BER) as the average of the

ratio of incorrectly classified samples per label set over all label sets:

BER =
1

|IL|
∑

L∈IL

|{i|L̂i �= Li = L}|
|{i|Li = L}|

Table 1. Definition of true positives, true negatives, false positives and false negatives
for a base class s

true estimated classification
classification xi ∈ s xi /∈ s

xi ∈ s tpC fns

(true positive) (false negative)
xi /∈ s fps tns

(false positive) (true negative)
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Note that the BER is a quality measure computed on an entire data set, while
Precisions, Recalls and the Fs-score are determined for each source s.

5.2 Artificial Data

We use artificial data sampled from multivariate Gaussian distributions to com-
pute the accuracy of the source parameter estimates of different models.

The artificial data scenario consisted of 10 sources denoted by {1, . . . , 10}.
In order to avoid hidden assumptions or effects of hand-chosen parameters, the
mean values of the sources were uniformly chosen in the 10-dimensional hy-
percube [−2; 2]10. The covariance matrix was diagonal with diagonal elements
uniformly sampled from [0; 1]. 25 different subsets of {1, . . . , 10} were randomly
chosen and used as label sets. Training sets of different sizes as well as a test set
were sampled based on the label sets and the additivity assumption (2). This
procedure was repeated 10 times for cross-validation.

Figure 1 shows the average deviation of the mean vectors and the average
deviation of the largest eigenvalue from the corresponding true values. For the
estimates of the source means, it can be clearly seen that the proposed model
is the most accurate. The deviation of the parameters of MNew is explained by
the small effective sample size available to estimate each of the mean vectors: As
MNew learns a separate source for each label set, there are only two samples per
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Fig. 1. Accuracy of the parameter estimation of different models. The left panel shows
the deviation of the mean estimate, the right one shows the relative deviation between
the true and the estimated value of the largest eigenvalue of the covariance matrix.
For each model, the average (continuous bold line) over all classes and the standard
deviation based on 10-fold cross-validation (dashed lines) is plotted.

We used a setting with 10 sources in 10 dimensions. The mean of each source was
chosen uniformly in [−1, 1]10. The sources were randomly combined to 25 label sets.
Training data sets of different sizes were then sampled according to the generative
model.

The generative multi-label model clearly yields the most accurate parameter es-
timates. The MNew suffers from the small sample size problem, while MCross and
MProb can not clearly improve the estimates of the source parameters.

For the training on sample size 50, we used a default starting value for the covariance
matrices. All models have therefore covariance estimates of roughly the same quality.
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source when the training set size is 50. MAdGen, on the other hand, decomposes
the contributions of each source to every data item. On the average, MAdGen has
thus 2.5 times more training samples per parameter than MNew. Furthermore,
and the samples used by MNew to estimate the density distribution of multi-
labeled data have higher variance than the single label data.

For the estimation of the covariance, MAdGen still yields distinctly more pre-
cise values, but the difference to MNew is not as large as in the estimation of
the mean values. This is due to the more complicated optimization problem that
has to be solved to estimate the covariance matrix.

The estimates of MNew and MProb for both the mean and the covariance are
clearly less accurate. Using a data item with multiple label as a training sample
independently for each class brings the source parameters closer to each other
– and away from their true values. As multi-labeled data have a reduced weight
for the estimation of the single sources, this effect is less pronounced in MProb

than in MCross.
As in many other machine learning problems, the estimation of the covariance

matrix is a hard problem. As no analytic solution of the optimality condition ex-
ists and numerical methods have to be used, the computational effort to estimate
the covariance grows linearly or even quadratically in the number of dimensions
(depending on whether a diagonal or a full covariance matrix is assumed).

Only for spherical covariances, the conditions can be solved to get a coupled
set of equations, which can be used for an iterative solution scheme. A possible
remedy is to estimate the source covariances based on single label data only,
and to use the deconvolution approach only for estimating the mean values. For
classification, the proposed method yields considerably more accurate parameter
estimates for the distributions of all label sets and therefore performs clearly
better.

The estimation of the source means is much more stable and it performs
independently of the dimensionality of the data. As expected, the amelioration
due to MAdGen is larger if the covariance matrix does not have to be estimated,
and also the improvements in the classification are more pronounced.

5.3 Acoustic Data

For the experiments on real data, we used the research database provided by
a collaborating hearing instrument company. This challenging data set serves
as benchmark for next generation hearing instruments and captures the large
variety of acoustic environments that are typically encountered by a hearing aid
user. It contains audio streams of every day acoustic scenes recorded with state
of the art hearing instruments. Given the typically difficult acoustic situations
in day to day scenes, the recordings have significant artefacts.

Each sound clip is assigned to one of the four classes Speech (SP ), Speech
in Noise (SN), Noise (NO) and Music (MU). While MNew learns a separate
source for each of the four label sets, MCross, MProb and MAdGen interpret
SN as a mixture of SP and NO. SN is the only multi-label in our real data
setting.
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It should be noted that intra-class variance is very high – just consider various
genres of music, or different sources of noise! Additionally, mixtures arise in
different proportions, i.e. the noise level in the mixture class varies strongly
between different sound clips. All these factors render the classification problem
a difficult challenge: Even with specially designed features and a large training
data set, we have been unable to train a classifier that is able to reach an accuracy
of more than 0.75. Precision, recall and the F-score are around 0.80 for all three
sources.

Mel Frequency Cepstral Coefficients (MFCCs) [11] have been extracted from
the sound clips at a rate of about 100Hz, yielding a 12-dimensional feature vector
per time window. As classification is expected to be independent of the signal
volume, we have used normalized coefficients. Thus, the additivity assumption
(2) has been changed to

xSP,NO =
xSP + xNO

2
(14)

Since the extraction of MFCCs is nonlinear, this modified additivity property
in the signal space has been transformed into the feature space. A sequence of
10 MFCC feature sets is used as feature vector, describing also the short-time
evolution of the signal. Features for the training and test sets have been extracted
from different sound clips.

Hidden Markov models (HMM) are widely used in signal processing and
speech recognition [12]. We use a HMM with Gaussian output and two states
per sound source a simple generative model. In the training phase, we use the
approximations

IEχ∼PNO [PSP (xi − χ)] ≈ PSP (xi − IEχ∼PNO [χ])
IEχ∼PSP [PNO(xi − χ)] ≈ PNO(xi − IEχ∼PSP [χ])

to get a rough estimate of the individual source contributions to a data item xi

with label Li = SN = {SP, NO}. In the classification phase, the formulation of
the convolution as expected value (5) is used to estimate the probability of the
binary label by sampling from one of the two contributing sources.

Experiments are cross-validated 10 times. In every cross validation set, the
number of training samples has been gradually increased from 4 (i.e. one per
label set) to 60. The differences in F-score and BER are depicted in Fig. 2. The
test sets consist of 255 data items.

Comparing the results of the four algorithms on the test data set, we observe
only minor differences in the precision, with MAdGen tending to yield slightly
less precise results. The recall rate of MAdGen, however, is consistently higher
than the corresponding results of its three competitors. The F-score obtained by
the generic multi-label algorithm is consistently above the F-scores obtained by
MNew, MCross and MProb. As can be observed in the plots, MNew approaches
MAdGen as the size of the training set increases. The difference between MAdGen

and the two other models does not shows a clear dependency on the size of the
training set.
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Fig. 2. Difference of quality measures between the proposed method and the three
mentioned competing methods. The left column shows the differences in F-Score (higher
is better), the right one the differences in BER (lower is better). The differences in F-
score are less pronounced and have higher variance than the differences in BER. MNew

is the strongest competitor to MAdGen. As the training set grows, MNew comes very
close to MAdGen in terms of F-score and occasionally gets slightly lower BER values.
MCross and MProb are clearly lagging behind MAdGen in terms of BER and also
yield consistently lower F-scores. The absolute values are around 0.6 for the F-score
and around 0.4 for the BER at the very small sample sizes.

In all plots, the green horizontal line at 0 indicates equal performance of the two
compared algorithms. Note the difference in scale between the two columns.

Differences are more pronounced in terms of the BER. MNew is clearly outper-
formed on small training sets, but it is able to perform competitively as more train-
ing data are available. For larger training sets, learning a separate, independent
class for the multi-labeled data as MNew does, sometimes even performs slightly
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better, as multi-label data might not fulfill the additivity condition exactly. Inde-
pendently of the training set size, both MCross and MProb are clearly perform-
ing worse than MAdGen. To our understanding, this is due to a model assumption
which does not accurately enough match the nature of the true data source.

6 Conclusion and Outlook

We have presented a generative model to represent multi-labeled data in super-
vised learning. On synthetic data, this algorithm yields more accurate estimates
of the distribution parameters than other generative models and outperforms
other approaches for classification of multi-labeled data.

The comparison with other methods on challenging real world data shows
that our approach yields consistently higher F-scores on all training set sizes and
lower BER values on small training sets. We attribute this finding to the fact
that extra regularization renders inference more stable when the training data
set is small. This stabilization is observed even in situations where the assumed
structure does not exactly match the distribution of the noisy real world data.
We conjecture that this mismatch causes a performance drop of the proposed
generic multi-label classifier below the performance of the single-class classifier
when more data is available for training.

In order to handle recording artefacts common to all sound files, we propose to
introduce an extra source to model these effects – similar to the class ”English”
introduced in [8] to automatically find a task-specific stop list. Thus separating
noise due to recording artefacts from the signal should increase precision in
recognizing the sources of a given acoustic stream.

Our model used for the acoustic data actually corresponds to a mixture of
supervised and unsupervised learning, as for each time frame, one of the two
states in the hidden Markov model is selected as a source. This is similar to
the mixture discriminant analysis [13], where an unsupervised grouping among
all data of one class yield several prototypes within each class. Tracking down
these prototypes for multi-label data might yield the distinction between, say,
different types of background noise in a mixture with speech.

Furthermore, we have not yet taken into account the fact that several noise
sources might be mixed together at different intensities. For example, we might
have 70% speech and 30% noise in a conversation situation with moderate back-
ground noise, or the opposite of only 30% speech and 70% noise in a very loud
environment. In the presented model, both situations are treated equally and
lead to a difficult learning and classification task. Modeling mixtures at different
intensities is subject to future work.

Finally, the proposed model for data generation is also applicable to unsu-
pervised learning. We expect more precise parameter estimations also in this
scenario and thus more stable clustering. The binary assignments in the learn-
ing phase of data to its generating classes would be replaced by an estimated
responsibility for each (data, class) pair, and the model could then be learned
by expectation maximization.
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Abstract. We address the problem of batch active learning (or exper-
iment design) in regression scenarios, where the best input points to
label is chosen from a ‘pool’ of unlabeled input samples. Existing active
learning methods often assume that the model is correctly specified, i.e.,
the unknown learning target function is included in the model at hand.
However, this assumption may not be fulfilled in practice (i.e., agnos-
tic) and then the existing methods do not work well. In this paper, we
propose a new active learning method that is robust against model mis-
specification. Simulations with various benchmark datasets as well as a
real application to wafer alignment in semiconductor exposure apparatus
illustrate the usefulness of the proposed method.

1 Introduction

Active learning (AL) is a problem of optimally designing the location of training
input points in supervised learning scenarios [1]. Choice of training input location
is particularly important when the sampling cost of output values is very high,
e.g., in the analysis of, medical data, biological data, or chemical data. In this
paper, we address batch AL (a.k.a. experiment dasign), where the location of all
training input points are designed in the beginning (cf. on-line AL where input
points are chosen sequentially).

Population-based vs. Pool-based AL: Depending on the situations, AL can
be categorized into two types: population-based and pool-based.

Population-based AL indicates the situation where we know the distribution
of test input points and we are allowed to locate training input points at any
desired positions [2,3,4]. The goal of population-based AL is to find the optimal
training input distribution from which we generate training input points.

On the other hand, in pool-based AL, the test input distribution is unknown
but samples from the test input distribution are given [5,6]. The goal of pool-
based AL is to choose the best input samples to label from the pool of test input

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 406–422, 2008.
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samples. If we have infinitely many test input samples, the pool-based problem is
reduced to the population-based problem. In this paper, we address the problem
of pool-based AL and propose a new algorithm.

AL for Misspecified Models: In traditional AL research [1,7,8], it is often
assumed that the model used for function learning is correctly specified, i.e., it
can exactly realize the learning target function. However, such an assumption
may not be satisfied in reality (i.e., agnostic) and the violation of this assumption
can cause significant performance degradation [2,3,4,6]. For this reason, we do
not assume from the beginning that our model is correct in this paper. This
highly enlarges the range of application of AL techniques.

In the AL scenarios, the distribution of training input points is generally
different from that of test input points since the location of training input points
is designed by users. Such a situation is referred to as covariate shift in statistics
[9]. When we deal with misspecified models, covariate shift has a significant
influence—for example, Ordinary Least-Squares (OLS) is no longer unbiased
even asymptotically. Therefore, we need to explicitly take into account the bias
caused by covariate shift. A standard approach to alleviating the influence of
covariate shift is to use an importance-weighting technique [10], where the term
‘importance’ refers to the ratio of test and training input densities. For example,
in parameter learning, OLS is biased, but Importance-Weighted Least-Squares
(IWLS) is asymptotically unbiased [9].

Importance Estimation in Pool-based AL: In population-based AL,
importance-weighting techniques can be employed for bias reduction in a
straightforward manner since the test input distribution is accessible by assump-
tion (and the training input distribution is also known since it is designed by
ourselves) [2,3,4]. However, in pool-based AL, the test and training input distri-
butions may both be unknown and therefore the importance weights cannot be
directly computed. A naive approach to coping with this problem is to estimate
the training and test input distributions from training and test input samples.
However, density estimation is known to be a hard problem particularly in high
dimensional problems. Therefore, such a naive approach may not be useful in
practice. This difficulty could be eased by employing recently developed methods
of direct importance estimation [11,12,13], which allow us to obtain the impor-
tance weight without going through density estimation. However, these methods
still contain some estimation error.

A key observation in pool-based AL is that we choose training input points
from the pool of test input points. This implies that our training input distribu-
tion is defined over the test input distribution, i.e., the training input distribu-
tion can be expressed as a product of the test input distribution and a resampling
bias function. This decomposition allows us to directly compute the importance
weight based on the resampling bias function, which is more accurate and com-
putationally more efficient than the naive density estimation approach and the
direct importance estimation approaches.
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(a) Generalization error for training in-
put density pa

(b) Generalization error for training in-
put density pb

Fig. 1. Schematic illustrations of the conditional-expectation and full-expectation of
the generalization error

Single-trial Analysis of Generalization Error: In practice, we are only given
a single realization of training samples. Therefore, ideally, we want to have an
estimator of the generalization error that is accurate in each single trial. However,
we may not be able to avoid taking the expectation over the training output noise
since it is not generally possible to know the realized value of noise. On the other
hand, the location of the training input points is accessible by nature. Motivated
by this fact, we propose to estimate the generalization error without taking the
expectation over training input points. That is, we evaluate the unbiasedness
of the generalization error in terms of the conditional expectation of training
output noise given training input points.

To illustrate a possible advantage of this conditional expectation approach,
let us consider a simple population-based active learning scenario where only
one training sample (x, y) is gathered (see Figure 1). Suppose thatthe input x
is drawn from a user-chosen training input distribution and y is contaminated
by additive noise ε. The solid curves in Figure 1(a) depict Gpa(ε|x), the general-
ization error for a training input density pa as a function of the training output
noise ε given a training input point x. The three solid curves correspond to the
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cases where the realizations of the training input point x are a1, a2, and a3,
respectively. The value of the generalization error for the training input density
pa in the full-expectation approach is depicted by the dash-dotted line, where
the generalization error is expected over both the training output noise ε and
the training input points x (i.e., the mean of the three solid curves). The values
of the generalization error in the conditional-expectation approach are depicted
by the dotted lines, where the generalization errors are expected only over the
training output noise ε, given x = a1, a2, a3, respectively (i.e., the mean of each
solid curve). The graph in Figure 1(b) depicts the generalization errors for an-
other training input density pb in the same manner.

In the full-expectation framework, the density pa is judged to be better than pb

regardless of the realization of the training input point since the dash-dotted line
Figure 1(a) is lower than that in Figure 1(b). However, as the solid curves show,
pa is often worse than pb in single trials. On the other hand, in the conditional-
expectation framework, the goodness of the density is adaptively judged depend-
ing on the realizations of the training input point x. For example, pb is judged to
be better than pa if a2 and b3 are realized, or pa is judged to be better than pb if
a3 and b1 are realized. That is, the conditional-expectation framework may pro-
vide a finer choice of the training input density (and the training input points)
than the full-expectation framework.

Contributions of This Paper: We extend two population-based AL methods
proposed by [2] and [4] to pool-based scenarios. The pool-based extension of
the method proposed in [2] allows us to obtain a closed-form solution of the
best resampling bias function; thus it is computationally very efficient. However,
this method is based on the full-expectation analysis of the generalization error,
so the obtained solution is not necessarily optimal in terms of the single-trial
generalization error. On the other hand, the pool-based extension of the method
proposed in [4] can give a better solution since it is based on the conditional-
expectation analysis of the generalization error. However, it does not have a
closed-form solution and therefore some additional search strategy is needed.

To cope with this problem, we propose a practical procedure by combining the
above two methods—we use the analytic optimal solution of the full-expectation
method for efficiently searching for a better solution in the conditional-
expectation method. Extensive simulations show that the proposed AL method
consistently outperforms the baseline passive learning scheme and compares fa-
vorably with other active learning methods. Finally, we apply the proposed AL
method to a real-world wafer alignment problem in semiconductor exposure ap-
paratus and show that the alignment accuracy can be improved.

2 A New Pool-Based AL Method

In this section, we formulate the pool-based AL problem in regression scenarios
and describe our new algorithm. Derivation and justification of the proposed
algorithm are given in the next section.
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2.1 Formulation of Pool-Based AL in Regression

We address a regression problem of learning a real-valued function f(x) defined
on D ⊂ R

d. We are given a ‘pool’ of test input points {xte
j }nte

j=1, which are drawn
independently from an unknown test input distribution with strictly positive
density pte(x). From the pool, we are allowed to choose ntr (� nte) input points
for observing output values. Let {xtr

i }ntr
i=1 be input points selected from the pool

and {ytr
i }ntr

i=1 be corresponding output values, which we call training samples :

{(xtr
i , ytr

i ) | ytr
i = f(xtr

i ) + εtri }ntr
i=1,

where {εtri }ntr
i=1 are i.i.d. noise with mean zero and unknown variance σ2.

The goal of the regression task is to accurately predict the output values
{f(xte

j )}nte
j=1 at all test input points1 {xte

j }nte
j=1. We adopt the squared loss as our

error metric:

1
nte

nte∑

j=1

(
f̂(xte

j ) − f(xte
j )

)2
, (1)

where f̂(x) is a function learned from the training samples {(xtr
i , ytr

i )}ntr
i=1.

2.2 Weighted Least-Squares for Linear Regression Models

We use the following linear regression model for learning:

f̂(x) =
t∑

�=1

θ�ϕ�(x), (2)

where{ϕ�(x)}t
�=1 arefixed linearly independentbasis functions.θ=(θ1, θ2, . . . , θt)�

are parameters to be learned, where� denotes the transpose of a vector or amatrix.
We learn the parameter θ of the regression model by Weighted Least-Squares

(WLS) with a weight function w(x) (> 0 for all x ∈ D), i.e.,

θ̂W = argmin
θ

[
ntr∑

i=1

w(xtr
i )

(
f̂(xtr

i ) − ytr
i

)2
]

, (3)

where the subscript ‘W’ denotes ‘Weighted’. Let X be the ntr × t matrix with
Xi,� = ϕ�(xtr

i ), and let W be the ntr × ntr diagonal matrix with Wi,i = w(xtr
i ).

Then θ̂W is given in a closed-form as

θ̂W = LWytr, (4)

1 Under the assumption that ntr � nte, the difference between the prediction error at
all test input points {xte

j }nte
j=1 and the remaining test input points {xte

j }nte
j=1\{xtr

i }ntr
i=1

is negligibly small. More specifically, if ntr = o(
√

nte), all the discussions in this paper
is still valid even when the prediction error is evaluated only at the remaining test
input points.
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where

LW = (X�WX)−1X�W ,

ytr = (ytr
1 , ytr

2 , . . . , ytr
ntr

)�.

2.3 Proposed AL Algorithm: P-CVW

Here we describe our AL algorithm for choosing the training input points from
the pool of test input points; its derivation and justification are provided in the
next section.

First, we prepare a candidate set of training input points {xtr
i }ntr

i=1, which is
a subset of {xte

j }nte
j=1. More specifically, we prepare a resampling bias function

b(x) (> 0 for all x ∈ D) and choose ntr training input points from the pool of
test input points {xte

j }nte
j=1 with probability proportional to

{b(xte
j )}nte

j=1.

Later, we explain how we prepare a family of useful resampling bias functions.
We evaluate the ‘quality’ of the candidate training input points {xtr

i }ntr
i=1 by

P-CVW = tr(ÛLWL�
W), (5)

where the weight function w(x) included in LW is defined as

w(xte
j ) = b(xte

j )−1
.

Û is the t × t matrix with

Û�,�′ =
1

nte

nte∑

j=1

ϕ�(xte
j )ϕ�′(xte

j ).

We call the above criterion pool-based CVW (P-CVW), which is a pool-based
extension of a population-based AL criterion CVW (Conditional Variance of
WLS) [4]; we will explain the meaning and derivation of P-CVW in Section 3.

We repeat the above evaluation for each resampling bias function in our can-
didate set and choose the best one with the smallest P-CVW score. Once the
resampling bias function and the training input points are chosen, we gather
training output values {ytr

i }ntr
i=1 at the chosen location and train a linear regres-

sion model (2) using WLS with the chosen weight function.
In the above procedure, the choice of the candidates of the resampling bias

function b(x) is arbitrary. As a heuristic, we propose using the following family
of resampling bias functions parameterized by a scalar γ:

bγ(x) =

⎛

⎝
t∑

�,�′=1

[Û
−1

]�,�′ϕ�(x)ϕ�′(x)

⎞

⎠
γ

. (6)
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Input: Test input points {xte
j }nte

j=1 and basis functions {ϕ�(x)}t
�=1

Output: Learned parameter b„W

Compute the t × t matrix bU with bU�,�′ = 1
nte

Pnte
j=1 ϕ�(xte

j )ϕ�′(xte
j );

For several different values of γ (intensively around γ = 1/2)

Compute {bγ(xte
j )}nte

j=1 with bγ(x) =
“Pt

�,�′=1[ bU−1
]�,�′ϕ�(x)ϕ�′(x)

”γ

;
Choose X tr

γ = {xtr
i }ntr

i=1 from {xte
j }nte

j=1 with probability proportional to {bγ(xte
j )}nte

j=1;
Compute the ntr × t matrix Xγ with [Xγ ]i,� = ϕ�(xtr

i );
Compute the ntr × ntr diagonal matrix W γ with [Wγ ]i,i = bγ(xtr

i )−1;
Compute Lγ = (X�

γ W γXγ)−1X�
γ W γ ;

Compute P-CVW(γ) = tr( bULγL�
γ );

End
Compute bγ = argminγ P-CVW(γ);
Gather training output values {ytr

i }ntr
i=1 at X tr

bγ ;
Compute b„W = L

bγ(ytr
1 , ytr

2 , . . . , ytr
ntr)

�;

Fig. 2. Pseudo code of proposed pool-based AL algorithm. In practice, the best γ may
be intensively searched around γ = 1/2.

The parameter γ controls the ‘shape’ of the training input distribution—when
γ = 0, the resampling weight is uniform over all test input samples. Thus the
above choice includes passive learning (the training and test distributions are
equivalent) as a special case. We seek the best γ by simple multi-point search,
i.e., we compute the value of P-CVW for several different values of γ and choose
the minimizer. In practice, we propose performing the search intensively around
γ = 1/2, e.g., Eq.(13); the reason for this will be explained in the next section.

A pseudo code of the proposed pool-based AL algorithm is described in
Figure 2.

3 Derivation and Justification of Proposed AL Algorithm

The proposed P-CVW criterion (5) and our choice of candidates of the training
input distribution (6) are motivated by population-based AL criteria called CVW
(Conditional Variance of WLS; [4]) and FVW (Full Variance of WLS; [2]). In this
section, we explain how we came up with the pool-based AL algorithm given in
Section 2.

3.1 Population-Based AL Criterion: CVW

Here we review a population-based AL criterion CVW.
In the population-based framework, we are given the test input density pte(x),

and the goal is to determine the best training input density ptr(x) from which
we draw training input points {xtr

i }ntr
i=1 [8,2,3,4].

The aim of the regression task in the population-based framework is to ac-
curately predict the output values for all test input samples drawn from pte(x).
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Thus the error metric (often called the generalization error) is

G′ =
∫ (

f̂(xte) − f(xte)
)2

pte(xte)dxte ≡ ‖f̂ − f‖2
pte

.

Suppose the regression model (2) approximately includes the learning target
function f(x), i.e., for a scalar δ such that |δ| is small, f(x) is expressed as

f(x) = g(x) + δr(x). (7)

In the above, g(x) is the optimal approximation to f(x) by the model (2):

g(x) =
∑t

�=1 θ∗� ϕ�(x),

where θ∗ = (θ∗1 , θ∗2 , . . . , θ∗t )� = argminθ G′ is the unknown optimal parameter.
δr(x) in Eq.(7) is the residual function, which is orthogonal to {ϕ�(x)}t

�=1 under
pte(x), i.e., 〈r, ϕ�〉pte = 0 for � = 1, 2, . . . , t. The function r(x) governs the nature
of the model error, while δ is the possible magnitude of this error. In order to
separate these two factors, we further impose ‖r‖pte = 1.

Let Eε be the expectation over the noise {εtri }ntr
i=1. Then, the generalization er-

ror expected over the training output noise can be decomposed into the (squared)
bias term B, the variance term V , and the model error δ2:

EεG
′ = B + V + δ2,

where

B = ‖Eεf̂ − g‖2
pte

, V = Eε‖f̂ − Eεf̂‖2
pte

.

Since δ is constant which depends neither on ptr(x) nor {xtr
i }ntr

i=1, we subtract
δ2 from G′ and define it by G.

G = G′ − δ2.

Here we use Importance-Weighted Least-Squares (IWLS) for parameter learn-
ing [9], i.e., Eq.(3) with weight function w(x) being the ratio of densities called
the importance ratio:

w(x) =
pte(x)
ptr(x)

. (8)

The solution θ̂W is given by Eq.(4).
Let GW, BW, and VW be G, B, and V for the learned function obtained by

IWLS, respectively. Let U be the t × t matrix with

U�,�′ =
∫

ϕ�(xte)ϕ�′(xte)pte(xte)dxte.

Then, for IWLS with an approximately correct model, BW and VW are expressed
as follows [4]:

BW = Op(δ2n−1
tr ), VW = σ2tr(ULWL�

W) = Op(n−1
tr ).
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The above equations imply that if δ = op(1),

EεGW = σ2tr(ULWL�
W) + op(n−1

tr ).

The AL criterion CVW is motivated by this asymptotic form, i.e., CVW chooses
the training input density ptr(x) from the set P of all strictly positive probability
densities as

pCVW
tr = argmin

ptr∈P
CVW, CVW = tr(ULWL�

W).

Practically, P may be replaced by a finite set P̂ of strictly positive probability
densities and choose the one that minimizes CVW from the set P̂ .

3.2 Extension of CVW to Pool-Based Scenarios: P-CVW

Our basic idea of P-CVW is to extend CVW to the pool-based scenario, where
we do not know pte(x), but we are given a pool of test input samples {xte

i }nte
i=1

drawn independently from pte(x). Under the pool-based setting, the following
two quantities included in CVW are not accessible:

(A) The expectation over pte(x) in U ,
(B) The importance ratio pte(x)/ptr(x) at training input points {xtr

i }ntr
i=1 in LW.

Regarding (A), we may simply approximate the expectation over pte(x) by
the empirical average over the test input samples {xte

i }nte
i=1, which is known to

be consistent.
On the other hand, approximation regarding (B) can be addressed as follows.

In pool-based AL, we choose training input points from the pool of test input
points following a resampling bias function b(x). This implies that our training
input distribution is defined over the test input distribution, i.e., the training
input distribution is expressed as a product of the test input distribution and a
resampling bias function b(x):

ptr(xte
j ) ∝ pte(xte

j )b(xte
j ). (9)

This immediately shows that the importance weight w(xte
j ) is given by

w(xte
j ) ∝ b(xte

j )−1
. (10)

Note that the scaling factor of w(x) is irrelevant in IWLS (cf. Eq.(3)), so the
above proportional form is sufficient here. By this, we can avoid density estima-
tion which is known to be very hard.

Summarizing the above results, we obtain the P-CVW criterion (5).

3.3 Population-Based AL Criterion: FVW

Next, we show how we came up with the candidate set of resampling bias func-
tions given in Eq.(6). Our choice is based on a population-based AL method
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proposed by [2]. First, we consider the population-based setting and briefly re-
view this method.

For IWLS, [3] proved that the generalization error expected over training input
points {xtr

i }ntr
i=1 and training output noise {εtri }ntr

i=1 is asymptotically expressed
as

ExEεGW =
tr(U−1(S + σ2T ))

ntr
+ O(ntr

− 3
2 ), (11)

where Ex is the expectation over training input points {xtr
i }ntr

i=1. S and T are
the t × t matrices with

S�,�′ = δ2
∫

ϕ�(x)ϕ�′(x) (r(x))2
pte(x)2

ptr(x)
dx,

T�,�′ =
∫

ϕ�(x)ϕ�′(x)
pte(x)2

ptr(x)
dx.

Note that 1
ntr

tr(U−1S) corresponds to the squared bias while σ2

ntr
tr(U−1T ) cor-

responds to the variance.
It can be shown [3,4] that if δ = o(1),

ExEεGW =
σ2

ntr
tr(U−1T ) + o(ntr

−1).

Based on this asymptotic form, a population-based AL criterion, which we refer
to as FVW (Full Variance of WLS), is given as follows [2]:

pFVW
tr = argmin

ptr∈P
FVW, FVW =

1
ntr

tr(U−1T ).

A notable feature of FVW is that the optimal training input density pFVW
tr (x)

can be obtained in a closed-form [2]:

pFVW
tr (x) ∝ pte(x)bFVW(x), bFVW(x) =

√√√√
t∑

�,�′=1

[U−1]�,�′ϕ�(x)ϕ�′(x).

Note that the importance ratio for the optimal training input density pFVW
tr (x)

is given by

wFVW(x) ∝ bFVW(x)−1
.

3.4 Extension of FVW to Pool-Based Scenarios: P-FVW

If the values of the function bFVW(x) at the test input points {xte
j }nte

j=1 are
available, they can be used as a resampling bias function in pool-based AL.
However, since U is unknown in the pool-based scenario, it is not possible to
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directly compute the values of bFVW(x) at the test input points {xte
j }nte

j=1. To cope
with this problem, we propose simply replacing U with an empirical estimate
Û . Then, the resampling bias function {bP-FVW(xte

j )}nte
j=1 is given by

bP-FVW(xte
j ) =

√√√√
t∑

�,�′=1

[Û
−1

]�,�′ϕ�(xte
j )ϕ�′(xte

j ). (12)

The importance weight is simply given by

wP-FVW(xte
j ) ∝ bP-FVW(xte

j )−1
.

3.5 Combining P-CVW and P-FVW

It was shown that P-FVW has a closed-form solution of the optimal resampling
bias function. This simply suggests using bP-FVW(xte

j ) for AL. Nevertheless, we
argue that it is possible to further improve the solution.

The point of our argument is the way the generalization error is analyzed—
the optimality of FVW is in terms of the expectation over both training input
points {xtr

i }ntr
i=1 and training output noise {εtri }ntr

i=1, while CVW is optimal in
terms of the conditional expectation over training output noise {εtri }ntr

i=1 given
{xtr

i }ntr
i=1. However, in reality, what we really want to evaluate is the single-trial

generalization error (i.e., without any expectation; both {xtr
i }ntr

i=1 and {εtri }ntr
i=1

are given and fixed). Unfortunately, it is not possible to directly evaluate the
single-trial generalization error since the training output noise {εtri }ntr

i=1 cannot
be observed directly; on the other hand, the training input points {xtr

i }ntr
i=1 are

available. It was shown that the conditional expectation approach is provably
more accurate in the single-trial analysis than the full expectation approach: if
δ = op(n

−1/4
tr ) and terms of op(n−3

tr ) are ignored, the following inequality holds
[4]:

Eε(σ2FVW − GW)2 ≥ Eε(σ2CVW − GW)2.

This implies that σ2CVW is asymptotically a more accurate estimator of the
single-trial generalization error GW than σ2FVW.

This analysis suggests that using P-CVW is more suitable than P-FVW. How-
ever, a drawback of P-CVW is that a closed-form solution is not available—
thus, we may practically need to prepare candidates of training input samples
and search for the best solution from the candidates. To ease this problem, our
heuristic is to use the closed-form solution of P-FVW as a ‘base’ candidate and
search around its vicinity. More specifically, we consider a family of resampling
bias functions (6), which is parameterized by γ. This family consists of the op-
timal solution of P-FVW (γ = 1/2) and its variants (γ �= 1/2); passive learning
is also included as a special case (γ = 0) in this family.

The experimental results in Section 4 show that an additional search using
P-CVW tends to significantly improve the AL performance over P-FVW.
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4 Simulations

In this section, we quantitatively compare the proposed and existing AL methods
through numerical experiments.

4.1 Toy Dataset

We first illustrate how the proposed and existing AL methods behave under a
controlled setting.

Let the input dimension be d = 1 and let the learning target function be

f(x) = 1 − x + x2 + δr(x),

where r(x) = (z3 − 3z)/
√

6 with z = (x − 0.2)/0.4. r(x) defined here is a third
order polynomial and is chosen to satisfy 〈r, ϕ�〉pte = 0 and ‖r‖pte = 1. Let us
consider three cases δ = 0, 0.03, 0.06.

Let the number of training examples to gather be ntr = 100 and let {εtri }ntr
i=1

be i.i.d. Gaussian noise with mean zero and standard deviation σ = 0.3, where
σ is treated as unknown here. Let the test input density pte(x) be Gaussian
with mean 0.2 and standard deviation 0.4; pte(x) is also treated as unknown
here. We draw nte = 1000 test input points independently from the test input
distribution.

We use a polynomial model of order 2 for learning:

f̂(x) = θ1 + θ2x + θ3x
2.

We compare the performance of the following sampling strategies:

(A) P-CVW: We draw training input points following the resampling bias
function (6) with

γ ∈ {0, 0.1, 0.2, . . . , 1} ∪ {0.4, 0.41, 0.42, . . . , 0.6}. (13)

Then we choose the best γ from the above candidates based on P-CVW (5).
IWLS is used for parameter learning.

(B) P-FVW: We draw training input points following the resampling bias func-
tion (12). IWLS is used for parameter learning.

(C) Q-OPT [1,7,8]: We draw training input points following the resampling
bias function (6) with Eq.(13), and choose the best γ based on

Q-OPT = tr(ÛLOL�
O),

where LO = (X�X)−1X�. OLS is used for parameter learning.

(D) Passive: We draw training input points uniformly from the pool of test
input samples. OLS is used for parameter learning.

In Table 1, the mean squared test error (1) obtained by each method is de-
scribed. The numbers in the table are means and standard deviations over 100
trials.
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When δ = 0, Q-OPT and P-CVW are comparable to each other and are
better than P-FVW and Passive. When δ = 0.03, the performance of P-CVW
and P-FVW is almost unchanged, while the performance of Q-OPT is degraded
significantly. Consequently, P-CVW gives the best performance among all. When
δ = 0.06, the performance of P-CVW and P-FVW are still almost unchanged,
while Q-OPT performs very poorly and is outperformed even by the baseline
Passive method.

The above results show that P-CVW and P-FVW are highly robust against
model misspecification, while Q-OPT is very sensitive to the violation of the model
correctness assumption. P-CVW tends to outperform P-FVW, which would be
caused by the fact that CVW is a more accurate estimator of the single-trial gen-
eralization error than FVW.

4.2 Benchmark Datasets

Here we use the Bank, Kin, and Pumadyn regression benchmark data families
provided by DELVE [14]. Each data family consists of 8 different datasets: The
input dimension is either d = 8 or 32, the target function is either ‘fairly linear’
or ‘non-linear’ (‘f’ or ‘n’), and the unpredictability/noise level is either ‘medium’
or ‘high’ (‘m’ or ‘h’). Thus we use 24 datasets in total. Each dataset includes
8192 samples, consisting of d-dimensional input and 1-dimensional output data.
For convenience, we normalize every attribute into [0, 1].

We use all 8192 input samples as the pool of test input points (i.e., nte =
8192), and choose ntr = 100 training input points from the pool when d = 8
and ntr = 300 training input points when d = 32. We use the following linear
regression model:

f̂(x) =
50∑

�=1

θ� exp
(

−‖x − c�‖2

2

)
,

where {c�}50
�=1 are template points randomly chosen from the pool of test input

points. Other settings are the same as the toy experiments in Section 4.1.
Table 2 summarizes the mean squared test error (1) over 1000 trials, where

all the values are normalized by the mean error of the Passive method.
When d = 8, all 3 AL methods tend to be better than the Passive method.

Among them, P-CVW significantly outperforms P-FVW and Q-OPT. When d =
32, Q-OPT outperforms P-CVW and P-FVW for several datasets. However, the
performance of Q-OPT is highly unstable and is very poor for the kin-32fm, kin-
32fh, and pumadyn-32fm datasets. Consequently, the average error of Q-OPT
over all 12 datasets is worse than the baseline Passive method. On the other hand,
P-CVW and P-FVW are still stable and consistently outperform the Passive
method. Among these two methods, P-CVW significantly outperforms P-FVW.

From the above experiments, we conclude that P-CVW and P-FVW are more
reliable than Q-OPT, and P-CVW tends to outperform P-FVW.
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Fig. 3. Exposure apparatus (left) and a wafer (right)

5 Real-World Applications

Finally, we apply the proposed AL method to a wafer alignment problem in
semiconductor exposure apparatus (see the left picture of Figure 3).

Recent semiconductors have the layered circuit structure, which are built by
exposing circuit patterns multiple times. In this process, it is extremely impor-
tant to align the wafer at the same position with very high accuracy. To this end,
the location of markers are measured to adjust the shift and rotation of wafers.
However, measuring the location of markers is time-consuming and therefore
there is a strong need to reduce the number of markers to measure for speeding
up the semiconductor production process.

The right picture of Figure 3 illustrates a wafer, where markers are printed
uniformly over the wafer. Our goal here is to choose the most ‘informative’
markers to measure for better alignment of the wafer. A conventional choice is
to measure markers far from the center in a symmetric way (see the right picture
of Figure 3 again), which would provide robust estimation of the rotation angle.
However, this naive approach is not necessarily the best since misalignment is
not only caused by affine transformation, but also by several other non-linear
factors such as a warp, a biased characteristic of measurement apparatus, and
different temperature conditions. In practice, it is not easy to model such non-
linear factors accurately, so the linear affine model or the second-order model is
often used in wafer alignment. However, this causes model misspecification and
therefore our proposed AL method would be useful in this application.

Let us consider the functions whose input x = (u, v)� is the location on
the wafer and whose output is the horizontal discrepancy Δu or the vertical
discrepancy Δv. We learn these functions by the following second-order model.

Δu or Δv = θ0 + θ1u + θ2v + θ3uv + θ4u
2 + θ5v

2.

We totally have 220 wafer samples and our experiment is carried out as follows.
For each wafer, we choose ntr = 20 points from nte = 38 markers and observe the
horizontal and the vertical discrepancies. Then the above model is trained and
its prediction performance is tested using all 38 markers in the 220 wafers. This
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Table 1. The mean squared test error for the toy dataset (means and standard devi-
ations over 100 trials). For better comparison, we subtracted the model error δ2 from
the error and multiplied all values by 103. For each δ, the best method and comparable
ones by the Wilcoxon signed-rank test at the significance level 5% are indicated with
‘◦’. P-CVW P-FVW Q-OPT Passive

δ = 0 ◦2.03±1.81 2.59±1.83 ◦1.82±1.69 3.10±3.09
δ = 0.03 ◦2.17±2.04 2.81±2.01 2.62±2.05 3.40±3.55
δ = 0.06 ◦2.42±2.65 3.19±2.59 4.85±3.37 4.12±4.71
Average ◦2.21±2.19 2.86±2.18 3.10±2.78 3.54±3.85

Table 2. The mean squared test error for the DELVE datasets (means and standard
deviations over 1000 trials). For better comparison, all the values are normalized by
the mean error of the Passive method.

P-CVW P-FVW Q-OPT Passive
bank-8fm ◦0.89±0.14 0.95±0.16 0.91±0.14 1.00±0.19
bank-8fh 0.86±0.14 0.94±0.17 ◦0.85±0.14 1.00±0.20
bank-8nm ◦0.89±0.16 0.95±0.20 0.91±0.18 1.00±0.21
bank-8nh 0.88±0.16 0.95±0.20 ◦0.87±0.16 1.00±0.21
kin-8fm ◦0.78±0.22 0.87±0.24 0.87±0.22 1.00±0.25
kin-8fh ◦0.80±0.17 0.88±0.21 0.85±0.17 1.00±0.23
kin-8nm ◦0.91±0.14 0.97±0.16 0.92±0.14 1.00±0.17
kin-8nh ◦0.90±0.13 0.96±0.16 0.90±0.13 1.00±0.17

pumadyn-8fm ◦0.89±0.13 0.95±0.16 ◦0.89±0.12 1.00±0.18
pumadyn-8fh 0.89±0.13 0.98±0.16 ◦0.88±0.12 1.00±0.17
pumadyn-8nm ◦0.91±0.13 0.98±0.17 0.92±0.13 1.00±0.18
pumadyn-8nh ◦0.91±0.13 0.97±0.14 0.91±0.13 1.00±0.17

Average ◦0.87±0.16 0.95±0.18 0.89±0.15 1.00±0.20

P-CVW P-FVW Q-OPT Passive
bank-32fm 0.97±0.05 0.99±0.05 ◦0.96±0.04 1.00±0.06
bank-32fh 0.98±0.05 0.99±0.05 ◦0.96±0.04 1.00±0.05
bank-32nm 0.98±0.06 0.99±0.07 ◦0.96±0.06 1.00±0.07
bank-32nh 0.97±0.05 0.99±0.06 ◦0.96±0.05 1.00±0.06
kin-32fm ◦0.79±0.07 0.93±0.09 1.53±0.14 1.00±0.11
kin-32fh ◦0.79±0.07 0.92±0.08 1.40±0.12 1.00±0.10
kin-32nm 0.95±0.04 0.97±0.04 ◦0.93±0.04 1.00±0.05
kin-32nh 0.95±0.04 0.97±0.04 ◦0.92±0.03 1.00±0.05

pumadyn-32fm ◦0.98±0.12 0.99±0.13 1.15±0.15 1.00±0.13
pumadyn-32fh 0.96±0.04 0.98±0.05 ◦0.95±0.04 1.00±0.05
pumadyn-32nm 0.96±0.04 0.98±0.04 ◦0.93±0.03 1.00±0.05
pumadyn-32nh 0.96±0.03 0.98±0.04 ◦0.92±0.03 1.00±0.04

Average ◦0.94±0.09 0.97±0.07 1.05±0.21 1.00±0.07

Table 3. The mean squared test error for the wafer alignment problem (means and
standard deviations over 220 wafers). ‘Conv.’ indicates the conventional heuristic of
choosing the outer markers.

P-CVW P-FVW Q-OPT Passive Conv.
◦1.93±0.89 2.09±0.98 1.96±0.91 2.32±1.15 2.13±1.08
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process is repeated for all 220 wafers. Since the choice of the sampling location
by AL methods is stochastic, we repeat the above experiment for 100 times with
different random seeds and take the mean value.

The mean and standard deviation of the squared test error over 220 wafers
are summarized in Table 3. This shows that the proposed P-CVW works signif-
icantly better than other sampling strategies and it provides about 10-percent
reduction in the squared error from the conventional heuristic of choosing the
outer markers. We also conducted similar experiments with the first-order or the
third-order models and confirmed that P-CVW still works the best. However, the
errors were larger than the second-order model and therefore we omit the detail.

6 Conclusions

We extended a population-based AL method (FVW) to a pool-based scenario
(P-FVW) and derived a closed-form ‘optimal’ resampling bias function. This
closed-form solution is optimal within the full-expectation framework, but is not
necessarily optimal in the single-trial analysis. To further improve the perfor-
mance, we extended another population-based method (CVW) to a pool-based
scenario (P-CVW), which is input-dependent and therefore more accurate. How-
ever, P-CVW does not allow us to obtain a closed-form solution. To cope with
this problem, we proposed a practical procedure which efficiently searches for a
better solution around the P-FVW optimal solution. Simulations showed that the
proposed method consistently outperforms the baseline passive learning scheme
and compares favorably with other AL methods.
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Abstract. We present an independence-based method for learning
Bayesian network (BN) structure without making any assumptions on
the probability distribution of the domain. This is mainly useful for
continuous domains. Even mixed continuous-categorical domains and
structures containing vectorial variables can be handled. We address the
problem by developing a non-parametric conditional independence test
based on the so-called kernel dependence measure, which can be readily
used by any existing independence-based BN structure learning algo-
rithm. We demonstrate the structure learning of graphical models in
continuous and mixed domains from real-world data without distribu-
tional assumptions. We also experimentally show that our test is a good
alternative, in particular in case of small sample sizes, compared to ex-
isting tests, which can only be used in purely categorical or continuous
domains.

Keywords: graphical models, independence tests, kernel methods.

1 Introduction

There are two basic classes of BN learning algorithms, namely constraint-based
(or independence-based) and model-based approaches. The model-based ap-
proaches often employ a search in the space of all possible structures guided by
a heuristic function, usually penalized log-likelihood or Bayesian metric [1,2,3].
They are also called score-based approach in many literature. One of the chal-
lenges of applying score-based methods is the assessment of informative priors on
possible structures and on parameters for those structures. Constraint-based ap-
proaches carry out conditional independence (CI) tests on the database and build
a BN structure in agreement with the obtained independence restrictions. They
make weak commitments as to the nature of relationships between variables, i.e.,
faithfulness/stability [4,5]. The best-known example of this kind of approaches is
the so-called PC algorithm [4]. The output of PC is the Markov equivalence class
of BN structures, which can often be interpreted as causal graph under some ad-
ditional technical assumptions, e.g., causal sufficiency. Such independence-based
algorithms can essentially be broken into an adjacency phase and an orienta-
tion phase. The rule of learning adjacency is to test whether a set variables Z

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 423–439, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. The “∧”-structure (left) represents the Markov equivalence class of “X ←Y →
Z”, “X →Y →Z”, and “X ←Y ←Z”, where constraints X �⊥⊥Y and X ⊥⊥Y |Z hold by
construction. In the “∨”-structure (right), X ⊥⊥Y and X �⊥⊥Y |Z hold by construction

exists which makes marginally dependent X and Y conditionally independent,
denoted by X �⊥⊥ Y and X ⊥⊥ Y |Z (the so-called “∧”-structure in Fig. 1, left).
The orientation strategy bases on the so-called collider (“∨”-structure) identi-
fication, namely if some subset S exists such that X ⊥⊥ Y |S and X �⊥⊥ Y |(S, Z),
a ∨-structure (Fig. 1, right) can be inferred. Consequently, the accuracy and
reliability of CI tests play a central role in independence-based algorithms.

One of the crucial problems of learning BN structure from data is making a
choice on the kind of probability distributions. Commonly, a local probability
distribution function (PDF) needs to be defined between every variable and its
parents. Such distributions are used to model local interactions among subsets
of variables in the model. CI tests that do not assume any particular family of
distributions are called non-parametric. Although such tests exist for categor-
ical variables, e.g., χ2 test or test via mutual information (MI) is perhaps the
most common one, the problem in continuous or mixed continuous-categorical
domains is considerably harder. The common assumption is for the local PDFs
between parents and children to be linear relations with additive Gaussian errors,
as the correlation analysis in PC algorithm. However, there are many situations
where this assumption fails and the underlying interactions are far from lin-
ear. In some situation, interactions cannot be captured by correlation analysis
at all. To make this apparent, we demonstrate the following toy data example.
We sampled dataset (X0, Y0) as shown in the leftmost plot of Fig. 2 and then
transformed the original dataset by a rotation of angle ω (in degree) into a new
dataset (Xω, Yω). The second and the third plot (from left) in Fig. 2 visualize
the transformed data (X45, Y45) and (X90, Y90) respectively. According to the
generating model with P (X0|Y0 <0)=P (X0|Y0 ≥0) (see Fig. 2 for the descrip-
tion of the underlying model), X0 and Y0 are independent. It is obvious that Xω

and Yω are only independent for ω=0, 90, 180, . . ..
It is easy to see that the correlation matrix ρ0 of the data matrix

D0 :=
(

X0
Y0

)
is a unit matrix, namely ρ0 :=

(
ρX0X0 ρX0Y0

ρY0X0 ρY0Y0

)
=

(
1 0
0 1

)
.

Further, it is well known that the rotation matrix Rω of angle ω in an anticlock-
wise direction has the form of

Rω =
(

cos( π
180ω) sin( π

180ω)
− sin( π

180ω) cos( π
180ω)

)
. Hence,

(
Xω

Yω

)
=: Dω = Rω D0 = Rω

(
X0
Y0

)
,
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Fig. 2. 100 data points of Y0 is sampled from 1
2N (1, 0.01) + 1

2N (−1, 0.01), where
N (μ, σ2) denotes a Gaussian distribution with expectation μ and variance σ2. Data
points of X0 are sampled from P (X0|Y0 < 0) ∝ N (0, 1) and P (X0|Y0 ≥ 0) ∝ N (0, 1).
(Xω, Yω) is transformed dataset with rotation angle ω in an anticlockwise direction.
X0 and Y0 (leftmost plot) as well as X90 and Y90 (second plot from right) are mutually
independent by construction, whereas X45 and Y45 (second plot from left) are strongly
dependent due to the rotation angle 45. The rightmost plot visualizes the typical curve
of the empirical correlation coefficients (red line) for ω∈ [0, 90], and a typical curve of
the empirical kernel dependence measures (blue line), which will be defined in the next
section. Correlation coefficient vanishes for any ω. Kernel dependence measures seem
to capture the magnitude of dependences reasonably.

depicts the dataset transformed by a rotation angle ω. The corresponding cor-
relation matrix ρω is given by

ρω = E [Rω (D0 − E[D0])(D0 − E[D0])T RT
ω] = Rω ρ0 RT

ω = ρ0 ,

where “E[·]” depicts the expectation. This means that the correlation coefficient
vanishes for an arbitrary ω, while the dependence indeed vanishes only for few
specific rotation angles ω=0, 90, 180, . . .. This is the reason why it is not surpris-
ing that the performance of the conventional BN learning algorithms, e.g. PC,
is sometimes unsatisfactory, since it takes only linear interactions into account.

A non-parametric Bayesian method of testing independence on continuous
domains is recently proposed by Margaritis et al. [6,7]. Their method is not
based on a conventional hypothesis test but on the calculation of probability
of independence given data by the Bayesian approach. To determine whether
two variables are (conditionally) independent, they discretized the domains by
maximizing the posterior probability of dependence given data. If the probabil-
ity of independence P (Independence) larger than 1

2 , the independence is verified,
otherwise dependence. More precisely, the method determines the probability
of dependence by calculating the likelihoods of modeling the data as dependent
with a joint multinomial distribution or as independent with two marginal multi-
nomial distribution. Margaritis’ Bayesian method is impressive because it is the
first practicable distribution-free learning of BN structure in purely continuous
domains, although it involves a sophisticated process of domain discretization.
We will compare our test method with this method later.
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2 Kernel Tests of Independence

Since kernel methods [9] can transform the non-linear relationship into a linear
one in the feature space, we use the kernel-based dependence measure introduced
by [10] as the general framework for our tests. First, we recall some standard
definitions. A positive definite kernel kX :X×X → IR on some non-empty set X is
a symmetric function, i.e., kX (x, x′) = kX (x′, x) for any x, x′ ∈ X such that for
arbitrary n ∈ IN and x(1), . . . , x(n) ∈X the matrix K with (K)ij := kX (x(i), x(j))
is positive definite, i.e.,

∑n
i,j=1 cicjkX (x(i), x(j)) ≥ 0 for all c1, . . . , cn ∈ IR. A

reproducing kernel Hilbert space (RKHS) HX is a Hilbert space defined by the
completion of an inner product space of functions kX (x, ·) with x ∈ X and
the inner product defined by 〈kX (x, ·), kX (x′, ·)〉 = kX (x, x′) for all x, x′ ∈ X .
In other words, Φ(x)(·) = kX (x, ·) defines a map from X into a feature space
HX . With the so-called “kernel trick”, a linear algorithm can easily be trans-
formed into a non-linear algorithm, which is equivalent to the linear algorithm
operating in the space of Φ. However, because the kernel function is used for
calculating the inner product, the mapping Φ is never explicitly computed. This
is desirable, because the high-dimensional space may be infinite-dimensional, as
is the case when the kernel, e.g., is a Gaussian: kX : IRm×IRm → IR, kX (x, x

′
)=

exp(−‖x−x
′‖2/2σ2).

Within the kernel framework, the conditional cross-covariance operator ex-
pressing correlations between variables in the RKHS can be introduced. Let
(HX , kX ), (HY , kY), (HZ , kZ) be RKHSs on measurable spaces X , Y, Z respec-
tively, (X, Y, Z) be a random vector on X ×Y×Z. For all f ∈ HX and g ∈ HY ,
there exists (under some technical assumptions [11]) a unique conditional cross-
covariance operator ΣYX|Z such that 〈g, ΣYX|Zf〉HY =EZ [Cov[f(X), g(Y ) | Z]].
If the RKHSs are induced by characteristic kernels [11], e.g., Gaussian kernels,
vanishing of the operator is equivalent to the conditional independence [10]:
ΣŸẌ|Z = O ⇔ X ⊥⊥ Y | Z where Ẍ := (X, Z) and Ÿ := (Y, Z). It should be
stressed that X, Y, Z can be continuous, categorical, vectorial or mixed. For
strictly nominal-categorical variables, the natural way to represent the d nomi-
nal alternatives, namely d unit vectors in a d-dimensional Cartesian coordinate
system: {(1, 0, . . .)T, (0, 1, . . .)T, . . . , (. . . , 0, 1)T} ⊂ IRd.

Following the work of [12,10], we evaluate the operator with Hilbert-Schmidt
(HS) norm and denote the empirical estimator by ĤYX|Z := ‖ΣŸẌ|Z‖2

HS. All
these statements hold also for the unconditional operator and marginal inde-
pendence ΣYX =O⇔X ⊥⊥Y . Given RKHS induced by Gaussian kernels, where
functions being less smooth correspond to larger RKHS-norms, large values will
then indicate correlations between smooth functions of X and Y . A finite cut-off
value for the kernel dependence measure corresponds to neglecting correlations
if they are small or if they occur only on complex (not sufficiently smooth)
functions. Instead of thresholding the kernel measure directly as in our previous
work [10], we employ permutation tests [13] for judging whether dependencies are
significant or not. Although permutation tests require a large number of calcula-
tions of HS-norms, the computation is feasible if we use the incomplete Cholesky



Distribution-Free Learning of Bayesian Network Structure 427

decomposition K̂ = LLT [14] where L is a lower triangular matrix determined
uniquely by this equation. This may lead to considerably fewer columns than
the original matrix. If k columns are returned, the storage requirements are
O(kn) instead of O(n2), and the running time of many matrix operations re-
duces to O(nk2) instead of O(n3). An alternative kernel statistical test based
on moment matching is currently proposed by Gretton et al. [15]. Instead of
computing the HS-norm of the operator directly, they designed a test statis-
tics based on entries of kernel matrices. But, for one thing, this alternative test
is designed for unconditional cases, because the null distribution only in such
cases is known. For the other thing, they claimed that the permutation test
may outperform their alternative in some situation, particularly if the sample
size is small (e.g., less than 200), since the estimation of second moments of
entries of kernel matrices tends to be unreliable (see [15] for experiments with
text data).

Given a data matrix (X, Y, Z) with X := (x(1),. . . ,x(n))T and so on, testing
unconditional independence X ⊥⊥Y via random permutations is straightforward.
But how to approximate the null distribution of the kernel dependence measure
ĤYX|Z under conditional independency is non-trivial. The idea is that random
permutations should release the connection between X and Y to simulate the
independency. On the other hand, the mutual relations between X and Z and
between Y and Z have to be kept, since Z is tied to a specific value. In order to
yield this effect, we propose to restrict the random permutations π to those that
satisfy the condition z(π(i)) = z(i) for i = 1, . . . , n. In other words, if Z is cate-
gorical, π is restricted to random permutations within the same category of Z.
If Z is real-valued or vectorial, the condition could be said to hold if z(πj(i)) and
z(i) are “similar” in some sense. This suggests the use of clustering techniques
to search for an appropriate partition of Z. Then, the data points within the
same partition are similar w.r.t. values of Z (see Tab. 1). This way, we designed
a kernel independence test providing a general non-parametric tool for verify-
ing CI constraints in both conditional and unconditional cases. In our following
experiments, we employed the standard k-means clustering to construct the par-
tition of data points of conditioning variables and computed the approximate
null distribution under conditional independency. The significance level is set to
be 0.05 throughout this paper.

Table 1. Set of random permutations that are used for the test of conditional inde-
pendence X ⊥⊥Y |Z. Z data are clustered into n partition. Within each partition z(i),
generate simulated conditionally independent data (Xπj , Y ).

partition z(1) partition z(2) · · · · · · · · · partition z(n)

Z z(11) z(12) · · · z(1m) z(21) z(22) · · · z(2m) · · · · · · · · · z(n1) z(n2) · · · z(nm)

Y y(11) y(12) · · · y(1m) y(21) y(22) · · · y(2m) · · · · · · · · · y(n1) y(n2) · · · y(nm)

Xπj x(11) x(12) · · · x(1m) x(21) x(22) · · · x(2m) · · · · · · · · · x(n1) x(n2) · · · x(nm)

︸︷︷︸
πj

︸ ︷︷ ︸
permute

︸ ︷︷ ︸
permute

︸ ︷︷ ︸
permute

︸ ︷︷ ︸
...

︸ ︷︷ ︸
permute

︸ ︷︷ ︸
permute
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3 Experiments

Learning BN structure in real applications is challenging, because real-world data
are often on mixed domains and the relationships are often nonlinear. Sometimes,
the real data even do not necessarily have the representation of a BN structure.
The conventional approaches either can not handle them or ignore possible prob-
lems. By means of some benchmark real-world data, we will show some respects,
in which some improvements can be achieved by our method in comparison to
conventional ones, in particular in relation to causal structure learning, to which
the independence-based approaches are supposed to be often applied.

3.1 Real-World BN Structure Learning

Digoxin Clearance. The study of the passage of drugs through the body is of
essential interest in medical science. A real-world dataset on 35 consecutive pa-
tients under treatment for heart failure with the drug digoxin is analyzed in [16]
(see also [17] p. 323 and [18] p. 42). The renal clearances of digoxin, creatinine,
and urine flow were determined simultaneously in each of the patients receiv-
ing digoxin, in most of whom there was prerenal azotemia. Halkin et al. [16]
and Edwards [18] based their analysis on the (partial) correlation coefficient.
In comparison to the correlation analysis and Margaritis’ Bayesian method, we
conducted the kernel tests (see Tab. 2 for results). A visual inspection of the
data indicates that the linearity assumption appears to be reasonable for the
dependence between the creatinine and digoxin clearances (Fig. 3, leftmost). A
linear relation between them was first suggested by Jelliffe et al. [19] and later
confirmed by various clearance studies, which revealed a close relationship be-
tween creatinine and digoxin clearance in many patients. The ready explanation
is that both creatinine and digoxin are mainly eliminated by the kidneys. In
agreement with this explanation, all three tests found the unconditional and
conditional dependence (Tab. 2, first and second row).

As one can see from Fig. 3, the relations between creatinine clearance and
urine flow (second plot) and between digoxin clearances and urine flow (third
plot) are less linear than the relation between creatinine and digoxin clearance
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Fig. 3. Data on 35 consecutive patients under treatment for heart failure with the drug
digoxin. Clearances are given in ml/min/1.73m2 , urine flow in ml/min.
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Table 2. Comparison of independence tests on digoxin clearance data. Significance
level α=0.05 is chosen for analysis via correlations and kernel dependence measures.

Correlation Margaritis’ Bayesian Kernel Dependence

Independence Hypothesis p-value Test P (Independence) Test p-value Test

Creatinine ⊥⊥ Digoxin 0.00 Reject 0.0030 Reject 0.00 Reject

Creatinine ⊥⊥ Digoxin |Urine Flow 0.00 Reject 0.1401 Reject 0.00 Reject

Creatinine ⊥⊥ Urine Flow 0.07 Accept 0.7018 Accept 0.01 Reject

Creatinine ⊥⊥ Urine Flow |Digoxin 0.40 Accept 0.8538 Accept 0.58 Accept

Digoxin ⊥⊥ Urine Flow 0.00 Reject 0.0474 Reject 0.00 Reject

Digoxin ⊥⊥ Urine Flow |Creatinine 0.02 Reject 0.7851 Accept 0.17 Accept

(first plot). The correlation analysis (see also [18] p. 43) did not reveal the de-
pendence between creatinine clearance and urine flow, whereas kernel test did
(third row of Tab. 2). We conjecture that Margaritis’ Bayesian method failed
to detect dependence in this case because of the small sample size, which gives
evidence for better performance of kernel tests in case of small datasets. All
three tests found that, given digoxin clearance, creatinine clearance was not sig-
nificantly related to urine flow rate (Tab. 2, fourth row). All methods found
that in these patients digoxin clearance was significantly related to urine flow
rate (Tab. 2, fifth row). This finding is consistent with the opinion of Halkin
et al. [16], who suspected that the elimination of digoxin might be subject to
reabsorption, which might give rise to a correlation with urine flow. However,
if the linear dependence model is wrong, a biased estimate of the partial cor-
relation and a biased test for independence via linear model may result. Both
non-parametric tests, i.e., kernel tests and Margaritis’ Bayesian method accepted
the hypothesis that, given creatinine clearance, digoxin clearance is independent
of urine flow, whereas the partial correlation did not confirm this hypothesis
(last row of Tab. 2). The finding that digoxin clearance is independent of urine
flow controlling for creatinine clearance is particularly of medical interest. In
summary, the test results revealed that the non-parametric tests are superior
to correlation analysis. This example makes also clear that, in practice, inde-
pendence by kernel measures does not necessarily require the independence by
correlation analysis, although it is theoretically apparent that non-vanishing of
correlation implies non-vanishing of kernel dependence measure.

Even though all CI constraints are correctly detected by some test, we can
have problem to learn BN structures. The problem is that the CI constraints
could be inconsistent w.r.t. representation by BN structures. In this example, we
have “Creatinine⊥⊥Urine Flow|Digoxin” and “Digoxin⊥⊥Urine Flow|Creatinine iden-
tified by both non-parametric tests. Due to the rule of learning adjacency, direct
links between Urine Flow and both clearances are excluded. However, the kernel
test confirmed “Urine Flow �⊥⊥ (Creatinine, Digoxin)” with a p-value of 0.007, i.e.,
urine flow is dependent of clearances, which is indeed plausible from the medical
viewpoint. Such inconsistence violates the so-called intersection property [20] of
a BN structure, which states (Y1 ⊥⊥ X |Y2) ∧ (Y2 ⊥⊥ X |Y1) ⇒ X ⊥⊥ (Y1, Y2). In
fact, the intersection property does not hold in general. A trivial example for
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such violation is that Y1 and Y2 are related deterministically with each other
(see [21,22] for more theoretical discussions about the problem in learning BN
with deterministic nodes), i.e., Y1 and Y2 contain entire information about each
other. The uncertainty of Y1 (or Y2) vanishes due to the knowledge of Y2 (or Y1),
then testing conditional dependences between X and Y1 given Y2 and between X
and Y2 given Y1 cannot provide any evaluable information about the dependence
between X and (Y1, Y2). Mart́ın [23] showed that this property only holds, when
Y1 and Y2 are measurably separated. The so-called “measurable separability”
concept is introduced by Florens et al. [24] and provides a sufficient assumption
to make the intersection property valid [23]. Since such violation essentially re-
veals some symmetry in CI constraints between the measurably inseparable Y1
and Y2 w.r.t. X , we propose to consider (Y1, Y2) as one factor in the resulting
structure, which makes such conflicting information of CI constraints irrelevant.
By means of kernel independence tests, structures containing vectorial variables
can be straightforward handled. The following examples will show that such
construction of nodes gains advantage in the structure learning, in particular, in
relation to the potential causal interpretation of the structure.

Montana Outlook Poll. The data contain the outcome in the Montana Eco-
nomic Outlook Poll in May 1992. This benchmark dataset is listed at http://

lib.stat.cmu.edu/DASL/Stories/montana.html. After removing records with
missing values, the dataset contains 163 entries. The Montana poll asked a ran-
dom sample of Montana residents whether the respondent feels his/her personal
financial status is worse, the same, or better than a year ago, and whether they
view the state economic outlook as better over the next year. Respondents are
classified by sex, age, income, political orientation, and area of residence in the
state. In the triple {Financial,Political,Outlook}, we observe (Outl.⊥⊥Fin. | Pol.)
and (Outl. ⊥⊥ Pol. | Fin.). According to the rule of learning adjacency, the first
two constraints excluded a direct link between Outl. and Fin., and a direct link
between Outl. and Pol. (Fig. 4, left), which seems to be implausible, due to the
constraint (Outl. �⊥⊥ (Fin., Pol.)) identified by kernel test. If we merge Fin. and
Pol. together to a new node, we will obtain indeed a structure (Fig. 4, right)
which can be plausibly interpreted causally.

US Crime Data. The US crime data [25] are crime-related and demographic
statistics for 47 US states in 1960. This dataset is listed as benchmark for causal
structure learning on the homepage of TETRAD project. The dataset consists of

Fig. 4. Learning BN structure on Montana data. The left plot represents the structure
learned with inconsistent CI constraints. The right plot illustrates a structure without
representing the violation of the intersection property of a BN structure.
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14 variable: Crime rate; the number of Young Male; States: binary indicator
variable for Southern states; Education; Ex59, Ex60: 1959, 1960 per capita
expenditure on police by state and local government; Young labor force partic-
ipation rate; the number of Male; Population; the number of Non-Whites;
U1: unemployment rate of urban males of age 14−24; U2: unemployment rate
of urban males of age 35−39; Assets: value of transferable goods and assets or
family income; Poverty: the number of families earning below 1/2 the median
income. It is remarkable that the output of PC is not a BN contains 4 bi-directed
edges (Fig. 5, left), which are traced back to the inconsistence of CI constraints.
If we wish to find out the causal relationships between crime rate and other
factors, the result of PC is unsatisfactory, although they provide some plausible
connections between the expenditure on police and crime rate, some relation-
ships among demographic statistics. Regarding the meaning of variables, it is
obvious that some variables must be strongly related. In order to better under-
stand the phenomenon of crime rate, we propose to reconstruct a demographic
and geographic factor, called Demo-Geographic (comprising Population,
Non-white, Male, Young Male, and States), a factor called Expendi-

ture (containing Ex59 and Ex60), a factor called Employment (containing
Young labor, U1, and U2), and a factor Wealth (containing Assets and
Poverty). The variable Crime remains unchanged. We conducted the so-called
KCL algorithm [10] to learn the causal ordering of variables on the complete con-
nected graph. After that, we used the kernel independence tests to remove the
unnecessary edges. The output is shown in the right plot of Fig. 5. The variable
Crime is reasonably detected as the effect of other factors. Interestingly, Crime

is conditional independent of Employment given Expenditure. This example
demonstrates the main advantage of kernel tests, i.e., the possibility to analyze
the relationship between vectorial factors on continuous, categorical, vectorial
or mixed domains. Nonetheless, it is actually difficult to judge the performance
of a structure learning algorithm by experiments with real-world data, where
the ground truth is not completely known, although the outputs of previous
examples seem to be plausible in relation to intuitive causal interpretation. For
this reason, we conduct experiments with the kernel tests in comparison to other

Fig. 5. Outputs learned by PC algorithm (left), KCL and kernel independence tests
(right) from US crime data
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methods on purely categorical or continuous domains to get more evidence of
performance improvements.

3.2 Comparison of Performance on Categorical Domains

First, we use toy data on categorical domains. The data are sampled from log-
ically linked models, namely noisy OR gates. Such Boolean functions are sim-
plified models for relations in many real-world situations. In general, an n-bit
X1, . . . , Xn ∈{0, 1} noisy OR gate can be characterized by the conditional prob-
abilities P (Xn+1 = 1 | x1, . . . , xn) = (1−r2)(1−rx1+...+xn

1 )+r2 with parameters
r1, r2 ∈ [0, 1]. r1 can be interpreted as the probability of suppressing the input 1;
r2 can be interpreted as the probability for a spontaneous inversion of the out-
put. If r1 and r2 vanish, the OR gate is deterministic. For the sake of notational
simplicity, we chose r1 =r2 =:r in this paper, i.e.,

P (Xn+1 =1 | x1, . . . , xn) = (1 − r)
(
1 − rx1+...+xn

)
+ r . (1)

Shorthand ORr{X1, . . . , Xn} is used to depict a noisy OR gate with noise level
r∈ [0, 1]. Data are sampled from a 2-bit noisy OR (Fig. 1, right) with P (X =1)=
0.6 and P (Y =1)=0.5 as inputs and Z =ORr{X, Y } as output. The underlying
model implies X ⊥⊥ Y and X �⊥⊥ Y |Z. We sampled 1000 datasets with different
noise levels r = 0.0, 0.1, 0.2, 0.3 and different sample sizes 20, 50, 100, 150, 200.
Fig. 6 shows the real noise statistics in term of percentage of erroneous outputs
in 1000 data points. We perform the permutation test via kernel dependence
measure (KD) and two popular independence tests on categorical domains, i.e.,
likelihood ratio χ2 test, permutation test via MI. Since all these three CI tests
are non-parametric, their performance are expected to be similar, in the sense
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Fig. 6. Noise statistics in the term of percentage of erroneous outputs in 1000 data
points sampled by 2-bit noisy OR gates. The plots illustrate 4 different noise levels
r = 0, 0.1, 0.2, 0.3 as in Eq. (1). Each box has lines at the lower quartile, median, and
upper quartile values of the percentage of erroneous outputs. The whiskers are lines
extending from each end of the box to show the extent of the rest of the percentage.
Outliers are the percentage beyond the ends of the whiskers.
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Table 3. Numerical comparison of three different independence tests on categorical
domain, i.e., likelihood ratio χ2 test, permutation test via mutual information (MI),
and permutation test via kernel dependence (KD) measure. The generating models are
noisy OR gates with 4 different noise levels r = 0.0, 0.1, 0.2, 0.3 as shown in Eq. (1).
The experiments are conducted with 1000 replications. The entries show how often (in
percentage) the constraint X ⊥⊥Y or X �⊥⊥Y |Z is identified.

Accepting X ⊥⊥Y

Sample Size 20 50 100 150 200
Noise Level χ2 MI KD χ2 MI KD χ2 MI KD χ2 MI KD χ2 MI KD

r = 0.0 94.0 97.4 88.0 94.7 96.3 90.8 95.6 95.9 92.5 94.3 93.7 92.4 94.1 94.3 91.8
r = 0.1 93.1 96.4 86.5 94.6 96.0 90.7 94.2 94.0 91.1 95.8 96.3 94.4 94.2 94.8 92.3
r = 0.2 93.6 96.9 86.9 94.9 96.1 91.3 96.3 96.1 93.1 95.7 95.7 93.5 93.6 94.0 91.4
r = 0.3 94.5 97.1 87.3 95.9 97.0 93.0 93.5 93.6 90.7 93.6 94.1 91.6 94.4 94.8 93.2

Noise Level Rejecting X ⊥⊥Y |Z
r = 0.0 24.8 54.8 23.5 94.5 97.7 91.9 100 100 98.0 100 100 100 100 100 100
r = 0.1 23.5 33.7 16.9 57.6 57.0 54.8 85.9 84.7 89.2 97.6 97.3 98.0 99.3 99.2 99.7
r = 0.2 14.9 18.9 8.9 25.1 22.7 22.5 39.8 40.7 40.5 56.2 57.2 60.0 71.6 72.5 74.8
r = 0.3 9.9 10.9 7.0 10.4 10.3 9.6 16.3 16.5 16.3 19.1 21.5 19.2 23.1 23.9 23.9

that the levels of type I and II errors are almost the same. The larger the sample
size and the less noisy the model, the better the performance (see Tab. 3 for
results). The kernel test is slightly worse than the other two in the case of
20 data points. The actual benefit of kernel tests does not lie in the tests on
categorical domains, but in tests on continuous or hybrid domains. Nonetheless,
the kernel independence test provides a good alternative to the popular tests on
categorical domains.

3.3 Comparison of Performance on Continuous Domains

Toy data are generated by functional models on continuous domains. Fisher’s Z
test, Margaritis’ Bayesian method and permutation test via kernel dependence
measures are evaluated. Although the estimation of MI on continuous domains
is an unsolved problem in its generality, there are some attempt to do that.
We performed permutation test via MI using the estimation method proposed
by Kraskov et al. [8]. First, we sampled the so-called Meander data. The gen-
erating model of Meander data is proposed by Margaritis [26]. It resembles a
spiral (Fig. 7). This dataset is challenging because the joint distribution of X
and Y given Z changes dramatically with the given value of Z. According to
the functional relation, X and Y are conditionally independent given Z, how-
ever, unconditionally dependent, in fact strongly correlated (rightmost plot of
Fig. 7). We generated 1000 datasets and ran tests. Tab. 4 shows the results
for samples sizes ranging from 20 to 200. The dependence between X and Y
can already be captured by the linear relation. All methods achieved already
very good performance at testing X �⊥⊥ Y from merely 20 data points. Testing
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Fig. 7. Generating model of meander dataset (leftmost), which implies X �⊥⊥ Y and
X ⊥⊥Y |Z. 3-dimensional plot of the Meander dataset (middle) and projection of data
along Z axis (rightmost)

Table 4. Comparison of independence tests on continuous domains, i.e., Fisher’s Z
test, Margaritis’ Bayesian method, and permutation test via mutual information and
kernel dependence measures. The underlying model Meander is given by Fig. 7. The
experiments are conducted with 1000 replications. The entries show how often (in
percentage) the constraint X �⊥⊥Y and X ⊥⊥Y |Z are identified.

Rejecting X ⊥⊥Y Accepting X ⊥⊥Y |Z
Sample Size 20 50 100 150 200 20 50 100 150 200
Fisher’s Z 100 100 100 100 100 0 0 0 0 0

Margaritis’ Bayesian 94.3 100 100 100 100 4.8 15.1 21.2 23.2 33.2
Mutual Information 99.6 100 100 100 100 8.6 19.4 33.8 38.9 43.7
Kernel Dependence 99.9 100 100 100 100 35.1 49.7 67.0 75.3 79.9

Fig. 8. Functional models with a ∧-structure (left plot) and a ∨-structure (right plot).
The pairs of functions Mk = (fi, fj) with i, j = 1, . . . , 5 and k = 1, . . . , 10 for both
structures are defined in the table.
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Fig. 9. 2-dimensional plots of data sampled from a ∧-structure (Fig. 8, first plot),
where X and Y have a functional relation Mk = (fi, fj) (see table in Fig. 8) with Z,
respectively. The illustrated sample contains 200 data points.

Table 5. Comparison of various independence tests on continuous domains sampled
by a ∧-structure (Fig. 8, first plot). The parameter Mk =(fi, fj) of models is defined
in the table in Fig. 8. The entries show how often (in percentage) X �⊥⊥Y and X ⊥⊥Y |Z
are identified after 1000 replications of simulations.

Rejecting X ⊥⊥Y

Mk =(fi, fj) M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Fisher’s Z 100 4.2 93.6 100 1.8 57.6 71.5 17.5 41.0 58.6
Margaritis’ Bayesian 100 2.0 42.5 100 2.0 27.6 100 1.7 4.0 18.6
Mutual Information 91.0 43.2 31.9 100 33.3 60.2 100 5.2 65.5 9.2
Kernel Dependence 100 95.6 63.9 100 63.9 56.1 100 11.5 97.8 68.7

Accepting X ⊥⊥Y |Z
Fisher’s Z 94.0 95.6 94.1 95.6 95.5 72.2 10.6 81.5 1.2 64.3

Margaritis’ Bayesian 97.0 97.6 97.9 98.7 97.0 97.9 98.9 98.3 98.7 98.8
Mutual Information 80.1 92.5 93.6 88.4 85.7 92.9 88.2 97.5 93.6 89.4
Kernel Dependence 93.8 93.8 92.5 93.4 93.3 93.5 93.4 94.5 94.2 92.9

conditional independence X ⊥⊥ Y |Z is more challenging. Here, the kernel test
clearly outperforms other three methods. Fisher’s Z test fails completely due to
the incorrect multivariate Gaussian assumption. The kernel independence test
made significantly less errors than Margaritis’ Bayesian method and test via
MI. In order to gain more evidence of performance in learning BN structure, we
sampled datasets of 200 data points by different functional models with the ∧-
and ∨-structures (Fig. 8). We define the functional relations f1,...,5 in the same
way as proposed in [26] and use all pairs of them Mk =(fi, fj), i.e., 10 different
combinations M1, . . . , M10 as shown in the table in Fig. 8, added by a Gaus-
sian noise as underlying ground-truth for the sampling. One sample of 200 data
points for the ∧-structure (left plot in Fig. 8) with M1, . . . , M10 is visualized in
Fig. 9 and Fig. 10. The performance of various independence tests after 1000
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Fig. 10. 2-dimensional plots of data sampled from a ∧-structure (Fig. 8, first plot),
where X and Y have a functional relation Mk = (fi, fj) (see table in Fig. 8) with Z,
respectively. The illustrated sample contains 200 data points.
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Fig. 11. 2-dimensional plots of data sampled from a ∨-structure (Fig. 8, second plot),
where Z has a functional relation Mk =(fi, fj) (see table in Fig. 8) with X and Y . The
illustrated sample contains 200 data points.
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Fig. 12. 3-dimensional plots of data from a ∨-structure (Fig. 8, second plot), where
Z has a functional relation Mk = (fi, fj) (see table in Fig. 8) with X and Y . The
illustrated sample contains 200 data points.
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Table 6. Comparison of various independence tests on continuous domains sampled
by a ∧-structure (Fig. 8, first plot). The parameter Mk =(fi, fj) of models is defined
in the table in Fig. 8. The entries show how often (in percentage) X ⊥⊥Y and X �⊥⊥Y |Z
are identified after 1000 replications of simulations.

Accepting X⊥⊥Y Rejecting X ⊥⊥Y |Z
Mk =(fi, fj) M1,...,10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Fisher’s Z 94.6 100 4.1 92.1 77.1 4.7 58.8 61.2 5.1 3.9 20.8

Margaritis’ Bayesian 98.1 91.4 3.9 10.9 84.8 3.1 9.1 75.0 2.1 3.7 6.7

Mutual Information 92.3 92.3 66.8 17.5 76.9 65.6 16.9 76.3 1.2 21.9 8.0

Kernel dependence 94.1 100 92.0 60.7 100 96.0 51.7 100 18.7 93.6 46.9

replications on these datasets is summarized in Tab. 5. One sample of 200 data
points for the ∨-structure (right plot in Fig. 8) with M1, . . . , M10 is visualized
in Fig. 11 and Fig. 12. The performance of various independence tests of 1000
replications on these datasets is summarized in Tab. 6.

One can see that all methods make relatively few errors at discovering in-
dependence, i.e., X ⊥⊥ Y in the ∨-structure (left half of Tab. 6) and X ⊥⊥ Y |Z
in the ∧-structure (under half of Tab. 5). Fisher’s Z test performed very bad
in the case of testing conditional independence on data sampled by models M7
and M9 (first row of the under half of Tab. 5). In summary, the kernel tests
outperformed the other non-parametric approaches, i.e., Margaritis’ Bayesian
method and test via mutual information, in cases of testing dependence, i.e.,
X �⊥⊥Y in the ∧-structure (upper half of Tab. 5) and X �⊥⊥Y |Z in the ∨-structure
(see the right half of Tab. 6). In addition, the results indicate that the fluctua-
tion of the kernel tests within different models is significantly smaller than that
of the correlation analysis based on the linear model. For this reason, we can
reasonably expect more accuracy and reliability in testing CI constraints, and
consequently better performance in identification of ∧- and ∨-structures, thus
structure learning in general by using kernel tests in existing independence-based
algorithms.

4 Conclusion

A new method for structure learning of Bayesian networks with arbitrary dis-
tributions on arbitrary domains is demonstrated. This was made possible by
the use of the probabilistic non-parametric conditional independence tests pre-
sented in the paper. Our evaluation on both real and artificial data shows
that our method performs well against existing alternatives. Using kernel in-
dependence tests for learning Bayesian network structure is expected to make
less errors than other state-of-the-art methods used in the independence-based
algorithms.
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Abstract. A straightforward nonlinear extension of Granger’s concept
of causality in the kernel framework is suggested. The kernel-based ap-
proach to assessing nonlinear Granger causality in multivariate time se-
ries enables us to determine, in a model-free way, whether the causal
relation between two time series is present or not and whether it is di-
rect or mediated by other processes. The trace norm of the so-called
covariance operator in feature space is used to measure the prediction
error. Relying on this measure, we test the improvement of predictability
between time series by subsampling-based multiple testing. The distribu-
tional properties of the resulting p-values reveal the direction of Granger
causality. Experiments with simulated and real-world data show that our
method provides encouraging results.

Keywords: time series, Granger causality, kernel methods.

1 Introduction

In this paper, a time series X:=(. . . , xt−1, xt, xt+1, . . .) is a discrete time, contin-
uous state process where t∈Z is a certain discrete time point. Time points are
usually taken at equally spaced intervals. We consider, without loss of generality,
a triviariate time series (X, Y, Z) measured simultaneously, where X, Y, Z can,
in general, again be multivariate time series. The problem that we focus on is
that whether the underlying process of X is causal to the underlying process
of Y and/or the other way around, when the underlying process Z is known.
The well-known concept of causality in analysis of times series is the so-called
Granger causality: The process X Granger causes another process Y given a
third process Z (subsequently denoted as X⇒Y | Z), if future values of Y can be
better predicted using the past values of (X, Y, Z) compared to using the past
values of (Y, Z) alone.

For the sake of simplicity, we first start with the bivariate case (X, Y). The
time-delayed embedding vector reconstructing the state (or phase) space of times
series X is expressed as

Xt,r,m =(xt−(m−1)r, . . . , xt−2r , xt−r, xt)T , (1)

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 440–455, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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where m is the embedding dimension and r is the time delay (or lag) between
successive elements of the state vector [1,2]. The choice of m, r depends on the
dynamics of underlying process. If not otherwise stated in this paper, r = 1,
m = 100 and the expression Xt = (xt−99, . . . , xt−2, xt−1, xt)T is used. Yt can be
defined analogously. For a more principled choice of the embedding dimension
and the time lag we refer to [3,4]. Like many of the existing causality measures,
the test described in this paper is also based on the notion of the embedding
vector. To assess the causal hypothesis X⇒Y, Granger causality considers the
following autoregressive predictions:

Yt+1 = aT Xt + ε
(Y)
t and Yt+1 = bT

1 Yt + bT
2 Xt + ε

(Y|X)
t (2)

where ε
(Y)
t and ε

(Y|X)
t represent the prediction errors, and a, b1, b2 denote regres-

sion coefficient vectors. The coefficient vectors and constants are determined so
as to minimize the variance of ε

(Y)
t and ε

(Y|X)
t . Once the coefficient vectors have

been calculated, the causal inference of X on Y can be verified if the variance
Var[ε(Y|X)

t ] is significantly smaller than Var[ε(Y)
t ]. The opposite direction X⇐Y

can be analogously tested. Such standard test of Granger causality developed
by Granger [5] assumes linear regression models, and its application to nonlin-
ear systems may not be appropriate in the general case. A nonlinear extension
of Granger causality, called the extended Granger causality index (EGCI) was
proposed in [6]. The main idea of this technique is to divide the phase space into
a set of small neighborhoods and approximate the globally nonlinear dynam-
ics by local linear regression models. However, the local linearity is obviously
a restrictive assumption. Another recently introduced nonlinear extensions of
Granger causality (NLGC) [7] is based on kernel autoregression scheme, instead
of a linear autoregression. Although this method takes no restrictive assumption
of linearity, the method is fixed to a certain class of functions, i.e., nonlinear
radial based functions (RBFs) and assume the additivity of the interaction be-
tween these functions. In this paper, we generalize the Granger causality in the
kernel framework and present a straightforward nonlinear extension.

2 Kernel Framework

A positive definite kernel kX :X ×X → IR on a non-empty set X is a symmetric
function, i.e., kX (x, x′) = kX (x′, x) for any x, x′ ∈ X such that for arbitrary
n ∈ IN and x(1), . . . , x(n) ∈ X the matrix K with (K)ij := kX (x(i), x(j)) is
positive definite, i.e.,

∑n
i,j=1 cicjkX (x(i), x(j)) ≥ 0 for all c1, . . . , cn ∈ IR. A

reproducing kernel Hilbert space (RKHS) [8] HX is a Hilbert space defined by
the completion of an inner product space of functions kX (x, ·) with x ∈ X and
the inner product defined by 〈kX (x, ·), kX (x′, ·)〉 = kX (x, x′) for all x, x′ ∈ X . In
other words, Φ(x)(·) = kX (x, ·) defines a map from X into a feature space HX .
With the so-called “kernel trick”, a linear algorithm can easily be transformed
into a non-linear algorithm, which is equivalent to the linear algorithm operating
in the space of Φ. However, because the kernel function is used for calculating
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the inner product, the mapping Φ is never explicitly computed. This is desirable,
because the high-dimensional space may be infinite-dimensional, as is the case
when the kernel is ,e.g., a Gaussian or Laplacian.

In kernel framework, the autoregression models of Eq. 2 can be replaced by

aT Φ(Yt+1) = bT
1 Ψ(Yt) + ε

(Y)
t and aT Φ(Yt+1) = bT

2 Ψ(Yt, Xt) + ε
(Y|X)
t (3)

where Φ, Ψ are nonlinear maps into feature spaces HY , HY⊗X respectively. In
the conditional case (conditioning on Z), we will have

aT Φ(Yt+1) = bT
1 Ψ(Yt, Zt) + ε

(Y)
t and aT Φ(Yt+1) = bT

2 Ψ(Yt, Zt, Xt) + ε
(Y|X)
t (4)

where Φ, Ψ are nonlinear maps into HY , HY⊗Z⊗X respectively. Then, if Var[ε(Y|X)
t ]

is significant smaller than Var[ε(Y)
t ], X ⇒ Y | Z can be verified, otherwise no ev-

idence for Granger causality. To test this significance, we define the covariance
operator [9] expressing variance of variables in the feature space.

2.1 Covariance Operator

Suppose we have random vector (X, Y ) taking values on X×Y. The base spaces
X and Y are topological spaces. Measurability of these spaces is defined with
respect to the Borel σ-field. The joint distribution of (X, Y ) is denoted by PXY

and the marginal distributions by PX and PY . Let (X , BX ) and (Y, BY) be
measurable spaces and (HX , kX ), (HY , kY) be RKHSs of functions on X and Y
with positive definite kernels kX , kY . We consider only random vectors (X, Y ) on
X ×Y such that the expectations EX [kX (X, X)], EY [kY(Y, Y )] are finite, which
guarantees HX and HY are included in L2(PX) and L2(PY ) respectively, where
L2(μ) denotes the Hilbert space of square integrable functions with respect to
a measure μ. It is known that there exists a unique operator ΣYX , called cross-
covariance operator, from HX to HY such that

〈g, ΣYXf〉HY = EXY [f(X)g(Y )] − EX [f(X)]EY [g(Y )] = Cov[f(X), g(Y )]

for all f ∈ HX , g ∈ HY . Here, Cov[·] denotes the covariance. EX [·], EY [·] and
EXY [·] denote the expectation over PX , PY and PXY , respectively. Baker [9]
showed that ΣYX has a representation of the form ΣYX = Σ

1/2
Y Y VYXΣ

1/2
XX with

a unique bounded operator VYX :HX →HY such that ‖VYX‖≤ 1, where ‖ · ‖ is
used for the operator norm of a bounded operator, i.e., ‖V ‖ = sup‖f‖=1 ‖V f‖.
Moreover, it is obvious that ΣXY = Σ∗

YX , where Σ∗ denotes the adjoint of an
operator Σ. If X is equal to Y , the positive self-adjoint operator ΣY Y is called
the covariance operator.

Based on the cross-covariance operator, we introduce the conditional co-
variance operator. Let (HS , kS), (HT , kT ), (HY , kY) be RKHSs on measur-
able spaces S, T , Y respectively. Let (X, Y ) = (S, T, Y ) be a random vector on
S×T ×Y, where X =(S, T ) and HX =HS⊗HT . The positive self-adjoint operator
ΣY Y |X :=ΣY Y −Σ

1/2
Y Y VYXVXY Σ

1/2
Y Y is called the conditional covariance operator,
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where VYX and VXY are the bounded operators derived from ΣYX and ΣXY . If
Σ−1

XX exists, we can rewrite ΣY Y |X as ΣY Y |X =ΣY Y −ΣYXΣ−1
XXΣXY . Fukumizu

et al. [10, Proposition 2] showed that 〈g, ΣY Y |Xg〉HY = inff∈HX EXY

[∣
∣(g(Y )−

EY [g(Y )])−(f(X)−EX[f(X)])
∣
∣2

]
for any g ∈ HY . This is an analogous to the

well-known results on covariance matrices and linear regression: The conditional
covariance matrix CY Y |X = CY Y −CYXC−1

XXCXY expresses the residual error
of the least square regression problem as bTCY Y |Xb=mina EXY ‖bTY − aTX‖2.
To relate this residual error to the conditional variance of g(Y ) given X , the
following assumption for RKHSs is made.

Assumption 1. Let (HX , kX ) be an RKHS on measurable space X , then HX+IR
is dense in L2(PX) for every probability measure PX on X , where “+” means
the direct sum of Hilbert spaces.

This assumption is the necessary and sufficient condition that the kernels are
“characteristic”. The notation of the characteristic kernels is a generalization of
the characteristic function EX [exp(

√
−1uTX)], which is the expectation of the

(complex-valued) positive definite kernel k(x, u)=exp(
√

−1uTx) (see [11] for de-
tails). One popular class of characteristic kernels is the universal kernels [12] on
a compact metric space, e.g., the Gaussian RBF kernel or Laplacian kernel on a
compact subset of IRm, because the Banach space of bounded continuous func-
tions on a compact subset X of IRm is dense in L2(PX) for any PX on X . Another
example is the Gaussian or Laplacian kernel on the entire Euclidean space, since
many random variables are defined on non-compact spaces. One can prove that,
Assumption 1 holds for these kernels (see Appendix A1 in [13] for the proof). Un-
der Assumption 1, one can show that 〈g, ΣY Y |Xg〉HY =EX

[
VarY |X [g(Y )|X ]

]
for

all g ∈HY . Thus, the conditional covariance operator expresses the conditional
variance of g(Y ) given X in the feature space. As a side note, Ancona et al. [14]
claimed that not all kernels are suitable for their nonlinear prediction schemes.
They presented only sufficient conditions, which hold for Gaussian kernels. The
kernel framework allows wider class of kernels and the kernel functions for kX
and kY (or kY⊗Z), consequently maps Φ, Ψ in Eq. 3 (or in Eq. 4), are not nec-
essarily to belong to the same function class. In particular, even though one can
overall use Gaussian kernels kX : IRm×IRm →IR, kX (x, x

′
)=exp(−‖x−x

′‖2/2σ2)
(as we did in all experiments), the parameter σ2 of kernels can be adapted to
different variables independently. We set the parameter such that 2σ2 equals
the variance of the variable. For these reasons, our framework is more general
and flexible than the framework of the state-of-the-art approaches, as described
in [6,7,15].

To evaluate the conditional covariance operator, we use the trace norm, be-
cause it is not difficult to see that the trace norm of the operator is directly
linked with the sum of residual errors, namely

Tr(ΣY Y |X)=
∑

i

min
f∈HX

EXY

[∣
∣(φi(Y )−EY [φi(Y )])−(f(X)−EX[f(X)])

∣
∣2

]
,

where {φi}∞i=1 is the complete orthonormal system of the separable RKHS HY .
An RKHS (HY , kY) is separable, when the topological space Y is separable
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and kY is continuous on Y×Y [16]. It can be shown that ΣY Y |X ≤ΣY Y |S with
X =(S, T ), where the inequality refers to the usual order of self-adjoint operators,
namely if A≤B ⇔〈Ag, g〉≤ 〈Bg, g〉 for all g ∈HY . Further, if HX , HY , HS are
given by characteristic kernels, ΣY Y |X =ΣY Y |S ⇔ Y ⊥⊥T | S, which denotes that
Y and T are conditionally independent, given S (denoted by Y ⊥⊥T |S). In terms
of the trace norm, we have the following property:

Property 1. Let TY Y |X denote the trace norm of the conditional covariance
operator Tr(ΣY Y |X) with X := (S, T ). Then we have TY Y |S,T < TY Y |S ⇔ Y �⊥⊥
T | S and TY Y |S,T =TY Y |S ⇔ Y ⊥⊥T | S.

All technical details are omitted due to space limitations. Property 1 generalizes
the (P1)-property, required by Ancona et al. [7, Section II.A] for any nonlinear
extension of Granger causality, since (P1)-property describes merely the bivariate
case, while Property 1 holds for multivariate cases.

2.2 Empirical Estimation of Operators

In analogy to [11], we introduce the estimations of TY Y and TY Y |X based on
sample (x(1), y(1)), . . . , (x(n), y(n)) from the joint distribution. Using the empir-
ical mean elements m̂

(n)
X = 1

n

∑n
i=1 kX (x(i), ·) and m̂

(n)
Y = 1

n

∑n
i=1 kY(y(i), ·), an

estimator of ΣYX is Σ̂
(n)
YX = 1

n

∑n
i=1

(
kY(y(i), ·)−m̂

(n)
Y

)
〈kX (x(i), ·)−m̂

(n)
X , ·〉HX .

Σ̂
(n)
Y Y and Σ̂

(n)
XX can be defined accordingly. An estimator of ΣY Y |X is then de-

fined by Σ̂
(n,ε)
Y Y |X = Σ̂

(n)
Y Y −Σ̂

(n)
YX(Σ̂(n)

XX +εI)−1Σ̂
(n)
XY , where ε>0 is a regularization

constant that enables inversion.1 It can be shown that T̂
(n)
YY = Tr(Σ̂(n)

YY ) is a
consistent estimator of TYY , which guarantees to converge in Hilbert-Schmidt
norm at rate n−1/2. Moreover, T̂

(n,ε)
YY |X = Tr(Σ̂(n,ε)

YY |X) is a consistent estimator of
TYY |X . If ε converges to zero more slowly than n−1/2, this estimator converges to
TYY |Z (see [13] for proofs). For notational convenience, we will henceforth omit
the upper index and use T̂YY and T̂YY |X to denote the empirical estimators.
The computation with kernel matrices of n data points becomes infeasible for
very large n. In our practical implementation, we use the incomplete Cholesky
decomposition K̂ = LLT [19] where L is a lower triangular matrix determined
uniquely by this equation. This may lead to considerably fewer columns than the
original matrix. If k columns are returned, the storage requirements are O(kn)
instead of O(n2), and the running time of many matrix operations reduces to
O(nk2) instead of O(n3).

1 The regularizer is required as the number of observed data points is finite, whereas
the feature space could be infinite-dimensional. The regularization may be under-
stood as a smoothness assumption on the eigenfunctions of HX . It is analogous to
Tikhonov regularization [17] or ridge regression [18]. Many simulated experiments
showed that the empirical measures are insensitive to ε, if it is chosen in some ap-
propriate interval, e.g., [10−10, 10−2]. We chose ε=10−5 in all our experiments.
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3 Subsampling-Based Testing of Granger Causality

Essentially, Granger causality is expressed in terms of predictability: If data vec-
tor X causally influences data vector Y , then Y would be predictable by X ,
we denote X → Y . Shorthand X �→ Y denotes the fact that the predictability
on Y by X cannot be verified. Note that, in this paper, we distinguish between
simple arrow “→” expressing predictability and the double arrow “⇒” express-
ing Granger causality. To capture the predictability in a nonlinear setting by
a significance test, we take the empirical estimation of the trace norm T̂YY |X
and conduct permutation tests to simulate this measure under the null hypoth-
esis, i.e., unpredictable. Given a set of random permutations {π1, . . . , πm}, we
shuffle the data vector X = (x(1), . . . , x(n))T and calculate the empirical null
distribution {T̂YY |Xπ1 , . . . , T̂YY |Xπm }. Then, we determine the p-value p, which
is the percentage of values in {T̂YY |Xπ1 , . . . , T̂YY |Xπm }, which are properly less
than T̂YY |X . Smaller p-values suggest stronger evidence against the null hy-
pothesis (unpredictable), and thus stronger evidence favoring the alternative
hypothesis (predictable). As a cut-off point for p-values, a significance level α
is pre-specified. A typical choice is α = 0.05. If p < α, the null hypothesis is re-
jected, which means the predictability X →Y is significantly verified; Otherwise,
we have X �→ Y . This procedure can be straightforwardly extended to testing
conditional predictability, i.e., X → Y | Z. The measure and the corresponding
empirical null distribution will be T̂YY |Z,X and {T̂YY |Z,Xπ1 , . . . , T̂YY |Z,Xπm }. It
is remarkable that the test of predictability can be straightforwardly applied
to multi-dimensional conditioning variables. Such cases are usually difficult by
partitioning and Parzen-window approaches, which are common practice for non-
parametric conditional independence tests. X, Y, Z in “X →Y | Z” could be usual
random variables, and are not necessarily time series. The test of predictability
alone does not use the temporal information. Granger’s concept bases the asym-
metry of causality on the time flow. Consequently, to test whether a time series
X Granger causes another time series Y, we should first filter out the prediction
power of past values of Y. For this purpose, we expand X with embedding vec-
tors {. . . , Xt−1, Xt, Xt+1, . . .} and the system Y to {. . . , Yt−1, Yt, Yt+1, . . .}. In
doing so, we can test predictability in a temporal context.

So far, we have shown the test of predictability on a single sample. The statis-
tical power of such single tests is limited if the number of data points involved is
not very large. Although long time series are often available in real applications,
working with kernel matrices is only tractable, if the number of data points is
not too large. For these reasons, we propose to utilize subsampling-based mul-
tiple testing. If the subsample size is moderate, the multiple testing remains
feasible in spite of replications of the single test. In particular, such a multiple
test can significantly increase the power of statistical tests in comparison to a
single test [20]. In addition,the subsampling-based procedure characterizes the
predictability through local segments of time series, i.e., sub-time-series, which
makes the test somewhat robust with respect to e.g., global non-stationarity of
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the time series. Fig. 1 summarizes the multiple testing procedure for detecting
Granger causality. Step 1 runs single hypothesis tests on N random subsamples
and obtains N p-values, one for each subsample. Based on the distributional
properties of these p-values, Step 2 makes the decision on the predictability. In
details, Step 1.1 searches for the smallest integer lY ∈{0, 1, 2, . . .}, which states
that {Yt−lY , . . . , Yt−1} (empty set for lY =0) achieves the maximum knowledge
that would be useful to predict Yt. Step 1.2 yields a p-value which contains
the information about whether Xt−1 can additionally improve the prediction
of Yt, given the maximum past knowledge of Y. Due to the strict time order
requirement of Granger’s concept, the instantaneous influence within one time
slice is excluded. We test the one-step-ahead prediction, because an influence
from Xt−j (j =2, 3, . . .) to Yt can be usually be captured by Xt−1 to Yt, if Xt−j

is dependent of Xt−1.
To make the second step apparent, let us take a closer look at the distribution

of p-values. According to Property 1, we have TYY |X ≤ TYY and TYY |Xπi ≤

Hypothesis: X⇒Y|Z.

Step 1: For each sub-time series (X(i), Y(i), Z(i)) (i = 1, . . . , N) of time series
(X, Y, Z):

Step 1.1: If (Y
(i)

t−1, Z
(i)
t−1) �→ Y

(i)
t , set time lag l

(i)
Y = 0, else find

the smallest lag l
(i)
Y ∈ {1, 2, . . .} such that (Y

(i)
t−lY−1, Z

(i)
t−lY−1) �→

Y
(i)

t |Y
(i)

t−1, . . . , Y
(i)

t−lY
, Z

(i)
t−1, . . . , Z

(i)
t−lY

.

Step 1.2: If l
(i)
Y

= 0, test X
(i)
t−1 → Y

(i)
t , else test X

(i)
t−1 →

Y
(i)

t |Y
(i)

t−1, . . . , Y
(i)

t−lY
, Z

(i)
t−1, . . . , Z

(i)
t−lY

. A p-value pi is obtained.

Step 2: Calculate the skewness of p-values p1, . . . , pN and the probability PUnif

that p1, . . . , pN are from a uniform distribution over [0, 1]. If PUnif < 1
2

and
the p-values are positively skewed, accept the hypothesis, i.e., X⇒Y|Z; Oth-
erwise, the hypothesis cannot be verified.

Fig. 1. Subsampling-based multiple testing of Granger causality
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Fig. 2. Q-Q plots of p-values of three predictability tests. The field above and under
the diagonal line are called uncertain (uc) area and predictable (pd) area respectively.
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TYY for any permutation πi. If Y is predictable by X , we expect TYY |X <
TYY |Xπi for almost all random permutations πi. Intuitively, the predictability
on Y by X is reflected in a significant reduction of the sum of residual errors,
captured by TYY |X , in comparison to TYY |Xπi . Consequently, the majority of p-
values are closer to 0 and the distribution of p-values is rather positively skewed
(right-skewed). If Y is unpredictable by X , then TYY |X <TYY |Xπi is as likely as
TYY |Xπi ≤TYY |X , p-values are uniformly distributed over [0, 1] and the skewness
of p-values vanishes. If TYY |Xπi ≤ TYY |X is true for the majority of random
permutations πi, more p-values are closer to 1 and the distribution of p-values is
negatively skewed (left-skewed). This case, called uncertain situation, can occur
due to various reasons. A very special case is, e.g., TY Y |X = TY Y |Xπi , the null
distribution is degenerate (all its probability mass is concentrated on one point).
For instance, if Z is high-dimensional or the statistical fluctuation of Y is very
small, it could happen that TY Y |Z,X ≈TY Y |Z,Xπi ≈TY Y |Z ≈0. Then, the test of
predictability cannot provide reliable information about the relation between X
and Y . In such cases, an uncertain situation can be interpreted as non-evidence
for the hypothesis X →Y | Z. Another interpretation of uncertain situations will
be discussed later.

Inspired by [21,20], we visualize these observations with an intuitive graphical
tool. First, we sort the set of p-values {p(1), . . . , p(N)} in an increasing order,
i.e., p1 ≤ p2 ≤ . . . ≤ pN . If pi behaves as an ordered sample from the uniform
distribution over [0, 1], the expected value of pi is approximately i

N . The slope of
pi versus i, also called Q-Q plot (“Q” stands for quantile), should exhibit a linear
relationship, along a line of slope 1

N passing through the origin (diagonal line in
the Q-Q plot as shown in Fig. 2). If p-values are positively skewed, the reordered
p-values are located in the subfield under the diagonal line, called pd-area (“pd”:
predictable). If p-values are negatively skewed, the reordered p-values are located
in the so-called uc-area (“uc”: uncertain). For a reliable decision based on the
resulting p-values, the subsamples should be independent to some degree, since
independent statistics on p-values are needed. This is the case, when the given
sample size is much larger than the subsample size. In all our experiments, we
fixed the subsample size at 100, since time series in our experiments contain at
least 5000 data points. The other parameter of the multiple testing is the number
of replications of the single test: N . In principle, N should be large enough to
enable a reliable identification of uniform distribution from N p-values. In our
experiments, we chose N ≥100. For large sample sizes, we chose N =1000.

The remaining problem is how to judge, in spite of the fluctuation of one spe-
cific set of p-values, whether the N resulting p-values are uniformly distributed
or not. We transform this problem to a two-sample-problem. More precisely, we
simulate 1000 samples of N values from the uniform distribution over [0, 1]. For
each of the 1000 simulated samples, we test whether the N resulting p-values are
identically distributed with the N values from truly uniform distribution. The
percentage of the positive results, i.e., the resulting p-values and the simulated
values come from the same distribution, can be considered as the probability that
the resulting p-values are uniformly distributed: PUnif. If PUnif < 1

2 , the p-values
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are less likely from a uniform distribution than from a non-uniform distribution.
In our experiments, we employ the kernel-based test for the two-sample-problem
proposed by Gretton et al. [22]. After all, the decision of predictability relies on
whether PUnif < 1

2 and whether the p-values are positively skewed.

4 Experiments

To demonstrate the effectiveness of the proposed approach, we test our method
on simulated data generated by chaotic maps and benchmark data of real-life
systems of different scientific fields.

4.1 Hénon Maps

As the first simulated example, we consider the following two noisy Hénon maps:

xt+1 = a + c1 xt−1 − d1 x2
t + μ ξ1

yt+1 = a + c2 yt−1 − b xtyt − (1−b) d2 y2
t + μ ξ2

represented as systems X and Y, respectively. Here, system X drives system Y
with coupling strength b∈ [0, 1]. If b=0, X and Y are uncoupled; If b>0, we have
a uni-directed coupling X⇒Y. This example is also discussed by Bhattacharya
et al. [23], who proposed to choose b < 0.7 to avoid strong synchronization.
Similar to [23], we fixed the parameters at a = 1.4, c1 = 0.3, c2 = 0.1, d1 = 1,
d2 =0.4, μ=0.01. ξ1,2 are unit variance Gaussian distributed noise terms. Note
that X and Y are different systems even in the case of b=0, because c1 �=c2 and
d1 �=d2. Therefore, identical synchronization is impossible. We start with points
x1,2 = y1,2 = 0. The upper line of Fig. 3 shows the time series of 10000 data
points. We ran our test procedure on uncoupled time series (b=0) and weakly
unidirectionally coupled time series (b=0.25). The reordered p-values obtained
in both cases are visualized in the lower line of Fig. 3. In the case of b=0, our
test rejected the Granger causality in both directions. In the case of b=0.25, our
test revealed X⇒Y and gained no evidence for X⇐Y. Actually, the reordered p-
values of testing Yt−1 →Xt | Xt−1, . . . , Xt−lX are located in the uc-area. Based on
the underlying model, the past values of X can, in fact, improve the prediction of
the future of Y. At the same time, values of Y in the future (random permutation
of Yt−1 might yield that) could be helpful for guessing the past of X. If this effect
is present, we might have T̂XtXt|Xt−1,...,Xt−lX

,Y
πi

t−1
< T̂XtXt|Xt−1,...,Xt−lX

,Yt−1 .
Thus, an uncertain situation might be interpreted not only as non-evidence for
the direction X ⇐ Y that is just tested, but also as indirect evidence for the
reversed direction X⇒Y.

4.2 Logistic Maps

As a second example, we consider the following pair of noisy logistic maps:

xt+1 = (1−b1) a xt(1−xt) + b1 a yt(1−yt) + μ ξ1

yt+1 = (1−b2) a yt(1−yt) + b2 a xt(1−xt) + μ ξ2 (5)
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Fig. 3. The first and third plot from left show bivariate time series of 10000 observa-
tions (fine points) generated by Hénon maps and one random sub-time-series of 100
observations (bold points). The second and forth plot from left shows the corresponding
Q-Q plots of p-values obtained by tests of predictability on 100 sub-time-series.

represented as systems X and Y. b1,2 ∈ [0, 1] describe the coupling strengths
between X and Y. If b1,2 = 0, X and Y are uncoupled; If b1,2 > 0, we have a
bi-directed coupling X ⇔ Y; If b1 = 0 and b2 > 0, we have a uni-directed cou-
pling X ⇒ Y. The last case is also studied by Ancona et al. [7]. They claimed
that in the noise-free case, i.e., μ=0, a transition to synchronization occurs at
b2 =0.37 based on the calculation of the Lyapunov exponents. For this reason,
we chose b1,2 < 0.37. As proposed in [7], parameter a is fixed to 3.8; ξ1,2 are
unit variance Gaussian distributed noise terms; and μ is set at 0.01. We chose
the start point (x1, y1) randomly from [0, 1]× [0, 1] and generated time series
of length 10000 with (b1, b2)∈ {(0, 0), (0, 0.3), (0.1, 0.3), (0.3, 0.3)}. We repeated
the same experiment with 100 different start points that are randomly chosen
in [0, 1]×[0, 1]. All these time series were not observed to diverge. The resulting
directions of Granger causality were always the same. Fig. 4 shows Q-Q plots
of p-values after 100 subsamples. In all 4 cases, our method identified the direc-
tions of coupling correctly: If b1,2 =0, both X⇒Y and Y⇒X are rejected due to
uniform distributions; If (b1, b2)=(0, 0.3), X⇒Y is accepted and Y⇒X gained
non-evidence. In testing Y⇒X, we have due to the uc-area indirect evidence for
the reversed direction, which is consistent with the generating model. In the case
of (b1, b2) ∈ {(0.1, 0.3), (0.3, 0.3)}, both X ⇒ Y and Y ⇒ X are accepted. Inter-
estingly, by means of kernel-based two-sample-test, we can additionally confirm
that when b1 = b2 = 0.3 the resulting p-values corresponding to testing X ⇒ Y
and to testing Y⇒X are identically distributed, while in the case of b1 �=b2 the
resulting p-values corresponding to testing X ⇒ Y and to testing Y ⇒ X come
from different distributions. This is reasonable, since the coupling is absolutely
symmetric in X and Y, if b1 =b2. It seems plausible that the more right-skewed,
the stronger the coupling (see the case 0.1 = b1 < b2 = 0.3). But, we do not
speculate on that.

To explore the limitation of the method, we conduct our test on data generated
by highly noisy relations. Suppose X causes Y mediated by some hidden process
Z, i.e., X⇒Z⇒Y. The uni-directed coupling between X and Z, and between Z
and Y are given by noisy logistic maps as in Eq. 5 with b1 = 0. The coupling
strength b2 varies from 0.05 to 0.30. The causal relation from X to Y is highly
noisy and more sophisticated due to the indirect relation. We sampled time series
of 10000 points from these models and tested the causal relation between X and
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Fig. 4. Q-Q plots of p-values obtained by tests of predictability on 100 random sub-
time-series from time series generated by noisy logistic maps
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Fig. 5. Q-Q plots of p-values obtained by tests of predictability on 100 random sub-
time-series from time series of indirect relations generated by noisy logistic maps.

Table 1. Comparison of tests based on various causal measures (see text). The gener-
ating model is X⇒Y.

Rejecting X⇐Y Accepting X⇒Y

Coupling Strength r 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Kernel Test 98 99 97 100 99 100 100 3 28 47 78 100 97 100

EGCI 97 95 94 91 92 93 92 0 3 7 23 34 48 84

NLGC 99 98 100 100 100 99 100 0 0 0 0 2 10 24

TE 100 99 98 97 90 95 99 0 0 0 0 0 0 0

Y using different causality measures. Results for testing causal relation between
X and Y on one sample is visualized in Fig. 5. In this sample, X⇐Y is correctly
rejected at different coupling strengths b2. X⇒Y is correctly accepted when the
coupling strengths b2 larger than 0.15. Tab. 1 summarizes the results after 100
replications. In comparison, we conducted permutation tests based on the other
causality measures, i.e., extended Granger causality index (EGCI) [6], nonlinear
extensions of Granger causality (NLGC) [7], and Transfer entropy (TE) [24]
(Significance level 0.05). The results show that all measures performance well in
rejecting X⇐Y. In accepting X⇒Y, our kernel test performs better than EGCI.
NLGC works bad, while TE fails completely. We conjecture that the reason that
TE can not identify the relationship significantly is that the subsample size of 100
is too small for TE. After all, we expect that our kernel-based approach provides
also a reasonable measure of Granger causality even in the case of small sample
sizes.
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4.3 Stock Price-Volume Relation

We undertake an investigation of price and volume co-movement using the daily
closing value DJ industrial average index and the daily volume of shares traded
on NYSE from October 1928 to January 2008. The raw data are transformed
to a series of day-to-day differences to obtain the daily movements (DM). The
final dataset is a bivariate time series of 19920 observations (Fig. 6, left). Due to
the large number of data points, we increase the number of subsamples to N =
1000. The probability of the uniform distribution for the p-values corresponding
to the hypothesis that the daily movement of price causes that of volume is
PUnif =0< 1

2 (p-values are positively skewed); For the reserved causal direction,
we have PUnif =0.940≥ 1

2 . Thus, we found strong evidence of asymmetry in the
relationship between the daily movement of stock prices and the daily movement
of trading volume. The daily movement of prices is much more important in
predicting the movement of the trading volume, than the other way around.
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Fig. 6. DJ daily index, volume and movements (left). Q-Q plots of p-values (right)
obtained by testing predictability between “DMVolume” and “DMPrice” on 1000 random
sub-time-series.

4.4 Co-movement of Stock Indexes

The analyzed raw dataset consists of daily closing values (adjusted for dividends
and splits) of Dow Jones (DJ) industrial average index, Financial Times Stock
Exchange (FTSE 100) and NIKKEI 225 stock average index during the time
between April 1984 and January 2008. Only days with trading activity in both
stock exchanges were considered. The time increment in the raw data is not
always exactly one day due to weekends and moving holidays. We transform it
into a series of day-to-day differences to describe the daily movements of indexes.
After all, we have a trivariate time series with 5602 observations. We ran our
test procedure on this dataset. The p-values obtained for all causal hypotheses
are visualized in Fig. 7. The final testing results are summarized in Tab. 2. Af-
ter all, our testing procedure showed evidence of following causality: DJ⇒FTSE,



452 X. Sun

0  50 100
0

0.2

0.4

0.6

0.8

1

Rank of p−values

p−
va

lu
e

0  50 100
0

0.2

0.4

0.6

0.8

1

Rank of p−values

p−
va

lu
e

0  50 100
0

0.2

0.4

0.6

0.8

1

Rank of p−values

p−
va

lu
e

0  50 100
0

0.5

1

Rank of p−values

p−
va

lu
e

0  50 100
0

0.5

1

Rank of p−values

p−
va

lu
e

0  50 100
0

0.5

1

Rank of p−values

p−
va

lu
e

DJ=>FTSE DJ=>NIKKEI FTSE=>NIKKEI

DJ=>FTSE | NIKKEI DJ=>NIKKEI | FTSE FTSE=>NIKKEI | DJ

DJ<=FTSE DJ<=NIKKEI FTSE<=NIKKEI

DJ<=FTSE | NIKKEI DJ<=NIKKEI | FTSE FTSE<=NIKKEI | DJ

Fig. 7. Q-Q plots of p-values obtained by testing predictability between daily move-
ments of DJ, FTSE and DJ on 100 random sub-time-series

Table 2. Testing results of causality between daily movements of DJ, FTSE and DJ
on 100 random sub-time-series

Causal Hypothesis Skewness PUnif Testing Result
DJ⇒FTSE positive 0.70 Accept
DJ⇐FTSE negative 0.10 Reject

DJ⇒NIKKEI positive 1.00 Accept
DJ⇐NIKKEI positive 0.03 Reject

FTSE⇒NIKKEI positive 1.00 Accept
FTSE⇐NIKKEI positive 0.65 Accept

DJ⇒FTSE | NIKKEI positive 0.98 Accept
DJ⇐FTSE | NIKKEI negative 0.13 Reject
DJ⇒NIKKEI | FTSE positive 1.00 Accept
DJ⇐NIKKEI | FTSE positive 0.49 Reject
FTSE⇒NIKKEI | DJ positive 0.78 Accept
FTSE⇐NIKKEI | DJ positive 0.08 Reject

DJ ⇒ NIKKEI and FTSE ⇔ NIKKEI, whereas the causality running from the
daily movement of NIKKEI to the daily movement of FTSE is spurious, since
FTSE ⇐ NIKKEI|DJ is rejected. The knowledge of the dynamics of DJ can
significantly improve a prediction of the dynamics of FTSE and NIKKEI, but the
dynamics of FTSE and NIKKEI has a very limited, yet non-significant impact
on the future dynamics of DJ. The finding that the movement of DJ influences
the movement of FTSE and NIKKEI not vice versa, which may seem trivial as a
purely economical fact, but actually confirms in an independent way the validity
of the kernel test formalism.
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4.5 Cardiorespiratory Interaction

As the last example of real-life systems, we consider the benchmark bivariate
time series of heart rate and respiration force of a sleeping human suffering from
sleep apnea (data set B of the Santa Fe Institute time series competition [25])
recorded in the sleep laboratory of the Beth Israel Hospital in Boston, MA.
The magnitudes considered are heart rate and respiration force. The data are
plotted in Fig. 8 (left). The time interval between measurements is 0.5 seconds
(sampling frequency 2 Hz). As described in [26,27], under normal, physiological
conditions, the heart rate is modulated by respiration through a process known
as Respiratory Sinus Arrhythmia (RSA). It is the natural cycle of arrhythmia
that occurs through the influence of breathing on the flow of sympathetic and
vagus impulses to the sinoatrial node of the heart. When we inhale, vagus nerve
activity is impeded and the heart rate begins to increase. When we exhale, this
pattern is reversed. This quasi-periodic modulation of heart rate by respiration
is most notable in young, healthy subjects and decreases with age, which means
Heart ⇐ Respiration. However, this dataset corresponds to a patient suffering
from sleep apnea, which is a breathing disorder characterized by brief interrup-
tions of breathing during sleep. Sleep apnea affects the normal process of RSA,
disturbing the usual patterns of interaction between the heart rate and respira-
tion. As a result, the control of the heart rate by respiration becomes unclear. It
may well be blocked, in accordance with the change in dynamics, that is char-
acteristic of the so-called “dynamical diseases”. Some studies [7,23,24] claimed
a coupling in the reversed direction: Heart ⇒ Respiration. In summary, the bi-
directed causation Heart⇔Respiration might be likely the ground truth in this
example. The result of our test procedure is consistent with this prior knowledge,
since for both directions we have PUnif =0< 1

2 (p-values are positively skewed).
Since the dynamics of this times series are rhythmic over time, we used embed-
ding vectors with different m, r as defined in Eq. 1. Only when m≤20 andr ≥12,
our test could not detect any significant causal relations between “Heart” and
“Respiration”, in other cases, a bidirected causality is always verified. The results
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Fig. 8. Time series of the heart rate and respiration force of a patient suffering sleep
apnea (left). Q-Q plots of p-values (right) obtained by testing predictability between
“Heart” and “Respiration” on 1000 random sub-time-series.
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are plausible, because it is well known that the high-frequency band (0.25−0.45
Hz) is characteristic of the respiratory rhythm. The identified bi-directed causa-
tion between heart rate and respiration suggests a probably causal link between
sleep apnea and cardiovascular disease [28], although the exact mechanisms that
underlie this relationship remain unresolved [29].

5 Conclusion

We have presented the kernel framework for detecting nonlinear Granger causal-
ity and have proposed to measure the improvement of the predictability by the
trace norm of the conditional covariance operator and test whether the prediction
error of the first time series can be significantly reduced by including knowledge
from the second time series, given a third one. In comparison to other nonlin-
ear extensions of Granger causality [6,7,15,24], our approach is designed in the
general kernel framework and straightforwardly applicable. It is also appealing
for users that the kernelized analysis of covariance is easy to implement and its
statistical properties are well understood. Although kernel methods are rather
popular nonlinear techniques in statistical pattern recognition, this is the first
time, to the best of our knowledge, that the nonlinear extension of Granger’s
concept of causality in such a straightforward way is demonstrated.

Acknowledgement. Valuable discussions with Kenji Fukumizu are warmly
acknowledged.
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Abstract. This paper deals with the local learning approach for clus-
tering, which is based on the idea that in a good clustering, the cluster
label of each data point can be well predicted based on its neighbors and
their cluster labels. We propose a novel local learning based clustering
algorithm using kernel regression as the local label predictor. Although
sum of absolute error is used instead of sum of squared error, we still ob-
tain an algorithm that clusters the data by exploiting the eigen-structure
of a sparse matrix. Experimental results on many data sets demonstrate
the effectiveness and potential of the proposed method.

Keywords: Clustering, Local Learning, Sum of Absolute Error.

1 Introduction

Data clustering has been extensively studied and practiced across multiple dis-
ciplines for several decades [8]. It aims to group objects, usually represented
as data points in R

d, into several clusters in a meaningful way. Generally, the
clustering objective is formulated to maximize intra-cluster cohesion and inter-
cluster separability. Clustering techniques have been applied to many tasks, such
as image segmentation [11], unsupervised document organization, grouping genes
and proteins with similar functionality, and so on.

Many clustering algorithms have emerged over the years. One of the most
popular clustering methods in recent years is the spectral clustering approach
which exploits the eigen-structure of a specially constructed matrix. Generally,
spectral clustering can be motivated from a graph partitioning perspective. Var-
ious graph clustering objectives, including ratio cut [6], normalized cut [11], and
min-max cut [7], can be solved effectively by the spectral clustering method.

In this paper, we propose a clustering method that’s also based on eigen-
decomposing a matrix as is done in spectral clustering. However, we motivate it
from the local learning idea, namely, in a good clustering, the cluster label of each
data point can be well predicted based on its neighbors and their cluster labels.
First, our method constructs local label predictors for each data point using its
neighbors and their cluster labels as the training data. Then it minimizes the
discrepancy between the data points’ cluster labels and the prediction results of
all the local predictors to get a final clustering.
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The local learning idea has already been used in supervised learning [3], trans-
ductive classification [20] and dimensionality reduction [21]. In supervised learn-
ing, for each test data point, data points in the vicinity of the test point are
selected for learning an output function. Then this function is used to predict
the label of the test point. In practice, this method can achieve better perfor-
mance than global learning machines since only data points relevant to the test
point are used for training [3].

When the local learning idea is used in an unsupervised manner, a clustering
objective is formulated in [19] and achieves good performance. This objective
is also combined with a global label smoothness regularizer to obtain a method
called “clustering with local and global regularization” in [16,17]. However, their
local clustering objective uses sum of squared error to measure the discrepancy
between the data points’ cluster labels and the prediction results of all the local
predictors. In regression analysis, a model using the sum of squared error measure
can be sensitive to noise and outliers, since large error entries are overempha-
sized. To obtain a better model, we use sum of absolute error which is more
robust and reliable. Traditionally, a regression model using absolute error will
lead to a linear programming optimization problem [26]. However, by combin-
ing sum of absolute error and kernel regression as the local label predictors, we
still obtain an algorithm that clusters the data by exploiting the eigen-structure
of a specially constructed matrix, thus inheriting the advantages of the power-
ful spectral clustering approach. Experimental results on many data sets from
real-world domains demonstrate the superiority of our proposed approach in
obtaining high quality clusterings.

The rest of the paper is organized as follows. In Section 2, we begin with an
introduction to the notations and representation of cluster labels, then formulate
the model in detail. The algorithm is derived in Section 3. In Section 4, we
evaluate the proposed method on many data sets. We make concluding remarks
in Section 5.

2 Model Formulation

2.1 Notations

In this section we introduce the notations adopted in this paper. Boldface lower-
case letters, such as x and y, denote column vectors. Boldface uppercase letters,
such as M and A, denote matrices. The superscript T is used to denote the
transpose of a vector or matrix. M ≥ 0 means that every entry in M is non-
negative. For x ∈ R

d, ‖x‖ denotes the L2 norm, and ‖x‖1 denotes the L1 norm.

Specifically, ‖x‖ =
√∑d

i=1 x2
i and ‖x‖1 =

∑d
i=1 |xi|. For M ∈ R

s×t, ‖M‖F de-
notes the Frobenius norm, and ‖M‖SAV denotes the Sum-Absolute-Value norm
[4]. Specifically,

‖M‖F =
√

trace(MT M) =

⎛
⎝

s∑
i=1

t∑
j=1

m2
ij

⎞
⎠

1
2

and ‖M‖SAV =
s∑

i=1

t∑
j=1

|mij |
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Table 1. Summary of notations

Symbols Description
n total number of input data points
d data dimensionality
X total data matrix, X ∈ R

n×d

X input space from which data is drawn, X ⊆ R
d

c number of output clusters
πl the set of points in the l-th cluster where 1 ≤ l ≤ c
|πl| the number of points in the l-th cluster where 1 ≤ l ≤ c
Ni the set of “neighbors” of xi, here xi /∈ Ni

1m m-dimensional column vector whose entries are all 1’s
Im the identity matrix of order m

Diag(M) the diagonal matrix whose size and diagonal elements are
the same as the square matrix M

Deg(M) the degree matrix of M, i.e., the diagonal matrix whose
diagonal elements are the sums of rows of M

Trace(M) the trace of the square matrix M

Other important notations are summarized in Table 1. In addition, neighborhood
Ni simply denotes a set of nearest neighbors (measured by some distance metric)
of point xi. Typically, given k � n, we define each neighborhood Ni as the set
of k-nearest neighbors of xi, not including xi.

2.2 Cluster Labels

Given a set of data points {xi}n
i=1 ⊆ X ⊆ R

d, the goal of clustering is to find a
disjoint partitioning {πl}c

l=1 of the data where πl is the l-th cluster.
We represent a clustering of the data points by a partition matrix P =

[p1, . . . ,pc] = [pil] ∈ {0, 1}n×c and P1c = 1n. Thus, exactly one element in
each row of P is 1. Specifically,

pil =
{

1 if xi ∈ πl,
0 if xi /∈ πl.

(1)

Instead of directly using the entries of partition matrix P as the cluster labels,
we use a Scaled Partition Matrix Y = P(PT P)−1 where Y = [y1, . . . ,yc] =
[yil] ∈ R

n×c. Specifically,

yil =
{ 1

|πl| if xi ∈ πl,

0 if xi /∈ πl.
(2)

Thereby each data point xi is associated with a c-dimensional cluster label
[yi1, yi2, . . . , yic]. The scaling is used for obtaining balanced clusters and bal-
anced clusters usually lead to better performance in practice.

2.3 Clustering Objective

In a typical local learning approach for supervised learning [3], for each test
data point, data points in the vicinity of the test point is selected for learning
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an output function. Then this function is used to predict the label of the test
point. Although this method looks “simple and stupid” [3], it can achieve good
performance in practice since only data points relevant to the test point are used
for training. This approach can be also adapted to the clustering problem [19]
and the idea is translated into:

In a good clustering, the cluster label of a data point can be well estimated
based on its neighbors and their cluster labels.

Based on this idea, a clustering objective can be formulated to obtain a cluster-
ing that satisfies the above property. For each point xi, if we construct a local
label predictor oil(·) based on its neighborhood information {(xj , yjl) |xj ∈ Ni},
then the prediction result oil(xi) should be similar to the cluster label yil of xi.
Hence, a brute force approach to select the best final clustering would be:

1. Enumerate all possible labelings of {xi}n
i=1.

2. For each labeling,
(a) For each neighborhood Ni (1 ≤ i ≤ n) and the corresponding labels,

build local learners [oi1(·), oi2(·), . . . , oic(·)]. Here, oil(·) is the output
function learned using the training data {(xj , yjl) |xj ∈ Ni} where
1 ≤ l ≤ c.

(b) Predict each data point xi using the above local label predictors
[oi1(·), oi2(·), . . . , oic(·)], obtaining [oi1(xi), oi2(xi), . . . , oic(xi)]. Cal-
culate the error

∑c
l=1 |yil − oil(xi)|.

(c) Calculate the total error sum
∑n

i=1
∑c

l=1 |yil − oil(xi)|.

3. Pick the labeling with the smallest total error sum.

Obviously, we won’t directly use the above exhaustive search approach since
the number of possible clusterings is too large. In fact, for n data points and c
clusters, there’re 1

c!

∑c
l=1

(
c
l

)
(−1)c−lln different clusterings [8].

Suppose ol = [o1l(x1), o2l(x2), . . . , onl(xn)]T ∈ R
n×1 and O = [o1, . . . ,oc] ∈

R
n×c, which is the combination of all the predictions made by the local label

predictors. Then, the clustering objective can be written as follows:

min
Y∈Rn×c

J (Y) = ‖Y − O‖SAV =
c∑

l=1

‖yl − ol‖1 (3)

subject to Y is a scaled partition matrix defined in (2) (4)

Note that instead of using the Frobenius norm ‖·‖F as the error measure, we
use the Sum-Absolute-Value norm ‖·‖SAV which is more robust. The problem of
what kind of local predictor we will use will be addressed in the next subsection.

2.4 Local Label Predictor

For the clustering objective (3) to be tractable, we want to select a local label
predictor that’s easy to deal with and yet sufficiently powerful for learning the
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local structure. So, we choose kernel regression model as our local label predictor.
Kernel regression [1,13,18] is a widely used nonparametric technique for nonlinear
regression. The prediction of a kernel regression model for a test point takes the
form of a weighted average of the target values observed at training points. The
weighting coefficients are related to the kernel function K(xi,xj) for xi,xj ∈ X
where X is the data space. With xi fixed, K(xi,x) can be interpreted as an
unnormalized probability density function centered around xi. Therefore, two
key properties of the kernel function are

K(xi,xj) ≥ 0 for all xi,xj ∈ X . (5)∫

x∈X
K(xi,x) dx ∈ (0, ∞) for all xi ∈ X (6)

Given a training set {(xi, yi)}n
i=1, we want to construct a learner to predict

the target value y for a test point x. Motivated from kernel density estimation
[2], the target value for a test point x can be estimated by

y =
∑n

i=1 yiK(xi,x)∑n
i=1 K(xi,x)

(7)

which is called the kernel regression formula, also known as Nadaraya-Watson
model [10]. This model can also be motivated from the interpolation problem
when the input variables are noisy [2].

Generally, a distance-based kernel function [18] can be written as

K(xi,xj) = ϕ(D(xi,xj)) (8)

where D(·, ·) is a distance metric. ϕ(·) is a nonnegative function and monotoni-
cally decreases with increasing D(xi,xj). In addition, ϕ(·) often have parameters
pertaining to the rate of decay.

Various kernel functions have been studied in the literature, such as Gaussian,
Epanechnikov, rectangular, triangular, and so on. The following two kernels will
be used in our experiments as in [19]:

– The Gaussian kernel is defined as

K(xi,xj) = exp
(

−D(xi,xj)2

γ

)
(9)

where ϕ(t) = exp
(
− t2

γ

)
for γ > 0.

– The cosine kernel defined over nonnegative data points on the unit hyper-
sphere is defined as follows

K(xi,xj) = xT
i xj = 1 − ‖xi − xj‖2

2
(10)

where xi,xj ∈ X = {x |xT x = 1,x ≥ 0}. Here, ϕ(t) = 1− t2

2 for 0 ≤ t ≤
√

2
and ϕ(t) = 0 for t ≥

√
2. This kernel generally leads to good performance

when used for document data sets [19].
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2.5 Constructing and Combining Local Predictors

In our clustering problem, for each data point xi and {(xj , yjl) |xj ∈ Ni}, we
want to construct a local label predictor oil(·) to estimate the cluster label of xi.
Here we choose kernel regression model introduced in the previous subsection as
our local label predictor. According to equation (7), the solution of local label
prediction for xi and l is given by

oil(xi) =

∑
xj∈Ni

K(xi,xj)yjl

∑
xj∈Ni

K(xi,xj)
(11)

We can construct a matrix A = [aij ] ∈ R
n×n as follows

aij =

⎧⎨
⎩

K(xi,xj)∑
xj∈Ni

K(xi,xj)
if xj ∈ Ni

0 if xj /∈ Ni

(12)

Two key properties that A satisfies are

A ≥ 0 (13)
A1n = 1n (14)

These two properties will be used in the next section for the derivation of our
main clustering algorithm.

Recall from section 2.3 that

ol = [o1l(x1), o2l(x2), . . . , onl(xn)]T ∈ R
n×1 (15)

O = [o1,o2, . . . ,oc] ∈ R
n×c (16)

where 1 ≤ l ≤ c. By combining equations (11) and (12), it’s not difficult to see
that

ol = Ayl and O = AY (17)

Therefore, the clustering objective in (3) can be rewritten as follows:

min
Y∈Rn×c

J (Y) = ‖Y − AY‖SAV =
c∑

l=1

‖yl − Ayl‖1 (18)

subject to Y is a scaled partition matrix defined in (2) (19)

This is the main objective function we want to optimize. Here, the L1 norm ‖·‖1
in equation (18) makes the function not differentiable and difficult to optimize
combined with constraint (2) which is not convex. However, the properties of A
in (13) and (14) ensure that the problem can be optimized by eigen-decomposing
some sparse matrix. We will derive the algorithm in the next section.
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3 Algorithm Derivation

In this section, we simplify the optimization problem (18) and obtain an algo-
rithm that’s based on exploiting the eigen-structure of a sparse matrix.

3.1 Main Theorem

Suppose âi ∈ R
n×1 denotes the transpose of the i-th row vector of A, so A =

[â1, â2, . . . , ân]T . Then we have

J (Y) = ‖Y − AY‖SAV =
c∑

l=1

n∑
i=1

|yil − âT
i yl| (20)

Substituting (2) into (20), we have

J (Y) =
c∑

l=1

⎛
⎝ ∑

xi∈πl

|1 −
∑

xj∈πl
aij |

|πl|
+

∑
xi /∈πl

|0 −
∑

xj∈πl
aij |

|πl|

⎞
⎠ (21)

According to the properties of A in (13) and (14), we obtain

J (Y) =
c∑

l=1

⎛
⎝ ∑

xi∈πl

∑
xj /∈πl

aij

|πl|
+

∑
xi /∈πl

∑
xj∈πl

aij

|πl|

⎞
⎠ (22)

=
c∑

l=1

∑
xi∈πl

∑
xj /∈πl

(aij + aji)

|πl|
(23)

=
c∑

l=1

pT
l

(
Deg(A + AT ) − A − AT

)
pl

|πl|
(24)

where pl is the l-th column of partition matrix P defined in (1).
Define F = [f1, . . . , fc] = [fil] ∈ R

n×c as F = P(PT P)−
1
2 , so fl = pl(pT

l pl)−
1
2 .

Specifically,

fil =

{√
1

|πl| if xi ∈ πl,

0 if xi /∈ πl.
(25)

Obviously, we have

FT F =
(
(PT P)−

1
2 PT

)
P(PT P)−

1
2 = Ic (26)

where Ic ∈ R
c×c is the identity matrix of order c.

Using F, the clustering objective can be simplified as

J (F) =
c∑

l=1

fT
l

(
Deg(A + AT ) − A − AT

)
fl (27)

= Trace
(
FT

(
Deg(A + AT ) − A − AT

)
F

)
(28)

Therefore, we obtain the following theorem:
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Table 2. Clustering via LOcal Regression (CLOR)

Input :
Data set {xi}n

i=1, number of clusters c, neighborhood size k.
Output :

Partition matrix P as defined in (1).
Procedure :

1. Compute the k nearest neighbors (Ni) for each xi.
2. Construct the matrix A as defined in (12).
3. Construct the matrix M = Deg(A + AT ) − A − AT .
4. Compute the eigenvectors corresponding to the c smallest

eigenvalues of M, thus obtaining F∗.
5. Discretize F∗ to get the partition matrix P.

Theorem 1. The optimization problem in (18) is equivalent to the following
one:

min
F∈Rn×c

Trace
(
FT

(
Deg(A + AT ) − A − AT

)
F

)
(29)

subject to F is defined in (25) (30)

3.2 Relaxation and Discretization

Following the standard spectral clustering procedure, we relax the F defined in
(25) to be any matrix from R

n×c that satisfies FT F = Ic. Thus, the optimization
problem is as follows:

min
F∈Rn×c

Trace
(
FT

(
Deg(A + AT ) − A − AT

)
F

)
(31)

subject to FT F = Ic (32)

From the Ky Fan Theorem [23], the global optimal solution of the above relaxed
problem is given by any matrix from the following set

{
F∗Q |Q ∈ R

c×c,QT Q = Ic

}
(33)

where the columns of F∗ ∈ R
n×c are the c eigenvectors corresponding to the c

smallest eigenvalues of the matrix Deg(A + AT ) − A − AT .
After obtaining the relaxed solution, we have to discretize it to get a final

solution defined in (1). The discretization approach used in [22] is adopted to
obtain the final partition matrix P since it’s previously reported to produce sat-
isfactory results [22,19]. Using an iterative procedure, this discretization method
tries to rotate F∗ (after normalizing the rows of F∗ to unit norm) so that it’s
close to a partition matrix as defined in (1). Details can be found in [22].

The main algorithm is summarized in Table 2. We name our algorithm Clus-
tering via LOcal Regression (CLOR).
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3.3 Relation to Other Approaches

Although the final optimization problem uses the spectral methods for finding
the optimal clustering, our clustering criterion is motivated from a local learning
approach. In our method, we adopt sum of absolute error as the discrepancy
measure instead of sum of squared error which is used in [19]. In addition, in
order for the optimization to be tractable, we use kernel regression as the local
label predictor while [19] uses “kernel ridge regression”. We will empirically
demonstrate that our clustering algorithm usually achieves better performance
than the algorithm proposed in [19].

Our algorithm is different from spectral clustering with ratio cut [6] or normal-
ized cut (NCut) [11] on the k-nearest neighbor similarity graph. We construct
the following k-nearest neighbor similarity matrix G = [gij ] ∈ R

n×n

gij =
{

K(xi,xj) if xj ∈ Ni or xi ∈ Nj

0 otherwise (34)

Spectral clustering algorithms typically use the affinity matrix G which is sym-
metric. In general, the graph laplacian (used by ratio cut) or normalized graph
laplacian (used by NCut) derived from this affinity matrix are not equal to
Deg(A + AT ) − A − AT . Since NCut usually outperforms ratio cut in practice,
we compare our algorithm CLOR with NCut in the next section and demonstrate
the better performance of our algorithm.

4 Experiments

In this section, we present an empirical evaluation of our clustering method in
comparison with representative algorithms on a number of data sets.

4.1 Data Sets

In this subsection, we introduce the basic information of the data sets used in
our experiments. We use 14 document data sets1 from the CLUTO toolkit [24].

We briefly introduce the basic information of the data sets as follows.

– cranmed : This data set comprises the CRANFIELD and MEDLINE ab-
stracts which were previously used to evaluate information retrieval systems.

– fbis : The fbis data set is derived from the Foreign Broadcast Information
Service data of TREC-5 [15].

– hitech: This data set is from the San Jose Mercury newspaper articles that
are distributed as part of the TREC collection.

– k1a, k1b and wap: These data set are from the WebACE project (WAP).
– re0 and re1 : These data sets are from Reuters-21578 text collection [9].
– tr11, tr12, tr23, tr31, tr41, and tr45 : These six data sets are derived from

the TREC collection [15].

1 http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
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Table 3. Summary of data sets

Name Source Points(n) Dims(d) Classes(c)
cranmed CRANFIELD/MEDLINE 2431 41681 2
fbis FBIS (TREC) 2463 12674 17
k1a WebACE 2340 21839 20
k1b WebACE 2340 21839 6
hitech San Jose Mercury (TREC) 2301 10080 6
re0 Reuters-21578 1504 2886 13
re1 Reuters-21578 1657 3758 25
tr11 TREC 414 6429 9
tr12 TREC 313 5804 8
tr23 TREC 204 5832 6
tr31 TREC 927 10128 7
tr41 TREC 878 7454 10
tr45 TREC 690 8261 10
wap WebACE 1560 8460 20

Table 3 summarizes the basic properties of the data sets. The smallest of these
data sets contains 204 data points and the largest consists of 2463 points. The
number of classes ranges from 2 to 25. These data sets are widely used in the
literature to evaluate different clustering systems [14,24,25].

4.2 Evaluation Criteria

In all the experiments of this paper, the class labels of data points are known to
the evaluation process and external validity measures are used to evaluate how
much class structure is recovered by a clustering. Besides, the true number of
classes c is provided to all the clustering algorithms. We use two popular external
validity measures, Normalized Mutual Information (NMI ) [12] and Clustering
Accuracy (Acc), as our criteria.

Given a clustering C and the “true” partitioning B (class labels). The number
of clusters in C and classes in B are both c. Suppose ni is the number of objects
in the i-th cluster, n

′

j is the number of objects in the j-th class and nij is the
number of objects which are both in the i-th cluster and j-th class. NMI between
C and B is calculated as follows [12]:

NMI (C, B) =

∑c
i=1

∑c
j=1 nij log n·nij

ni·n′
j√∑c

i=1 ni log ni

n

∑c
j=1 n

′
j log

n
′
j

n

. (35)

The value of NMI equals 1 if and only if C and B are identical and is close to
0 if C is a random partitioning. Larger values of NMI indicate better clustering
performance.

Suppose n is the total number of objects and other notations are the same
as above. Clustering Accuracy (Acc) builds a one-to-one correspondence between
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the clusters and the classes. Suppose the permutation function Map(·) : {i}c
i=1 
→

{j}c
j=1 maps each cluster index to a class index, i.e., Map(i) is the class index

that corresponds to the i-th cluster. Acc between C and B is calculated as follows:

Acc (C, B) =
max

(∑c
i=1 ni,Map(i)

)
n

(36)

The value of Acc equals 1 if and only if C and B are identical. Larger values of
Acc indicate better clustering performance.

4.3 Comparison Settings

Each data point (document) is originally represented by a term-frequency vector
(Bag-of-Words). We normalize each vector to unit norm so that every point xi

lies on the nonnegative unit hypersphere, that is, xi ∈ X = {x |xT x = 1,x ≥ 0}
for all 1 ≤ i ≤ n. The cosine kernel defined in (10) is generally considered
very suitable for documents. So it is adopted as the kernel function in most
experiments unless other kernels are explicitly mentioned to be used. For each
point xi, the neighborhood Ni consists of k-nearest neighbors of xi measured by
the cosine similarity. Here, k is provided by domain experts.

We test our Clustering via LOcal Regression (CLOR) algorithm in comparison
with another two algorithms which are listed as follows:

– Spectral clustering with normalized cut (NCut) [11]. The affinity graph is
constructed using the weighted k-nearest neighbor graph. The edge weight
between two connected data points is calculated with the kernel function.

– Local Learning based Clustering Algorithm2 (LLCA) proposed in [19]. There
is a regularization parameter λ in LLCA. As is done in [19], we choose this
parameter from: λ ∈ {0.1, 1, 1.5}. For each data set and k, we report the
best performance among the results produced when different values of λ are
used (LLCA1). We also report the result obtained when LLCA automatically
select λ using the parameter selection method in [19] (LLCA2). Therefore,
LLCA1 has an unfair advantage over others.

For each algorithm, we assume that the “true” number of clusters c is given.
All the algorithms use the same discretization method whose code is available at
http://www.cis.upenn.edu/∼jshi/software/. Note that the main computa-
tional load of all the above algorithms is to eigen-decompose (or singular value
decomposition) a sparse n × n matrix with O(nk) non-zero elements.

4.4 Comparison of Clustering Performance

In this section, we compare the clustering performance of the investigated algo-
rithms. We have tested the clustering performance of the algorithms with various
neighborhood sizes.
2 The code is available at www.kyb.tuebingen.mpg.de/bs/people/mingrui/LLCA.zip

The code for NCut is also included in this package.
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Fig. 1. The clustering performance (NMI ) on six TREC data sets with different num-
ber of nearest neighbors (k). The legend is shown only in subfigure (a) for clarity.

For the six TREC data sets (tr11, tr12, tr23, tr31, tr41, and tr45 ), Figure 1
shows the the clustering performance of the algorithms. The x-axis denotes the
neighborhood size k and the y-axis denotes the clustering performance measured
by NMI. When the neighborhood size is too small (k = 5), LLCA1 and LLCA2
produce unsatisfactory clustering results on data sets such as tr12, tr41 and
tr45. These NMI results are not displayed in the subfigures for clarity.
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Fig. 2. The clustering performance (Acc) on data sets tr23 and tr41 with different
neighborhood sizes. The legend is shown only in subfigure (a) for clarity.

The results in Figure 1 show that our algorithm CLOR very often achieves the
best performance on all the six data sets and when different neighborhood sizes
are chosen. Even though the algorithm LLCA1 has the extra edge of selecting the
best NMI value when different values of the regularization parameter λ are used,
our algorithm CLOR has a clear advantage over it. Generally in practice, spectral
clustering with normalized cut (NCut) can produce very good results when an
appropriate similarity measure is chosen. Here we see that the performance of
LLCA is comparable to that of NCut, which demonstrates the effectiveness of
the local learning approach to clustering. The better performance of CLOR in
Figure 1 shows that our proposed algorithm is more suitable for the task of
clustering based on the local learning idea.

We also compare the clustering performance of the algorithms on the six
TREC data sets in terms of Acc as defined in equation (36). Most of the perfor-
mance figures are somewhat similar to the ones displayed in Figure 1. The two
most different figures are shown in Figure 2. Note that here, LLCA1 represents
the best Acc value when different regularization parameters γ are used. And the
value of γ associated with the best Acc is not necessarily the same as the value
of γ that corresponds to the best NMI. It’s observed that our algorithm CLOR
still outperforms others in most cases. Particularly, on the data set tr41, CLOR
seems to have a larger advantage over others in terms of Acc than NMI.

Besides, we conduct experiments on the six TREC data sets when Gaussian
kernel is used instead of cosine kernel. Due to the space limit, we only show the
results on data set tr11 in Figure 3. The left subfigure shows the NMI values
of the algorithms on tr11 when different neighborhood sizes k are chosen. Here
the algorithms use Gaussian kernel (γ = 1). The right subfigure displays the
performance of CLOR with the two kernels on data set tr11. It can be observed
from the left subfigure that our algorithm still outperforms the other three. The
right subfigure shows that cosine kernel is slightly better than Gaussian kernel for
document clustering. However, the result from Gaussian kernel doesn’t deviate
too much from the result with cosine kernel on tr11. Experiments with Gaussian
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Fig. 3. The left subfigure shows the clustering performance (NMI ) of the considered
algorithms on data set tr11. Here Gaussian kernel (γ = 1) is used. The right subfigure
displays the performance of CLOR with different kernels on data set tr11.

kernel have also been conducted on the other five TREC data sets. From these
experiments, we can draw similar conclusions as above. Therefore, the superiority
of our algorithm CLOR is not sensitive to what type of kernel is used.

In general, theoretical guidance on how to choose the best neighborhood size
k is rare. A rule of thumb is to choose k so that the number of connected
components of the k-nearest neighbor graph is close to one. An asymptotic result
is that if k is chosen on the order of log(n), then the k-nearest neighbor graph
will be connected for n points drawn i.i.d. from some probability distribution
with a connected support in R

d [5]. Therefore, for data sets with size around
1000, we can choose k to be a small multiple of 10. We list the experimental
results on the remaining 8 data sets when neighborhood size k = 30 in Table 4.
It can be observed that our algorithm CLOR consistently outperforms the other
three. We also note that different performance measures may lead to divergent
performance ranks of the clustering algorithms, which is reflected by the results
on the data sets re0 and re1.

Table 4. Empirical results when neighborhood size k = 30. Both NMI and Acc results
are provided. On each data set, the best results of NMI and Acc are shown in boldface.

NMI Acc
LLCA1 LLCA2 NCut CLOR LLCA1 LLCA2 NCut CLOR

cranmed 0.8479 0.8479 0.8568 0.8927 0.9745 0.9745 0.9770 0.9840
fbis 0.5816 0.5757 0.5832 0.5909 0.5108 0.5108 0.5428 0.5534

hitech 0.3373 0.3373 0.2956 0.3439 0.4920 0.4920 0.4207 0.5502
k1a 0.5267 0.5267 0.5223 0.5557 0.4060 0.4060 0.3987 0.4897
k1b 0.6416 0.6416 0.7180 0.7332 0.8120 0.8120 0.8466 0.8846
re0 0.3905 0.3847 0.4030 0.4302 0.3863 0.3138 0.3324 0.3318
re1 0.4942 0.4598 0.4967 0.5043 0.3959 0.3693 0.3730 0.3953
wap 0.5258 0.5093 0.5173 0.5426 0.3962 0.3333 0.3859 0.4314
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5 Conclusions and Future Work

In this paper, we propose a new local learning based clustering algorithm,
namely, Clustering via LOcal Regression (CLOR). This algorithm is based on
the local learning idea, i.e., in a good clustering, the cluster label of each data
point can be well predicted based on its neighbors and their cluster labels. When
using kernel regression model as the local label predictor and sum of absolute
error as the discrepancy measure, we obtain an algorithm that still inherits the
advantages of spectral clustering. Experimental results on many data sets show
that our algorithm consistently outperforms the previously proposed local learn-
ing approach for clustering [19] and spectral clustering based on normalized cut,
which demonstrate the effectiveness and potential of our proposed algorithm in
obtaining accurate clusterings.

In the future, we want to continue this work on several issues as follows. First,
we want to gain a deeper understanding on the underlying reasons for the good
performance of our algorithm. We will start this work by investigating the capac-
ity and locality control issues of the local label predictor in our approach and the
one in [19]. Second, we will try to derive a good and stable automatic parameter
selection procedure for neighborhood size k and parameters in the kernel func-
tion. Third, instead of using k-nearest neighbors measured by a distance metric
which is provided by domain experts, we plan to learn the neighborhood Ni

using semi-supervised information such as instance-level constraints [14]. This
problem seems to be easier than learning a distance metric and thus hopefully
we’ll obtain good results.

Acknowledgments. This work is supported in part by NSFC grants 60673103
and 60721061.
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Abstract. The problem of selecting a small, yet high quality subset of
patterns from a larger collection of itemsets has recently attracted a lot
of research. Here we discuss an approach to this problem using the notion
of decomposable families of itemsets. Such itemset families define a prob-
abilistic model for the data from which the original collection of itemsets
was derived. Furthermore, they induce a special tree structure, called a
junction tree, familiar from the theory of Markov Random Fields. The
method has several advantages. The junction trees provide an intuitive
representation of the mining results. From the computational point of
view, the model provides leverage for problems that could be intractable
using the entire collection of itemsets. We provide an efficient algorithm
to build decomposable itemset families, and give an application exam-
ple with frequency bound querying using the model. An empirical study
show that our algorithm yields high quality results.

1 Introduction

Frequent itemset discovery has been a central research theme in the data mining
community ever since the idea was introduced by Agrawal et. al [1]. Over the
years, scalability of the problem has been the most studied aspect, and several
very efficient algorithms for finding all frequent itemsets have been introduced,
Apriori [2] or FP-growth [3] among others. However, it has been argued recently
that while efficiency of the mining task is no longer a bottleneck, there is still a
strong need for methods that derive compact, yet high quality results with good
application properties [4].

In this study we propose the notion of decomposable families of itemsets to
address this need. The general idea is to build a probabilistic model of a given
dataset D using a small well-chosen subset of itemsets G from a given candidate
family F . The candidate family F may be generated from D using some frequent
itemset mining algorithm. A special aspect of a decomposable family is that it
induces a type of tree, called a junction tree, a well-known concept from the
theory of Markov Random Fields [5].

As a simple example, consider a dataset D with six attributes a, . . . , f , and
a family G = {bcd, bcf , ab, ce, bc, bd, cd, bf , cf , a, b, c, d, e, f}. The family G
can be represented as the junction tree shown in Figure 1 such that the nodes in
the tree are the maximal itemsets in G. Furthermore, the junction tree defines a
decomposable model of the dataset D.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 472–487, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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ab bcd
ce

bcf

p(abcdef) =
p(ab)p(bcd)p(bcf)p(ce)

p(b)p(bc)p(c)

Fig. 1. An example of a junction tree and the corresponding distribution decomposition

Using decomposable itemset families has several notable advantages. First of
all, the following junction tree graphs provide an extremely intuitive representa-
tion of the mining results. This is a significant advantage over many other itemset
selection methods, as even small mining results of, say 50 itemsets, can be hard
for humans to grasp as a whole, if just plainly enumerated. Second, from the
computational point of view, decomposable families of itemsets provide leverage
for accurately solving problems that could be intractable using the entire result
set. Such problems include, for instance, querying for frequency bounds of arbi-
trary attribute combinations. Third, the statistical nature of the overall model
enable to incorporated regularization terms, like BIC, AIC, or MDL to select
only itemsets that reflect true dependencies between attributes.

In this study we provide an efficient algorithm to build decomposable itemset
families while optimizing the likelihood of the model. We also demonstrate how
to use decomposable itemset families to execute frequency bound querying, an
intractable problem in the general case. We provide empirical results showing
that our algorithm works well in practice.

The rest of the paper is organized as follows. Preliminaries are given in Sec-
tion 2 and the concept of decomposable models are defined in Section 3. A greedy
search algorithm is given in Section 4. Section 6 is devoted to experiments. We
present the related work in Section 7 and conclude the paper with discussion in
Section 8. The proofs for the theorems in this paper are provided in [6].

2 Preliminaries and Notations

In this section we describe the notation and the background definitions that are
used in the subsequent sections.

A binary dataset D is a collection of N transactions, binary vectors of length
K. The dataset can be viewed as a binary matrix of size N × K. We denote the
number of transactions by |D| = N . The ith element of a random transaction is
represented by an attribute ai, a Bernoulli random variable. We denote the collec-
tion of all the attributes by A = {a1, . . . , aK}. An itemset X = {x1, . . . , xL} ⊆ A
is a subset of attributes. We will often use the dense notation X = x1 · · · xL.

Given an itemset X and a binary vector v of length L, we use the notation
p (X = v) to express the probability of p (x1 = v1, . . . , xL = vL). If v contains
only 1s, then we will use the notation p (X = 1).

Given a binary dataset D we define qD to be an empirical distribution,

qD (A = v) = |{t ∈ D; t = v}|/|D|.
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We define the frequency of an itemset to be fr(X) = qD (X = 1). The entropy
of an itemset X = x1 · · · xL given D, denoted by H(X ; D), is defined as

H(X ; D) = −
∑

v∈{0,1}L

qD (X = v) log qD (X = v) , (1)

where the usual convention 0 log 0 = 0 is used. We often omit D.
We say that a family F of itemsets is downward closed if each subset of a

member of F is also included in F . An itemset X ∈ F is maximal if there is no
Y ∈ F such that X ⊂ Y . We define m(F) = {|X |; X ∈ F} to be the maximal
number of attributes in a single itemset.

3 Decomposable Families of Itemsets

In this section we define the concept of decomposable families. Itemsets of a
decomposable family form a junction tree, a concept from the theory of Markov
Random Fields [5].

Let G = {G1, . . . , GM} be a downward closed family of itemsets covering
the attributes A. Let H be a graph containing M nodes where the ith node
corresponds to the itemset Gi. Nodes Gi and Gj are connected if Gi and Gj

have a common attribute. The graph H is called the clique graph and the nodes
of H are called cliques.

We are interested in spanning trees of H having a running intersection prop-
erty. To define this property let T be a spanning tree of H . Let Gi and Gj be
two sets having a common attribute, say, a. These sets are connected in T by a
unique path. Assume that a occurs in every Gk along the path from Gi to Gj .
If this holds for any Gi, Gj , and any common attribute a, then we say that the
tree has a running intersection property. Such a tree is called a junction tree.

We should point out that the clique graph can have multiple junction trees
and that not all spanning trees are junction trees. In fact, it may be the case
that the clique graph does not have junction trees at all. If, however, the clique
graph has a junction tree, we call the original family G decomposable.

We label edge (Gi, Gj) of a given junction tree T with a set of mutual at-
tributes Gi ∩ Gj . This label set is called a separator. We denote the set of all
separators by S(T ). Furthermore, we denote the cliques of the tree by V (T ).

Given a junction tree T and a binary vector v, we define the probability of
A = v to be

p (A = v; T ) =
∏

X∈V (T )

qD (X = vX)
/ ∏

Y ∈S(T )

qD (Y = vY ) . (2)

It is a known fact that the distribution given in Eq. 2 is actually the unique
maximum entropy distribution [7,8]. Note that p (A = v; T ) can be computed
from the frequencies of the itemsets in G using the inclusion-exclusion principle.

It can be shown that the family G is decomposable if and only if the maximal
sets of G is decomposable and that Eq. 2 for the maximal sets of G and the
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whole G. Hence, we usually construct the tree using only the maximal sets of G.
However, in some cases it is convenient to have non-maximal sets as the cliques.
We will refer to such cliques as redundant. For a tree T we define a family of
itemsets, s(T ) to be the downward closure of its cliques, V (T ). To summarize,
G is decomposable if and only if there is a junction tree T such that G = s(T ).

Calculating the entropy of the tree T directly from Eq. 2 gives us

H(T ) =
∑

X∈V (T )

H(X) −
∑

Y ∈S(T )

H(Y ) .

A direct calculation from Eqs. 1–2 reveals that log p (D; T ) = −|D|H(T ).
Hence, maximizing the log-likelihood of the data given T (whose components
are derived from the same data), is equivalent to minimizing the entropy.

We can define the maximum entropy distribution for any cover F via linear
constraints [8]. The downside of this general approach is that solving such a
distribution is a PP-hard problem [9].

The following definition will prove itself useful in subsequent sections. Given
two downward closed covers G1 and G2. We say that G1 refines G2, if G1 ⊆ G2.

Proposition 1. If G1 refines G2, then H(G1) ≥ H(G2).

4 Finding Trees with Low Entropy

In this section we describe the algorithm for searching decomposable families. To
be more precise, given a candidate set, a downward closed family F covering the
set of attributes A, our goal is to find a decomposable downward closed family
G ⊆ F . Hence our goal is to find a junction tree T such that s(T ) ⊆ F .

4.1 Definition of the Algorithm

We search the tree in an iterative fashion. At the beginning of each iteration
round we have a junction tree Tn−1 whose cliques have at most n attributes,
that is m(s(T )) = n. The first tree is T0 containing only single attributes and
no edges. During each round the tree is modified so that in the end we will have
Tn, a tree with cliques having at most n + 1 attributes.

In order to fully describe the algorithm we need the following definition: X
and Y are said to be n − 1-connected in a junction tree T , if there is a path in
T from X to Y having at least one separator of size n − 1. We say that X and
Y are 0-connected, if X and Y are not connected.

Each round of the algorithm consists of three steps. The pseudo-code of the
algorithm is given in Algorithm 1–2.

1. Generate: We construct a graph Gn whose nodes are the cliques of size
n in Tn−1. We add all the edges to Gn having the form (X, Y ) such that
|X ∩ Y | = n − 1 and X ∪ Y ∈ F . We also set Tn = Tn−1. The weight of the
edge is set to

w (e) = H(X) + H(Y ) − H(X ∩ Y ) − H(X ∪ Y ) .
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2. Augment: We select the edge, say e = (X, Y ), having the largest weight and
remove it from Gn. If X and Y are n− 1 -connected in Tn we add Tn with a
new clique V = X ∪Y . Furthermore, for each v ∈ V , we consider W = V −v.
If W is not in Tn, it is added into Tn. Next, W and V are connected in Tn.
At the same time, the node W is also added into Gn and the edges of Gn

are added using the same criteria as in Step 1 (Generate). Finally, a possible
cycle is removed from Tn by finding an edge with separator of size n − 1.
Augmenting is repeated as long as Gn has no edges.

3. Purge: The tree V (Tn) contains redudant cliques after augmentation. We
remove these redudant cliques from Tn.

To illustrate the algorithm we provide a toy example.

Example 1. Consider that we have a family

F = {a, b, c, d, e, ab, ac, ad, bc, bd, cd, ce, abc, acd, bcd} .

Assume that we are at the beginning of the second round and we already
have the junction tree T1 given in Figure 2(a). We form G2 by taking the edges
(ab, bc) and (bc, cd).

Consider that we pick ab and bc for joining. This will spawn ac and abc in T2
(Figure 2(c)) and ac in G2 (Figure 2(d)). Note that we also add the edge (ac, cd)
into G2. Assume that we continue by picking (ac, cd). This will spawn acd and
cd into T2. Note that (bc, cd) is removed from T2 in order to break the cycle.

The last edge (bc, cd) is not added into T2 since bc and cd are not n − 1-
connected. The final tree (Figure 2(f)) is obtained by keeping only the maximal
sets, that is, purging the cliques bc, ab, ac, ad, and cd. The corresponding de-
composable family is G = F − bcd.

The next theorem states that the Augment step does not violate the running
intersection property.

Theorem 1. Let T be a junction tree with cliques of size n+1, at maximum, that
is, m(s(T )) = n + 1. Let X, Y ∈ V (T ) be cliques of size n such that |X ∩ Y | =
n − 1. Set B = X ∪ Y . Then the family s(T ) ∪ {C; C ⊆ B} is decomposable if
and only if X and Y are n − 1-connected in T .

Theorem 2. ModifyTree decreases the entropy of Tn by w(e).

Theorems 1–2 imply that SearchTree algorithm is nothing more than a greedy
search. However, since we are adding cliques in rounds we can state that under
some conditions the algorithm returns an optimal cover for each round.

Theorem 3. Assume that the members of F of size n + 1 are added to Gn at
the beginning of the nth round. Let U be a junction tree such that s(Tn) ⊆ s(U)
and m(s(U)) = n + 1. Then H(Tn+1) ≤ H(U).

Corollary 1. The tree T1 is optimal among the families using the sets of size 2.

Corollary 1 states that G1 is the Chow-Liu tree [10].
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Fig. 2. Example of graphs during different stages of SearchTree algorithm

Algorithm 1. SearchTree algorithm. The input is a downward closed cover
F , the output is a junction tree T such that V (T ) ⊆ F .

V (T0) ← {x;x ∈ A} {T0 contains the single items.}
n ← 0.
repeat

n ← n + 1.
Tn ← Tn−1.
V (Gn) ← {X ∈ V (Tn) ; |X| = n}.
E(Gn) ← {(X, Y ) ; X, Y ∈ V (Gn) , |X ∩ Y | = n − 1, X ∪ Y ∈ F}.
repeat

e = (X, Y ) ← arg maxx∈E(Gn) w(x).
E(Gn) ← E(Gn) − e.
if X and Y are n − 1-connected in Tn then

Call ModifyTree.
end if

until E(Gn) = ∅
Delete nodes marked by ModifyTree from Tn, connect the incident nodes.

until Gn is empty
return T

4.2 Model Selection

Theorem 1 reveals a drawback in the current approach. Consider that we have
two independent items a and b and that F = {a, b, ab}. Note that F is itself
decomposable and G = F . However, a more reasonable family would be {a, b} to
reflect the fact that a and b are independent. To remedy this problem we will use
model selection techniques such as BIC [11], AIC [12], and Refined MDL [13].
All these methods score the model by adding a penalty term to the likelihood.
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Algorithm 2. ModifyTree algorithm.
B ← X ∪ Y .
V (Tn) ← V (Tn) ∪ {B}. {Add new clique B into Tn.}
for v ∈ B do

W ← B − v.
Mark W .
if W /∈ V (Gn) then

V (Gn) ← V (Gn) ∪ {W}.
E(Gn) ← E(Gn) ∪ {(W,Z) ; Z ∈ V (Gn) , |X ∩ Z| = n − 1, V �= X ∪ Z ∈ F}.
V (Tn) ← V (Tn) ∪ {W}.

end if
E(Tn) ← E(Tn) ∪ (B, W ).

end for
Remove the possible cycle in Tn by removing an edge (U, V ) connecting X and Y
and having |U ∩ V | = n − 1.

We modify the algorithm by considering only the edges in Gn that improve
the score. For BIC this reduces to considering only the edges satisfying

|D|w(e) ≥ 2n−2 log |D|,

where n is the current level of SearchTree algorithm. Using AIC leads to the
considering only the edges for which

|D|w(e) ≥ 2n−1.

Refined MDL is more troublesome. The penalty term in MDL is known
as stochastic complexity. In general, there is no known closed formula for the
stochastic complexity, but it can be computed for the multinomial distribution
in linear time [14]. However, it is numerically unstable for data with large num-
ber of transactions. Hence, we will apply often-used asympotic estimate [15] and
define the penalty term

CMDL(k) =
k − 1

2
log |D| − 1

2
log π − log Γ (k/2)

for k-multinomial distribution.
There are no known exact or approximative solution in a closed form of

stochastic complexity for junction trees. Hence we propose the penalty term
for the tree to be

∑

X∈V (T )

CMDL

(
2|X|

)
−

∑

Y ∈S(T )

CMDL

(
2|Y |

)
.

Here we think that a single clique X is a 2|X|-multinomial distribution and we
compensate the possible overlaps of the cliques by subtracting the complexity of
the separators. Using this estimate leads to a selection criteria

|D|w(e) ≥ CMDL

(
2|n+1|

)
− 2CMDL

(
2|n|

)
+ CMDL

(
2|n−1|

)
.
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4.3 Computing Multiple Decomposable Families

We can use SearchTree algorithm for computing multiple decomposable covers
from a single candidate set F . The motivation behind this approach is that we
get a sequence of covers, each cover holding partial information of the original
cover F . We will show empirically in Section 6.4 that the by exploiting the
union information of these covers we are able to improve significantly bounds
for boolean queries (see Section 5).

The idea is as follows. Set F1 = F and let G1 be the first decomposable family
constructed from F1 using SearchTree algorithm. We define

F2 = F1 − {X ∈ F1; there is Y ∈ G1, |Y | > 1, Y ⊆ X} .

We compute G2 from F2 and continue in the iterative fashion until Gk contains
nothing but individual items.

5 Boolean Queries with Decomposable Families

One of our motivations for constructing decomposable families is that some
computational problems that are hard for general families of itemsets reduce
to tractable if the underlying family is decomposable. In this section we will
show that the computational burden of a boolean query, a classic optimization
problem [16,17], reduces significantly, if we are using decomposable families of
itemsets.

Assume that we are given a set of known itemsets G and a query itemset Q /∈ G.
We wish to find fr(Q; G), the possible frequencies for Q given the frequencies of
G. It is easy to see that the frequencies form an interval, hence it is sufficient to
find the maximal and the minimal frequencies. We can express the problem of
finding the maximal frequency as a search for the distribution p solving

max p (Q = 1)
s.t. p (X = 1) = fr(X) , for each X ∈ G.

p is a distribution over A.
(3)

We can solve Eq. 3 using Linear Programming [16]. However, the number of
variables in the program is 2|A| and makes the program tractable only for small
datasets. In fact, solving Eq. 3 is an NP-hard problem [9].

In the rest of the section we present a method of solving Eq. 3 with a linear
program containing only 2|Q||G||A| variables, assuming that G is decomposable.
This method is an explicit construction of the technique presented in [18]. The
idea behind the approach is that instead of solving a joint distribution in Eq. 3,
we break the distribution into small component distributions, one for each clique
in the junction tree. These components are forced to be consistent by requiring
that they are equal at the separators. The details are given in Algorithm 3.

To clarify the process we provide the following simple example.
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Algorithm 3. QueryTree algorithm for solving a query Q from a decompos-
able cover G. The output is the interval fr(Q; G).

{T1, . . . , TM} ← connected components of a junction tree of G.
for i = 1, . . . , M do

Qi ← Q ∩ (
⋃

V (Ti)). {Items of Q contained in Ti.}
U ← arg minS⊆Ti {|V (S)|; Qi ⊆

⋃
V (S)}. {Smallest subtree containing Qi.}

while there are changes do
Remove the items outside Qi that occur in only one clique of U .
Remove redundant cliques.

end while
Select one clique, say R from U to be the root.
R ← R ∪ Qi. {Augment the root with Qi}
Augment the rest cliques in U so that the running intersection property holds.
Let pC be a distribution over each clique C ∈ V (U).
αi ← the solution of a linear program

min pR (Qi = 1)
s.t. pC (X = 1) = fr(X) , for each C ∈ V (U) , X ∈ G, X ⊆ C.

pC1 (C1 ∩ C2) = pC2 (C1 ∩ C2) , for each (C1, C2) ∈ E(U) .

βi ← the solution of the maximum version of the linear program.
end for
fr(Q;G) ←

[
max

(∑M
i αi − (M − 1), 0

)
, mini (βi)

]
.

Example 2. Assume that we have G whose junction tree is given in Figure 3(a).
Let query be Q = adg. We begin first by finding the smallest sub-tree containing
Q. This results in purging fh (Figure 3(b)). We further purge the tree by remov-
ing e since it only occurs in one clique (Figure 3(c)). In the next step we pick a
root, which in this case is bc and augment the cliques with the members of Q so
that the root contains Q (Figure 3(d)). We finally remove the redundant cliques
which are ab, cd, fg. The final tree is given in 3(e). Finally, the linear program is
formed using two distributions pabcdg and pcfg. The number of variables in this
program is 25 + 23 = 40 opposed to the original 28 = 256.

Note that we did not specify in Algorithm 3 which clique we selected to be the
root R. The linear program depends on the root R and hence we select the root
minimizing the number of variables in the linear program.

ab

bce

cd

cf

fhfg

(a) Original T

ab bce

cd

cf

fg

(b) U

ab bc

cd

cf

fg

(c) Purged U

ab abcdg

cd

cfg

cf

(d) Augmented U

abcdg cfg

(e) Final U

Fig. 3. Junction trees during different stages of solving the query problem
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Theorem 4. QueryTree algorithm solves correctly the boolean query fr(q; G).
The number of variables occurring in the linear programs is 2|Q||G||A|, at maxi-
mum.

6 Experiments

In this section we will study empirically the relationship between the decompos-
able itemset families and the candidate set, the role of the regularization, and
the performance of boolean queries using multiple decomposable families.

6.1 Datasets

For our experiments we used one synthetic generated dataset, Path, and three
real-world datasets: Paleo, Courses and Mammals. The synthetic dataset, Path,
contained 8 items and 100 transactions. Each item was generated from the pre-
vious item by flipping it with a 0.3 probability. The first item was generated by a
fair coin flip. The dataset Paleo1 contains information of mammal fossils found in
specific paleontological sites in Europe [19]. Courses describes computer science
courses taken by students at the Department of Computer Science of the Univer-
sity of Helsinki. The Mammals2 dataset consists of presence/absence records of
current day European mammals [20]. The basic characteristics of the real-world
data sets are shown in Table 1.

Table 1. The basic properties of the datasets

Dataset # of rows # of items # of 1s # of 1s
# of rows

Paleo 501 139 1980 16.0
Courses 3506 98 16086 4.6
Mammals 2183 124 54155 24.8

6.2 Generating Decomposable Families

In our first experiment we examined the junction trees that were constructed
for the Path dataset. We calculated a sequence of trees using the technique
described in Section 4.3. As input to the algorithm we used an unconstrained
candidate collection of itemsets (minimum support = 0) from Path and BIC as
the regularization method. In Figure 4(a) we see that the first tree corresponds
to the model used to generate the dataset. The second tree, given in Figure 4(b),
tend to link the items that are one gap away from each other. This is a natural
result since close items are the most informative about each other.
1 NOW public release 030717 available from [19].
2 The full version of the mammal dataset is available for research purposes upon

request from the Societas Europaea Mammalogica (www.european-mammals.org)
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BIC = 522.905958, AIC = 503.367182, MDL = 522.333594

5, 6 6, 74, 50, 1 1, 2 2, 3 3, 4

(a) First junction tree of Path data.

BIC = 561.499992, AIC = 543.263801, MDL = 560.355263

7

4, 6 2, 4 3, 5 1, 30, 30, 2

(b) Second junction tree of Path data.

Fig. 4. Junction trees for Path, a syntetic data in which an item is generated from
the previous item by flipping it with 0.3 probability. The junction trees are regularized
using BIC. The tree in Figure 4(b) is generated by ignoring the cliques of the tree in
Figure 4(a).

With Courses data one large junction tree of itemsets is produced with sev-
eral noticeable components. One distinct component at one end of the tree
contains introductory courses like Introduction to Programming, Introduction
to Databases, Introduction to Application design and Java Programming. Re-
spectively, the other end of the tree features several distinct components with
itemsets on more specialized themes in computer science and software engineer-
ing. The central node connecting each of these components in the entire tree is
the itemset node {Software Engineering, Models of Programming and Comput-
ing, Concurrent systems}.

Figure 5 shows about two-thirds of the entire Courses junction tree, with
the component related to introductory courses removed because of the space
constraints. We see a concurrent and distributed systems related component in
the lower left part of the figure, a more software development oriented component
in the lower right quarter and a Robotics/AI component in the upper right corner
of the tree. The entire Courses junction tree can be found in [6].

We continued our experiments by studying the behavior of the model scores
in a sequence of trees induced by a corresponding sequence of decomposable
families. For the Path data the scores of the two first junction trees are shown in
Figure 4, with the first one yielding smaller values. For the real-world datasets,
we computed a sequence of trees from each dataset, again, with the uncon-
strained candidate collection as input and using AIC, BIC, or MDL respectively
as the regularization method. Computation took about 1 minute per tree. The
corresponding scores are plotted as a function of the order of the correspond-
ing junction tree (Figure 6). The scores are increasing in the sequence, which is
expected since the algorithm tries to select the best model and the subsequent
trees are constructed from the left-over itemsets. The increase rate slows down
towards the end since the last trees tend to have only singleton itemsets as nodes.

6.3 Reducing Itemsets

Our next goal was to study the sizes of the generated decomposable families
compared to the size of the original candidate set. As input for this experiment,
we used several different candidate collections of frequent itemsets resulting from
varying the support threshold, and generated the corresponding decomposable
itemset families (Table 2).
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Fig. 5. A part of the junction tree constructed from the Courses dataset. The tree was
constructed using an unconstrained candidate family (min. support = 0) as input and
BIC as regularization.
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Fig. 6. Scores of covers as a function of the order of the cover. Each cover is com-
puted with an unconstrained candidate family (min. support = 0) as input and the
corresponding regularization. The y-axis is the model score divided by 104.

From the results we see that the decomposable families are much smaller
compared to the original candidate set, as a large portion of itemsets are pruned
due to the running intersection property. The regularizations AIC, BIC, MDL
prune the results further. The pruning is most effective when the candidate set
is large.
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Table 2. Sizes of decomposable families for various datasets. The second column is the
minimum support threshold, the third column is the number of the frequent itemsets
in the candidate set. The columns 4–7 contain the size of the first result family and
the columns 8–11 contain the size of the union of the result families.

First Family, |G1| All Families, |
⋃

Gi|
Dataset σ |F| AIC BIC MDL None AIC BIC MDL None

Mammals .20 2169705 221 213 215 10663 668 625 630 11103
Mammals .25 416939 201 197 197 6820 535 507 509 7106
Paleo .01 22283 339 281 290 5260 993 834 812 6667
Paleo .02 979 254 235 239 376 463 433 429 733
Paleo .03 298 191 190 190 210 231 228 228 277
Paleo .05 157 147 147 147 151 149 149 149 156
Courses .01 16945 217 202 206 4087 565 522 524 4357
Courses .02 2493 185 177 177 625 354 342 342 751
Courses .03 773 176 170 170 276 264 261 261 359
Courses .05 230 136 132 132 158 167 164 164 186

6.4 Boolean Queries

We conducted a series of boolean queries for Paleo and Courses datasets. For
each dataset we pick randomly 1000 queries of size 5. We constructed a sequence
of trees using BIC and the unconstrained (min. support = 0) candidate set as
input. The average computation time for a single query was 0.3s. A portion (abt.
10%) of queries had to be discarded due to the numerical instability of the linear
program solver we used.

A queryQ for a decomposable family Gi produces a frequency interval fr(Q; Gi).
We also computed the frequency interval fr(Q; I), where I is a family containing
nothing but singletons. We studied the ratios r(Q; n) = |

⋂n
1 fr(Q; Gi)|/|fr(Q; I)|
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Fig. 7. Boolean query ratios from Paleo and Course datasets. Figure 7(a) contains the
percentage of queries having r(Q; n) < 1, that is, the percentage of queries improved
over the singleton model as a function of the number of decomposable families. Fig-
ures 7(b)–7(c) are box plots of the ratios r(Q;n), where Q is a random query and n is
the number of decomposable families.
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as a function of n, that is, the ratio between the tightness of the bound using n
families and the singleton model.

From the results given in Figure 7 we see that the first decomposable family
in the sequence yields in about 10 % of the queries an improved bound with re-
spect to the singleton family. As the number of decomposable families increases,
the number of queries with tighter bounds goes from 10% up to 60%. Also, in
general the absolute bounds become tighter for the queries as we increase the
number of decomposable families. For Courses the median of the ratio r(Q; 15) is
about 0.5.

7 Related Work

One of the main uses of our algorithm is in reducing itemset mining results into a
smaller and a more manageable group of itemsets. One of the earliest approaches
on itemset reduction include close itemsets [21] and maximal frequent itemset
[22]. Also more recently, a significant amount of interesting research has been
produced on the topic [23,24,25,26]. Yan et al. [24] proposed a statistical model
in which k representative patterns are used to summarize the original itemset
family as well as possible. This approach has, however, a different goal to that
of ours, as our model aims to describe the data itself. From this point of view
the work by Siebes et al. [25] is perhaps the most in concordance to ours. Siebes
et al. propose an MDL based method where the reduced group of itemsets aim
to compress the data as well as possible. Yet, their approach is technically and
methodologically quite different and does not provide a probabilistic model of
the data as our model does. Furthermore, non of the above approaches provide a
naturally following tree based representation of the mining results as our model
does.

Traditionally, junction trees are not used as a direct model but rather as a tech-
nique for decomposing directed acyclic graph (DAG) models [5]. However, there
is a clear difference between the DAG models and our approach. Assume that we
have 4 items a, b, c, and d. Consider a DAG model p(a)p(b; a)p(c; a)p(d; bc). While
we can decompose this model using junction trees we cannot express it exactly.
The reason for this is that the DAG model contains the assumption of indepen-
dence of b and c given a. This allows us to break the clique abc into smaller parts.
In our approach the cliques are the empirical distributions with no independence
assumptions. DAG models and junction tree models are equivalent for Chow-Liu
tree models [10].

Our algorithm for constructing junction trees is closely related to EFS algo-
rithm [27,28] in which new cliques are created in a similar fashion. The main
difference between the approaches is that we add new cliques in a level-wise
fashion. This allows a more straightforward algorithm. Another benefit of our
approach is Theorem 3. On the other hand, Corollary 1 implies that our algo-
rithm can be seen also as an extension of Chow-Liu tree model [10].
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8 Conclusions and Future Work

In this study we applied the concept of junction trees to create decomposable
families of itemsets. The approach suits well for the problem of itemset selec-
tion, and has several advantages. The naturally following junction trees provide
an intuitive representation of the mining results. From the computational point
of view, the model provides leverage for problems that could be intractable
using generic families of itemsets. We provided an efficient algorithm to build
decomposable itemset families, and gave an application example with frequency
bound querying using the model. Empirical results showed that our algorithm
yields high quality results. Because of the expressiveness and good interpretabil-
ity of the model, applications such as classification using decomposable families
of itemsets could prove an interesting avenue for future research. Even more
generally, we anticipate that in the future decomposable models could prove
computationally useful with pattern mining applications that otherwise could
be hard to tackle.
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Abstract. Reinforcement learning agents typically require a significant
amount of data before performing well on complex tasks. Transfer learn-
ing methods have made progress reducing sample complexity, but they
have primarily been applied to model-free learning methods, not more
data-efficient model-based learning methods. This paper introduces tim-

brel, a novel method capable of transferring information effectively into
a model-based reinforcement learning algorithm. We demonstrate that
timbrel can significantly improve the sample efficiency and asymptotic
performance of a model-based algorithm when learning in a continuous
state space. Additionally, we conduct experiments to test the limits of
timbrel’s effectiveness.

1 Introduction

In many situations, an agent must learn to execute a series of sequential
actions, which is typically framed as a reinforcement learning (RL) [1] problem.
Although RL approaches have enjoyed past successes (e.g., TDGammon [2], in-
verted Helicopter control [3], and robot locomotion [4]), they frequently take
substantial amounts of data to learn a reasonable control policy. In many do-
mains, collecting such data may be slow, expensive, or infeasible, motivating the
need for sample-efficient learning methods.

One recent approach to speeding up RL so that it can be applied to difficult
problems with large, continuous state spaces is transfer learning (TL). TL is a
machine learning paradigm that reuses knowledge gathered in a previous source
task to better learn a novel, but related, target task. Recent empirical successes
in a variety of RL domains [5,6,7] have shown that transfer can significantly
increase an agent’s ability to learn quickly, even if agents in the two tasks have
different available sensors or actions. Note that TL is related to, but distinct
from, the concept drift [8] and multi-task learning [9,10] paradigms. Concept
drift assumes that the environment is non-stationary: at certain points in time,
the environment may change arbitrarily and the change is unannounced. Multi-
task learning assumes that the agent experiences many problems and that they
are all drawn from the same distribution (and thus all tasks have the same
actions and state variables). In contrast, TL methods generally assume that the
agent is notified when the task changes and generally do not assume that source
and target tasks are drawn from the same distribution.
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Model-free algorithms such as Q-Learning [11] and Sarsa [12] learn to
predict the utility of each action in different situations, but they do not learn the
effects of actions. In contrast, model-based (or model-learning) methods, such
as PEGASUS [13], R-max [14], and Fitted R-max [15], use their experience to
learn an internal model of how the actions affect the agent and its environment,
an approach empirically shown to often be more sample efficient. Such a model
can be used in conjunction with dynamic programming [16] to perform off-line
planning, often enabling superior action selection without requiring additional
environmental samples. Building these models may be computationally inten-
sive, but using CPU cycles to reduce data collection time is a highly favorable
tradeoff in many domains (such as physically embodied agents). In order to fur-
ther reduce sample complexity and ultimately allow RL to be applicable in more
complex domains, this paper introduces Transferring Instances for Model-Based
REinforcement Learning (timbrel), a novel approach to combining TL with
model-based RL.

The key insight behind timbrel is that data gathered in a source task can
be used to build beneficial models in a target task. Data is first recorded in a
source task, transformed so that it applies to a target task, and then used by the
target task learner as it builds its model. In this paper we utilize Fitted R-max,
an instance-based model-learning algorithm, and show how timbrel can help
construct a target task model by using source task data. timbrel combines
the benefits of transfer with those of model-based learning to reduce sample
complexity. We fully implement and test our method in a set of mountain car
tasks, demonstrating that transfer can significantly reduce the sample complexity
of learning.

In principle, the core timbrel algorithm (Section 3.1) could be used with
other model-learning algorithms, but we leave such extensions to future work.
The experiments in this paper use timbrel by applying it to Fitted R-max

(detailed in Section 5), as it can both learn in continuous state spaces and has
had significant empirical success [15]. This paper’s results thus demonstrate that
timbrel works in continuous state spaces, as well as between tasks with different
state variables and action spaces.

The rest of this paper is organized as follows. Section 2 provides a brief back-
ground of RL and Fitted R-max, as well as discussing a selection of related TL
methods. Section 3 introduces timbrel and the experimental domain is detailed
in Section 4. Results are presented in Section 6. Section 7 discusses possible fu-
ture directions and concludes.

2 Background and Related Work

In this paper we use the notation of Markov decision processes (MDPs) [17]. At
every time step the agent observes its state s ∈ S as a vector of k state variables
such that s = 〈x1, x2, . . . , xk〉. In episodic tasks there is a starting state sinitial

and often a goal state sgoal, which terminates the episode if reached by the agent.
The agent selects an action from the set of available actions A at every time step.
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The start and goal states may be generalized to sets of states. A task also defines
the reward function R : S × A �→ R, and the transition function T : S × A �→ S
fully describes the dynamics of the system. The agent will attempt to maximize
the long-term reward determined by the (initially unknown) reward function R
and the (initially unknown) transition function T .

A learner chooses which action to take in a state via a policy, π : S �→ A. π is
modified by the learner over time to improve performance, which is defined as
the expected total reward. Instead of learning π directly, many RL algorithms
instead approximate the action-value function, Q : S×A �→ R, which maps state-
action pairs to the expected real-valued return [17]. If the agent has learned the
optimal action-value function, it can select the optimal action from any state by
executing the action with the highest action-value.

In this paper, we introduce and utilize timbrel to improve the performance
of Fitted R-max [15], an algorithm that approximates the action-value function
Q for large or infinite state spaces by constructing an MDP over a small (finite)
sample of states X ⊂ S. For each sample state x ∈ X and action a ∈ A,
Fitted R-max estimates the dynamics T (x, a) using all the available data for
action a and for states s near x.1 Some generalization from nearby states is
necessary because we cannot expect the agent to be able to visit x enough times
to try every action. As a result of this generalization process, Fitted R-max

first approximates T (x, a) as a probability distribution over predicted successor
states in S. A value approximation step then approximates this distribution of
states in S with a distribution of states in X . The result is a stochastic MDP
over a finite state space X , with transition and reward functions derived from
data in S. Applying dynamic programming to this MDP yields an action-value
function over X × A that can be used to approximate the desired action-value
function Q. Past work [15] empirically shows that Fitted R-max learns policies
using less data than many existing model-free algorithms.

Fitted R-max is summarized in Algorithm 1. sopt is a dummy state that
represents unexplored states (where V (sopt) is set to Rmax). sterm is a dummy
absorbing state that all discovered terminal states get mapped to. D is a data
structure that holds all observed instances. φSa

is an averaging object that ap-
proximates the effect of action a at state s using nearby sample transitions
d ∈ Da. φX is an averaging object that approximates the value of each predicted
successor state using nearby sample states x ∈ X . The reader is referred to [15]
for detailed descriptions of the update rules (lines 16 and 17).

Most similar to timbrel are methods that transfer between model-free RL
algorithms with different state and action spaces. Torrey et. al [5] show how
to automatically extract advice from a source task by identifying actions which
have higher Q-values than other available actions; this advice is then mapped
by a human to the target task as initial preferences given to the target task

1 Fitted R-max is an instance-based learning method; our implementation currently
retains all observed data to compute the model. It could, in principle, be enhanced
to automatically discard instances without significantly decreasing model accuracy.
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Algorithm 1. Fitted R-max (Rmax, r, b, minFraction, explorationThreshold)

1: X ← {sopt, sterm} # Initialize state sample
2: X.InitializeUniformGrid(r)
3: for all a ∈ A do # Initialize experience sample
4: Da ← {〈sopt, a, V max, sterm〉}
5: loop
6: s ← initial state # Begin a trajectory
7: a ← argmaxa

[
R(s) +

∑
x′∈X P (x′|s, a)V (x′)

]

8: repeat
9: Execute a

10: Observe r and s′

11: if s′ is terminal then
12: s′ ← sterm

13: else
14: a′ ← argmaxa

[
R(s) +

∑
x′∈X P (x′|s, a)V (x′)

]

15: Da ← Da ∪ {〈s, a, r, s′〉} # Update experience sample
16: Update φX and φSa

via 〈experience, minFraction, and explorationThreshold〉
17: Update estimates of R and P based on φX and φSa

18: Compute V (x) for x ∈ X via dynamic programming
19: s ← s′

20: a ← a′

21: until s is a terminal state # the episode ends

learner. In past work [6], an agent learns an action-value function in a source task,
translates the function into a target task via a hand-coded inter-task mapping,
and then uses the transferred function to initialize the target task agent. Other
recent work by Lazaric et. al [7] demonstrates that source task instances
(that is, observed 〈s, a, r, s′〉 tuples) can be usefully transferred between tasks
for a batch value-function learning algorithm. In all three cases the transferred
knowledge is effectively used to improve learning in the target task, but only for
model-free learning methods.

Atkeson and Santamaria [18] show that if only the reward function changed
between tasks, a locally weighted regression model can be directly applied from a
source task in a novel task. Tanaka and Yamamura [19] consider multi-task learn-
ing in a discrete state space. By recording the average and deviation of Q-values
for all (s, a) pairs, agents in the n + 1th task can initialize their Q-values to the
previously seen average to learn faster. Additionally, agents can order their prior-
itized sweeping [20] updates based on the average and deviation of each (s, a) pair
to gain additional learning speed advantages.

Lastly, two works consider multi-task learning in a Bayesian model-based
RL [21] setting. First, Sunmola and Wyatt [22] introduce two methods that
use instances from previous tasks to set priors in a Bayesian learner. Initial
experiments show that given an accurate estimation of the prior distributions, an
agent may learn a novel task faster. Second, Wilson et. al [10] consider learning in
a hierarchical Bayesian RL setting over multiple MDP distributions. By setting
priors based on previously learned tasks, a new task in a particular distribution
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can be learned significantly faster. A simple parameterized reward function and
the location of an absorbing goal state may change between the different tasks.

timbrel differs from previous work along a number of dimensions. Most im-
portant, inter-task mappings allow timbrel to transfer knowledge suitable for
model-learning RL agents, even when transfer is between MDPs with different
state variables and actions. Additionally, timbrel can run on-line, is not lim-
ited to discrete domains, and is designed for transfer (as opposed to multi-task
learning).

3 Model Transfer

Model-based algorithms learn to estimate the transition model of an MDP, pre-
dicting the effects of actions. The goal of transfer for model-based RL algorithms
is to allow the agent to build such a model from data gathered both in a previous
task, as well as in the current task. To help frame the exposition, we note that
transfer methods must typically perform the following three steps:
1. Use the source task agent to record some information during, after, or about,

learning. Successful TL approaches include recording learned action-value
functions or higher-level advice about high-value policies.

2. Transform the saved source task information so that it applies to the target
task. This step is most often necessary if the states and actions in the two
tasks are different, as considered in this paper.

3. Utilize the transformed information in the target task. Successful approaches
include using source task information to initialize the learner’s action-value
function, giving advice about actions, and suggesting potentially useful se-
quences of actions (i.e., options).

The following section introduces timbrel, a novel transfer method, which
accomplishes these steps. Later, in Section 5, we detail how timbrel is used in
our test domain with Fitted R-max, our chosen model-based RL algorithm.

3.1 Instance-Based Model Transfer

This section provides an overview of timbrel. In order to transfer a model, our
method takes the novel approach of transferring observed instances from the
source task. The tuples, in the form (s, a, r, s′), describe experience the source
task agent gathered while interacting with its environment (Step 1). One advan-
tage of this approach as compared to transferring an action-value function or a
full environmental model (e.g., the transition function) is that the source task
agent is not tied to a particular learning algorithm or representation: whatever
RL algorithm that learns will necessarily have to interact with the task and
collect experience. This flexibility allows a source task algorithm to be selected
based on characteristics of the task, rather than on demands of the transfer
algorithm.

To translate a source task tuple into an appropriate target task tuple (Step
2) we utilize inter-task mappings [6], which have been successfully used in past
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transfer learning research to specify how pairs of tasks are related via an ac-
tion mapping and a state variable mapping. This pair of mappings identifies
source task actions which have similar effects as target task actions, and allows
a mapping of target task state variables into source task state variables.

When learning in the target task, timbrel specifies when to use source task
instances to help construct a model of the target task (Step 3). Briefly, when
insufficient target task data exists to estimate the effect of a particular (x, a)
pair, instances from the source task are transformed via an action-dependant
inter-task mapping, and are then treated as a previously observed transition in
the target task model. The timbrel method is summarized in Algorithm 2.

Notice that timbrel performs the translation of data from the source task
to the target task (line 10) on-line while learning the target task. Transfer algo-
rithms more commonly performed such translations off-line, before training in
the target task, but this just-in-time approach is justified because of how the
source data are utilized. In Section 5, we detail how the current state, x, will af-
fect how the source task sample is translated in our particular task domain. Only
transferring instances that will be immediately used in the target task helps to
limit computational costs. Furthermore, this method will minimize the number
of source instances that must be reasoned over in the target task model by only
transferring necessary source task data.

Algorithm 2. timbrel Overview

1: Learn in the source task, recording (s, a, r, s′) transitions.
2: Provide recorded transitions to the target task agent.
3: while training in the target task do
4: if the model-based RL algorithm is unable to accurately estimate some T (x, a)

or R(x, a) then
5: while T (x, a) or R(x, a) does not have sufficient data do
6: Locate 1 or more saved instances that, according to the inter-task mappings,

are near the current 〈x, a〉 to be estimated.
7: if no such unused source task instances exist then
8: exit the inner while loop
9: Use 〈x, a〉, the saved source task instance, and the mappings to translate

the saved instance into one appropriate to the target task.
10: Add the transformed instance to the current model for 〈x, a〉.

4 Generalized Mountain Car

This section introduces our experimental domain, a generalized version of the
standard RL benchmark mountain car task [12]. Mountain car is an appropri-
ate testbed for timbrel with Fitted R-max because it is among the simplest
continuous domains that can benefit from model-based learning, and it is easily
generalizable to enable TL experiments.

In mountain car, the agent must generalize across continuous state variables
in order to drive an underpowered car up a mountain to a goal state. We also
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discuss 3D mountain car [23], an extension of the 2D task. In both tasks the
transition and reward functions are initially unknown. The agent begins at rest
at the bottom of the hill.2 The reward for each time step is −1. The episode
ends, and the agent is reset to the start state, after 500 time steps or if it reaches
the goal state.

4.1 Two Dimensional Mountain Car

In the two dimensional mountain car task, two continuous variables fully describe
the agent’s state (see Figure 1). The horizontal position (x) and velocity (ẋ) are
restricted to the ranges [−1.2, 0.6] and [−0.07, 0.07] respectively. The agent may
select one of three actions on every timestep; {Left, Neutral, Right} change the
velocity by -0.0007, 0, and 0.0007 respectively.3 Additionally, −0.025(cos(3x))
is added to ẋ on every timestep to account for the x-component of the force of
gravity on the car, which depends on the local slope of the mountain. The start
state is (x = −π

6 , ẋ = 0), and the goal states are those where x ≥ 0.5. We use
the publicly available4 version of this code for our experiments.
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Fig. 1. In the standard 2D mountain car the agent
must travel along a curve (mountain)

The transfer experiments
in this paper (Section 6)
use three variants of the
2D mountain car task. The
first, which we will call
the Standard 2D task is
described in the previous
paragraph. The No Goal
2D task is the same as
the standard task, except
that goal state has been re-
moved. This task will be
used to show how the effec-
tiveness of transfer changes
when the reward function
changes. The third variant,
the High Power 2D task, changes the car so that the velocity is changed by
±0.0015: the car has more than twice the acceleration of the Standard 2D task
car. This variant will be used to show how transfer efficacy changes when the
source task transition function changes.

2 Both mountain car tasks are deterministic, and Fitted R-max’s exploration uses
a fixed random seed. To introduce randomness and allow multiple learning trials,
when each domain is initialized, x (and y in 3D) in the start state is perturbed by
a random number in [−0.005, 0.005].

3 In the original formulation, the velocity was changed by ±0.001 due to acceleration.
We have reduced the power of the car to make the task more challenging.

4 Available at http://rlai.cs.ualberta.ca/RLR/MountainCarBestSeller.html
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4.2 Three Dimensional Mountain Car

Fig. 2. In 3D mountain car the 2D curve becomes a 3D surface.
The agent starts at the bottom of the hill with no kinetic energy
and attempts to reach the goal area in the Northeast corner.

The 3D task [23]
extends the moun-
tain’s curve into a
surface (see Fig-
ure 2).5 The state
is composed of four
continuous state
variables: x, ẋ, y, ẏ.
The positions and
velocities have
ranges of [−1.2, 0.6]
and [−0.07, 0.07],
respectively. The
agent selects from
five actions at each
timestep:{Neutral,
West, East, South,
North}. West and
East modify ẋ by -
0.0007 and +0.0007
respectively, while
South and North modify ẏ by -0.0007 and +0.0007 respectively.6 The force of
gravity adds −0.025(cos(3x)) and −0.025(cos(3y)) on each time step to ẋ and
ẏ, respectively. The goal region is defined by x ≥ 0.5 and y ≥ 0.5.

This task is more difficult than the 2D task because of the increased state
space size and additional actions. Furthermore, since the agent can affect its
acceleration in only one of the two spatial dimensions at any given time, one
cannot simply “factor” this problem into the simpler 2D task. While data gath-
ered from the 2D task should be able to help an agent learn the 3D task, we do
expect that some amount of learning will be required after transfer.

4.3 Learning Mountain Car

Our experiments used Fitted R-max to learn policies in the mountain car
tasks. We began by replicating the methods and result of applying Fitted R-max

to 2D mountain car task as reported in the literature [15]. To apply Fitted R-
max to 3D mountain car, we first scaled the state space so that each dimension
ranges over the unit interval, effectively scaling the state space to a unit hyper-
cube. We sampled a finite state space from this hypercube by applying a grid

5 An animation of a trajectory from a trained policy can be found at
http://www.cs.utexas.edu/∼mtaylor/3dMtnCar.html.

6 Although we call the agent’s vehicle a “car,” it does not turn but simply accelerates
in the four cardinal directions.
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where each position state variable can be one of 8 values, and each velocity state
variable can be one of 9 values. The 3D version of mountain car has 2 of each
type of state variable; we obtained a sample X of 82 × 92 = 5184 states that
approximated the original state space state S (which determines the model’s
resolution). For any state x ∈ X and action a ∈ A, Fitted R-max estimates
T (x, a) using a probability distribution over instances (si, a, ri, s

′
i) in the data

available for action a. Each instance i is given a weight wi depending on the
Euclidean distance from x to si and on the model breadth parameter b, accord-

ing to the following formula: wi ∝ e
−

(
|x−si|

b

)2

. Intuitively, b controls the degree
of generalization used to estimate T (x, a) from nearby data. In 3D mountain
car experiments, we used a parameter of b = 0.4. In theory, all instances that
share the action a could be used to help approximate x, where each instance
i’s contribution is modified by wi (i.e., a Gaussian weighting that exponentially
penalizes distance from x). To reduce the computational cost of the algorithm,
for a given state x we computed the weights for the nearest instances first. Once
an instance’s weight failed to increase the cumulative weight by at least 10%,
we ignored the remaining instances’ contribution as negligible (the minFraction
parameter in Algorithm 1). Finally, when the accumulated weight failed to reach
a threshold of 1.0, we used Fitted R-max’s exploration strategy of assuming an
optimistic transition to a maximum-reward absorbing state.

Changing the learning parameters for Fitted R-max outlined above affects
three primary aspects of learning:

– How accurately the optimal policy can be approximated.
– How many samples are needed to accurately approximate the best policy,

given the representation.
– How much computation is required when performing dynamic programming.

For this work, it was most important to find settings which allowed the agent
to learn a reasonably good policy in relatively few episodes so that we could
demonstrate the effectiveness of timbrel on sample complexity. We do not argue
that the above parameters are optimal. They could be tuned to emphasize any
of the above goals, such as achieving higher performance in the limit.

Figure 3 compares the average performance of 12 Fitted R-max trials with
12 Sarsa trials in the 3D mountain car task. The ε-greedy Sarsa(λ) agent uses
a CMAC [24] function approximator with 14 4-dimensional linear tilings, which
is analogous to how Singh and Sutton [12] used 14 2-d dimensional linear tile
codings for their 2D task.7 This result demonstrates that Fitted R-max can
be tuned so that it learns with significantly less data (finding a path to the
goal in roughly 50 episodes instead of 10,000 episodes), but does not necessarily
achieve optimal performance. Learning with Fitted R-max takes substantially
more computational resources than Sarsa in this domain; the Fitted R-max

7 We achieved the best performance on this task by setting the learning rate to α = 0.5,
the exploration rate to ε = 0.1, λ = 0.95, not decaying α, and decaying ε at the end
of every episode by 0.1%.
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Fig. 3. Average learning curves for Fitted R-max and Sarsa show the significant speed
advantage of model-based RL on the 3D mountain car task (note the log scale). Fitted
R-max parameters where chosen for relatively low sample and computational complex-
ity requirements at the expense of asymptotic performance.

learning curves were terminated once their performance plateaued (and thus are
run for fewer episodes than Sarsa).

5 TIMBREL Implementation for Mountain Car

In this section we detail how timbrel is used to transfer between tasks in the
mountain car domain when using Fitted R-max as the underlying RL algorithm.
Although timbrel is a domain-independent transfer method which is designed
to be compatible with multiple model-learning RL algorithms, we will ground
our exposition in the context of Fitted R-max and mountain car. Throughout
this section we use the subscript S to denote actions, states, and state variables
in the source task, and the subscript T for the target task.

The core result of this paper is to demonstrate transfer between the Standard
2D mountain car task and the 3D mountain car task. After learning the 2D
task, timbrel must be provided an inter-task mapping between the two tasks.
The action mapping, χA, maps a target task action into a source task action:
χA(aT) = aS, and χS maps a target task state variable into a source task state
variable: χS(s(i,T)) = s(j,S). In this work we assume that the inter-task mapping
in Table 1 is provided to the agent, but our past work [23] has demonstrated
that a mapping between the 2D and 3D mountain car tasks may be learned
autonomously. Note that the state variable mapping is defined so that either the
target task state variables (x and ẋ) or (y and ẏ) are mapped into the source
task. As we will discuss, the unmapped target task state variables will be set by
the state variables’ values in the state x that we wish to approximate.

As discussed in Section 2, Fitted R-max approximates transitions from a set
of sample states x ∈ X for all actions. When the agent initially encounters the
target task, no target task instances are available to approximate T . Without
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transfer, Fitted R-max would be unable to approximate T (xT, aT) for any x and
would set the value of Q(sT, aT) to an optimistic value (Rmax) to encourage
exploration. Instead, timbrel is used to generate target instances to help ap-
proximate T (xT, aT). timbrel provides a set of source task instances, as well
as the inter-task mappings, and must construct one or more target task tuples,
(sT, aT, r, s′

T
), to help approximate T (xT, aT). The goal of transfer is to find some

source task tuple (sS, aS, r, s
′
S
) where aS = χA(aT) and sS is “near” sT (line 6 in

Algorithm 2). Once we identify such a source task tuple, we can then use χ−1 to
convert the tuple into a transition appropriate for the target task (line 9), and
add it to the data approximating T (line 10).

Table 1. This table describes the mapping used by
timbrel to construct target task instances from
source task data

Inter-task Mapping for Mountain Car
Inter-task Mapping for Mountain Car

Action Mapping State Variable Mapping
χA(Neutral) = Neutral χS(x) = x
χA(North) = Right χS(ẋ) = ẋ
χA(East) = Right or
χA(South) = Left χS(y) = x
χA(West) = Left χS(ẏ) = ẋ

As an illustrative exam-
ple, consider the case when
the agent wants to approxi-
mate T (xT, aT), where xT =
〈xT, yT, ẋT, ẏT〉 = 〈−0.6, −0.2,
0, 0.1〉 and aT = East. timbrel

considers source task transi-
tions that contain the action
Right. χS is defined so that ei-
ther the x or y state variables
can be mapped from the target
task to the source task, which
means that we should consider
two transitions selected from the source task instances. The first tuple is selected
to minimize the Euclidean distances D(xT, xS) and D(ẋT, ẋS), where each dis-
tance is scaled by the range of the state variable. The second tuple is chosen to
minimize D(yT, xS) and D(ẏT, ẋS).

Continuing the example, suppose that the first source task tuple selected was

(〈−0.61, 0.01〉, Right, −1, 〈−0.59, 0.02〉).

If the inter-task mapping defined mappings for the x and y state variables si-
multaneously, the inverse inter-task mapping could be used to convert the tuple
into

(〈−0.61, −0.61, 0.01, 0.01〉, East, −1, 〈−0.59, −0.59, 0.02, 0.02〉).

However, this point is not near the current xT we wish to approximate. Instead,
we recognize that this sample was selected from the source task to be near to
xT and ẋT, and transform the tuple, assuming that yT and ẏT are kept constant.
With this assumption, we form the target task tuple

(〈−0.61, yT, 0.01, ẏT〉, East, −1, 〈−0.59, yT, 0.2, ẏT〉) =

(〈−0.61, −0.2, 0.01, 0.1〉, East, −1, 〈−0.59, −0.2, 0.02, 0.1〉).

The analogous step is then performed for the second selected source task tuple:
the source task tuple is transformed with χ, and xT and ẋT are held constant.
Finally, both transferred instances are added to the T (x, a) approximation.
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timbrel thus transfers pairs of source task instances to help approximate the
transition function. Other model-learning methods may need constructed trajec-
tories instead of individual instances, but timbrel is able to generate trajectories
as well. Over time, the learner will approximate T (xT, aT) for different values of
(x, a) in order to construct a model for the target task environment. Any model
produced via this transfer may be incorrect, depending on how representative the
saved source task instances are of the target task (as modified by χ). However, our
experiments demonstrate that using transferred data may allow a model learner
to produce a model that is more accurate than if the source data were ignored.

As discussed in Section 4.3, Fitted R-max uses the distance between instances
and x to calculate instance weights. When an instance is used to approximate x,
that instance’s weight is added to the total weight of the approximation. If the
total weight for an approximation does not reach a threshold value of 1.0, an
optimistic value (Rmax) is used because not enough data exists for an accurate
approximation. When using timbrel, the same calculation is performed, but
now instances from both the source task and target task can be used.

As the agent interacts with the target task, more transitions are recorded
and the approximations of the transition function at different (x, a) pairs need
to be recalculated based on the new information. Each time an approximation
needs to be recomputed, Fitted R-max first attempts to use only target task
data. If the number of instances available (where instances are weighted by their
distance from x) does not exceed the total weight threshold, source task data is
transferred to allow an approximation of T (xT, aT). This process is equivalent to
removing transferred source task data from the model as more target task data
is observed and therefore allows the model’s accuracy to improve over time.
Again, if the total weight from source task and target tasks instances for an
approximated x does not reach 1.0, Rmax is assigned to the model for x.

As a final implementation note, consider what happens when some x maps to
an sS that is not near any experienced source task data. If there are no source task
transitions near sS, it is possible that using all available source task data will not
produce an accurate approximation (recall that instance weights are proportional
to the square of the distance from the instance to x). To avoid a significant
reduction in performance with limited improvement in approximating T , we
imposed a limit of 20 source task tuples when approximating a particular point
(line 5). This threshold serves a similar purpose as the 10% cumulative weight
threshold discussed in Section 4.3.

6 Transfer Experiments

To test the efficacy of timbrel, we first conducted an experiment to measure the
learning speed of Fitted R-max in the mountain car domain with and without
timbrel. Roughly 50 different sets of Fitted R-max parameters were used in
preliminary experiments to select the best settings for learning the 3D task
without transfer (as discussed in Section 4.3). We ran 12 trials for 4,000 episodes
and found that 10 out of 12 trials were able to converge to a policy that found
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the goal area. Recall that Fitted R-max is not guaranteed to converge to an
optimal policy because it depends on approximation in a continuous state space.

To transfer from the Standard 2D mountain car task into the more complex
3D mountain car, we first allow 12 Fitted R-max agents to train for 100 episodes
each in the 2D task while recording all observed (s, a, r, s′) transitions.8 We then
used timbrel to train agents in the target task for 1,000 episodes. 12 out of 12
trials converged to a policy that found the goal area.

After learning, we averaged over all trials for the non-transfer and transfer
learning trials. For clarity, we also smoothed the curves by averaging over a 10
episode window. Figure 4(a) shows the first 1000 episodes of training (running
the experiments longer than 1,000 episodes did not significantly improve the
policy, as suggested by Figure 3). T-tests determined that all the differences in
the averages were statistically significant (p < 0.05), with the exception of the
initial average at episode 9. This result confirms that transfer can significantly
improve the performance of agents in the 3D mountain car task.

We hypothesize that the U-shaped transfer learning curve is caused by a
group of agents that find an initial path to the goal, spend some number of
episodes exploring to find a faster path to the goal, and ultimately return to the
original policy (see Figure 4(b)). In addition to improved initial performance, the
asymptotic performance is improved, in part because some of the non-transfer
tasks failed to successfully locate the goal. The difference in success rates (10 of
12 trials reaching the goal vs. 12 of 12) suggest that transfer may make difficult
problems more tractable.

timbrel, and its implementation, were designed to minimize sample com-
plexity. However, it is worth noting that there is a significant difference in the
computational complexity of the transfer and non-transfer methods. Every time
the transfer agent needs to use source task data to estimate T , it must locate the
most relevant data and then insert it into the model. Additionally, the transfer
agent has much more data available initially, and thus its dynamic programming
step is significantly slower than the non-transfer agent.9 These factors cause the
transfer learning trials to take roughly twice as much wall clock time as the non-
transfer trials. While our code could be better optimized, using the additional
transferred data will always slow down the agent, relative to an agent that is
not using transfer, but is running for the same number of episodes. However, in
many domains a tradeoff of increasing computational requirements and reducing
sample complexity is highly advantageous, and is one of the benefits inherent to
model-based reinforcement learning.

8 We experimented with roughly 10 different parameter settings for Fitted R-max in
the Standard 2D task. Every episode lasts 500 time steps if the goal is not found
and the 2D goal state can be reached in roughly 150 time steps. When learning 2D
Mountain car, the agent experienced an average of 24,480 source task transitions
during the 100 source task episodes.

9 An analysis of the increase in computational complexity depends on the amount of
data transferred into a target task, which in turn depends on the pair of tasks used.
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Fig. 4. (a) timbrel significantly improves the speed of Fitted R-max on the 3D moun-
tain car. The average performance is plotted every 10 episodes along with the standard
error. (b) As Fitted R-max explores, the performance can vary significantly, sometimes
resulting in a U-shaped learning curve.

Our second experiment examines how the amount of recorded source task data
affects transfer. One hypothesis was that more tuples in the source task would
equate to higher performance in the target task, because the target task agent
would have more data to draw from, and thus would be better able to approximate
any given T (x, a).

We first ran experiments in the Standard 2D task for 5, 10, and 20 episodes,
where the average number of steps per episode was 422, 298, 238, respectively.10

Figure 5(a) shows that transfer from 20 source task episodes is similar to using
100 source task episodes and performs statistically better than no transfer at
the 95% level for 98 of the 100 points graphed. While transfer performance
degrades for trials that use 10 and 5 source task episodes, both trials do show
a statistically significant boost to the agents’ initial learning performance. This
result demonstrates that a significant amount of information can be learned in
just a few source task episodes; the source task is less complex than the target
and thus a short amount of time spent learning in the source may have a large
impact on the target task performance.

Recall the mountain car has a reward of −1 on each time step. The agent learns
to reach the goal area because transitioning into this area ends the episode and
the steady stream of negative reward. The third experiment uses the No Goal 2D
task as a source task to examine how changing the reward function in the source
task affects transfer. When training in the source task, every episode lasted 500
time steps (the maximum number of steps). After learning for 100 episodes in the
source task, we transferred into the target task and found that 9 of the 12 trials
successfully discovered policies to reach the goal area. Figure 5(b) suggests that

10 The average number of steps per episode decreases for longer trials because the agent
quickly learns to find the goal.
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Fig. 5. (a) This graph shows the effect of different amounts of source task training.
Each learning curve is the average of 12 independent trials. (b) Transfer from a 2D
mountain car task that has no goal state or from a 2D mountain car with significantly
stronger acceleration produces statistically significant improvements at the beginning
of learning when compare to learning without transfer. However, this relative advantage
is lost as the target task agents gain more experience.

transfer from a source task policy with a different reward structure can be initially
useful (t-tests confirm that transfer outperforms non-transfer for four of the first
five points graphed), but the relative performance of the non-transfer trials soon
outperform that of learning with transfer.

Our fourth experiment uses the High Power 2D task as a source task. We
again record 100 episodes worth of data for source task learners and use tim-

brel to transfer into 3D mountain car. Because the source task uses a car with
a motor more than twice as powerful as in the 3D task, the transition func-
tion learned in the source task is less useful to the agent in the target task. 9
of the 12 target task trials successfully converged to a policy that reached the
goal. Transferring from the High Power 2D task (Figure 5(b)) is not as useful
as transferring from the Standard 2D Task (Figure 5(a)) due to differences in
the transition functions. Although t-tests show that there is a statistically sig-
nificant improvement at the beginning of learning, the transfer and non-transfer
curves in Figure 5(b) quickly become statistically indistinct with more target
task training.

Figure 5(b) highlights an important drawback of transfer learning. Transfer
efficacy is often affected by the similarity of source tasks and target tasks, and
in some circumstances transfer may not help the learner. Indeed, other experi-
ments (not shown) confirm that if T or R in the source and target tasks are too
dissimilar, transfer may actually cause the learner to learn more slowly than if
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it had not used transfer. While there is not yet a general solution to avoiding
negative transfer, our recent results [23] suggest that the “relatedness” of tasks
may be possible to measure empirically, and may guide learners when deciding
whether or not to transfer.

7 Conclusion and Future Work

In this paper we have introduced timbrel, a transfer method fully compatible
with model-based reinforcement learning. We demonstrate that when learning
3D mountain car with Fitted R-max, timbrel can significantly reduce the sam-
ple complexity and demonstrated how transfer is affected by changes to the
source task’s reward and transfer functions.

There are a number of future research directions suggested by this work. It
would be informative to study how transfer efficacy changes when the amount
of exploration is changed in the source task. Put differently, if the agent has
100 episodes to learn the source task, can it intelligently set its parameters to
maximize transfer efficacy? In our experiments we used the default threshold
value of 1.0 to determine if a particular approximation of T (xT, aT) has enough
data. This is related to the amount of exploration and its value may impact the
efficacy of transfer, but tuning this parameter is left to future work.

All parameters for Fitted R-max were tuned when learning without trans-
fer. It is possible that the model breadth parameter, b, may change the efficacy
of transfer. Section 5 specified that a maximum of 20 source task instances
were used to approximate a single target task transition. This parameter was set
during initial experimentation, but further tuning could improve transfer perfor-
mance. Lastly, none of the experiments using Fitted R-max attained an asymp-
totic performance equivalent to Sarsa (Figure 3). It may be worth re-tuning
the base learning algorithm’s parameters to maximize asymptotic performance
(at the expense of computational and sample complexity), and then determine if
timbrel can compensate so that learning experiments terminate in a reasonable
amount of time.

We predict that timbrel will work, possibly with minor modifications, in
other model-based RL algorithms. For instance, timbrel could be directly used
in the planning phase of Dyna-Q [1] as a source of simulated experience when
the agent’s model is poor (such as at the beginning of learning a target task).
timbrel should also be useful, without modification, in R-max.

Lastly, we intend to apply timbrel in more complex domains with continuous
state spaces (which may show relatively more benefit from transfer than the
simple tasks discussed in Section 6 [6]). Although this paper focuses on tasks in
the mountain car domain, Algorithm 2 is applicable in many settings. Future
work to empirically determine how well timbrel functions in other domains,
and when applied to pairs of tasks with qualitative differences not explored in
this paper, will help to better understand and quantify the benefits that instance
transfer provides.
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Abstract. Artificial intelligence aims at developing agents that learn and act in
complex environments. Realistic environments typically feature a variable num-
ber of objects, relations amongst them, and non-deterministic transition behavior.
Standard probabilistic sequence models provide efficient inference and learning
techniques, but typically cannot fully capture the relational complexity. On the
other hand, statistical relational learning techniques are often too inefficient. In
this paper, we present a simple model that occupies an intermediate position in
this expressiveness/efficiency trade-off. It is based on CP-logic, an expressive
probabilistic logic for modeling causality. However, by specializing CP-logic to
represent a probability distribution over sequences of relational state descrip-
tions, and employing a Markov assumption, inference and learning become more
tractable and effective. We show that the resulting model is able to handle proba-
bilistic relational domains with a substantial number of objects and relations.

1 Introduction

One of the current challenges in artificial intelligence is the modeling of dynamic
environments that change due to actions and activities people or other agents take.
As one example, consider a model of the activities of a cognitively impaired person
[1]. Such a model could be used to assist persons, using common patterns to generate
reminders or detect potentially dangerous situations, and thus help to improve living
conditions.

As another example and one on which we shall focus in this paper, consider a model of
the environment in a massively multi-player online game (MMOG). These are computer
games that support thousands of players in complex, persistent, and dynamic
virtual worlds. They form an ideal and realistic test-bed for developing and evaluating
artificial intelligence techniques and are also interesting in their own right (cf. also [2]).
One challenge in such games is to build a dynamic probabilistic model of high-level
player behavior, such as players joining or leaving alliances and concerted actions by
players within one alliance. Such a model of human cooperative behavior in this type of
world can be useful in several ways. Analysis of in-game social networks are not only
interesting from a sociological point of view but could also be used to visualize aspects
of the gaming environment or give advice to inexperienced players (e.g., which alliance
to join). More ambitiously, the model could be used to build computer-controlled players
that mimic the cooperative behavior of human players, form alliances and jointly pursue

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 506–521, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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goals that would be impossible to attain otherwise. Mastering these social aspects of the
game will be crucial to building smart and challenging computer-controlled opponents,
which are currently lacking in most MMOGs. Finally, the model could also serve to de-
tect non-human players in todays MMOGs — accounts which are played by automatic
scripts to give one player an unfair advantage, and are typically against game rules.

From a machine learning perspective, this type of domain poses three main
challenges: 1) world state descriptions are inherently relational, as the interaction
between (groups of) agents is of central interest, 2) the transition behavior of the world
will be strongly stochastic, and 3) a relatively large number of objects and relations is
needed to build meaningful models, as the defining element of environments such as
MMOGs are interactions among large sets of agents. Thus, we need an approach that
is both computationally efficient and able to represent complex relational state descrip-
tions and stochastic world dynamics.

Artificial intelligence has already contributed a rich variety of different modeling
approaches, for instance, Markov models [3] and decision processes [4], dynamic
Bayesian networks [5], STRIPS [6], statistical relational learning representations [7],
etc. Most of the existing approaches that support reasoning about uncertainty (and
satisfy requirement 2) employ essentially propositional representations (for instance,
dynamic Bayesian networks, Markov models, etc.), and are not able to represent com-
plex relational worlds, and hence, do not satisfy requirement 1). A class of models that
integrates logical or relational representations with methods for reasoning about uncer-
tainty (for instance, Markov Logic, CP-logic, or BLPs) is considered within statistical
relational learning [7] and probabilistic inductive logic programming [8]. However, the
inefficiency of inference and learning algorithms causes problems in many realistic
applications, and hence, such methods do not satisfy requirement 3).

We aim to alleviate this situation, by contributing a novel representation, called
CPT-L (for CPTime-Logic), that occupies an intermediate position in this expressive-
ness/efficiency trade-off. A CPT-L model essentially defines a probability distribution
over sequences of interpretations. Interpretations are relational state descriptions that
are typically used in planning and many other applications of artificial intelligence.
CPT-L can be considered a variation of CP-logic [9], a recent expressive logic for
modeling causality. By focusing on the sequential aspect and deliberately avoiding the
complications that arise when dealing with hidden variables, CPT-L is more restricted,
but also more efficient to use than its predecessor and alternative formalisms within the
artificial intelligence and statistical relational learning literature.

This paper is organized as follows: Section 2 introduces the CPT-L framework; Sec-
tion 3 addresses inference and parameter estimation, while Section 4 presents some
experimental results in both the block’s world and the MMOG Travian. Finally,
Section 5 discusses related work, before concluding and touching upon future work
in Section 6.

2 CPT-L

Let us first introduce some terminology. An atom is an expression of the form
p(t1, ..., tn) where p/n is a predicate symbol and the ti are terms. Terms are built up
from constants, variables and functor symbols. The set of all atoms is called a language
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L. Ground expressions do not contain variables. Ground atoms will be called facts. A
substitution θ is a mapping from variables to terms, and bθ is the atom obtained from b
by replacing variables with terms according to θ. We are interested in describing com-
plex world states in terms of relational interpretations. A relational interpretation I is
a set of ground facts a1, ..., aN . A relational stochastic process defines a distribution
P (I0, ..., IT ) over sequences of interpretations of length T , and thereby completely
characterizes the transition behavior of the world.

The semantics of CPT-L is based on CP-logic, a probabilistic first-order logic that
defines probability distributions over interpretations [9]. CP-logic has a strong focus on
causality and constructive processes: an interpretation is incrementally constructed by a
process that adds facts which are probabilistic outcomes of other already given facts (the
causes). CPT-L combines the semantics of CP-logic with that of (first-order) Markov
processes. Causal influences only stretch from It to It+1 (Markov assumption), are
identical for all time-steps (stationarity), and all causes and outcomes are observable.
Models in CPT-L are also called CP-theories, and can be formally defined as follows:

Definition 1. A CPT-theory is a set of rules of the form

r = (h1 : p1) ∨ . . . ∨ (hn : pn) ← b1, . . . , bm

where the hi are logical atoms, the bi are literals (i.e., atoms or their negation) and
pi ∈ [0, 1] probabilities s.t.

∑n
i=1 pi = 1.

It will be convenient to refer to b1, ..., bm as the body body(r) of the rule and to
(h1 : p1) ∨ . . . ∨ (hn : pn) as the head head(r) of the rule. We shall also assume that
the rules are range-restricted, that is, that all variables appearing in the head of the rule
also appear in its body. Rules define conditional probabilistic events: the intuition be-
hind a rule is that whenever b1θ, ..., bmθ holds for a substitution θ in the current state It,
exactly one of the hiθ in the head will hold in the next state It+1. In this way, the rule
models a (probabilistic) causal process as the condition specified in the body causes one
(probabilistically chosen) atom in the head to become true in the next time-step.

Example 1. Consider the following CPT-rule:

(on(A, table) : 0.9) ∨ (on(A, C) : 0.1) ← free(A), on(A, C), move(A, table).

which represents that we try to move a block A from block C to the table. This action
succeeds with a probability of 0.9.

We now show how a CPT-theory defines a distribution over sequences I0, ..., IT of
relational interpretations. Let us first define the concept of the applicable ground rules
in an interpretation It. From a CPT-theory, the rule (h1 : p1θ) ∨ . . . ∨ (hn : pnθ) ←
b1θ, . . . , bmθ is obtained for a substitution θ. A ground rule r is applicable in It if and
only if body(r) = b1θ, . . . , bmθ is true in It, denoted It |= b1θ, . . . , bmθ.

One of the main features of CPT-theories is that they are easily extended to include
background knowledge. The background knowledge B can be any logic program, cf.
[10]. In the presence of background knowledge, a ground rule is applicable in an in-
terpretation It if b1θ, . . . , bmθ can be logically derived from It together with the logic
program B, denoted It |=B b1θ, . . . , bmθ.
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The set of all applicable ground rules in state It will be denoted as Rt. Each ground
rule applicable in It will cause one of its head elements to become true in It+1. More
formally, let Rt = {r1, ..., rk}. A selection σ is a mapping {(r1, j1), ..., (rk, jk)} from
ground rules ri to indices ji denoting that head element hiji ∈ head(ri) is selected.
The probability of a selection σ is

P (σ) =
k∏

i=1

pji , (1)

where pji is the probability associated with head element hiji in ri. In the stochastic
process to be defined, It+1 is a possible successor for the state It if and only if there is
a selection σ such that It+1 = {h1σ(1), ..., hkσ(k)}. We shall say that σ yields It+1 in

It, denoted It
σ→ It+1, and define

P (It+1|It) =
∑

σ:It
σ→It+1

P (σ). (2)

Example 2. Consider the theory

r1 = a : 0.2 ∨ b : 0.8 ← ¬a, ¬b
r2 = a : 0.5 ∨ b : 0.5 ← a
r3 = a : 0.7 ∨ nil : 0.3 ← a

Starting from It = {a} only the rules r2 and r3 are applicable, so Rt = {r2, r3}. The
set of possible selections is

{(r2, j2), (r3, j3) | j2, j3 ∈ {1, 2}}.

The possible successor states It+1 are therefore

I1
t+1 = {a} with P (I1

t+1 | It) = 0.5 · 0.7 + 0.5 · 0.3 = 0.5

I2
t+1 = {b} with P (I2

t+1 | It) = 0.5 · 0.3 = 0.15

I3
t+1 = {a, b} with P (I3

t+1 | It) = 0.5 · 0.7 = 0.35

As for propositional Markov processes, the probability of a sequence I0, ..., IT given
an initial state I0 is defined by

P (I0, ..., IT ) = P (I0)
T∏

t=0

P (It+1 | It). (3)

Intuitively, it is clear that this defines a distribution over all sequences of interpretations
of length T much as in the propositional case. More formally:

Theorem 1 (Semantics of a CPT theory). Given an initial state I0, a CPT-theory
defines a discrete-time stochastic process, and therefore for T ∈ N a distribution
P (I0, ..., IT ) over sequences of interpretations of length T .
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3 Inference and Parameter Estimation in CPT-L

As for other probabilistic models, we can now ask several questions about the intro-
duced CPT-L model:

– Sampling: How to sample sequences of interpretations I0, ..., IT from a given CPT-
theory T and initial interpretation I0?

– Inference: Given a CPT-theory T and a sequence of interpretations I0, ..., IT , what
is P (I0, ..., IT | T )?

– Parameter Estimation: Given the structure of a CPT-theory T and a set of se-
quences of interpretations, what are the maximum-likelihood parameters of T ?

– Prediction: Let T be a CPT-theory, I0, ..., It a sequence of interpretations, and
F a first-order formula that constitutes a certain property of interest. What is the
probability that F holds at time t + d, P (It+d |=B F | T , I0, ..., It)?

Sampling from a CPT-theory T given an initial interpretation I0 is straightforward due
to the causal semantics employed in CP-logic. For t ≥ 0, It+1 can be constructed
from It by finding all groundings rθ of rules r ∈ T , and sampling for each rθ a head
element to be added to It+1. Algorithmic solutions for solving the inference, parameter
estimation, and prediction problem will be presented in turn in the rest of this section.

3.1 Inference

Because of the Markov assumption (Equation 3), the crucial task for solving the infer-
ence problem is to compute P (It+1 | It) for given It+1 and It. According to Equation 2,
this involves summing the probabilities of all selections yielding It+1 from It. However,
the number of possible selections σ is exponential in the number of ground rules |Rt|
applicable in It, so a naive generate-and-test approach is infeasible. Instead, we present
an efficient approach for computing P (It+1 | It) without explicitly enumerating all
selections yielding It+1, which is strongly related to the inference technique discussed
in [11]. The problem is first converted to a DNF formula over boolean variables such
that assignments to variables correspond to selections, and satisfying assignments to
selections yielding It+1. The formula is then compactly represented as a binary de-
cision diagram (BDD), and P (It+1 | It) efficiently computed from the BDD using
dynamic programming. Although finding satisfying assignments for DNF formulae is
a hard problem in general, the key advantage of this approach is that existing, highly
optimized BDD software packages can be used.

The conversion of a given inference problem to a DNF formula f is realized as
follows:

1. Initialize f := true
2. Compute applicable ground rules

Rt = {rθ|body(rθ) is true in It}
3. For all rules (r = (p1 : h1, ..., pn : hn) ← b1, ..., bm) in Rt do:

(a) f := f ∧ (r.h1 ∨ ... ∨ r.hn), where r.h denotes the proposition obtained by
concatenating the name of the rule r with the ground literal h resulting in a
new propositional variable r.h (if not hi = nil).

(b) f := f ∧ (¬r.hi ∨ ¬r.hj) for all i �= j
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4. For all facts l ∈ It+1

(a) Initialize g := false
(b) for all r ∈ Rt with p : l ∈ head(r) do g := g ∨ r.l
(c) f := f ∧ g

Boolean variables of the form r.h represent that head element h was selected in rule r1.
The second step of the algorithm computes all applicable rules, the third step assures
that selections are obtained, and the final step assures that the selection generates the
interpretation It+1. It is easily verified that the satisfying assignments for the formula
f correspond to the selections yielding It+1.

Example 3. The following formula f is obtained for the transition {a} → {a, b} and
the CPT-theory given in Example 2.

(r2.a ∨ r2.b)
︸ ︷︷ ︸

3.a

∧ (¬r2.a ∨ ¬r2.b) ∧ (¬r3.a ∨ ¬r3.nil)
︸ ︷︷ ︸

3.b

∧ (r2.a ∨ r3.a) ∧ r2.b
︸ ︷︷ ︸

4

The parts of the formula are annotated with the steps in the construction algorithm that
generated them.

From the formula f , a reduced ordered binary decision diagram (BDD) [12] is con-
structed. Let x1, ..., xn denote an ordered set of boolean variables (such as the r.h
contained in f ). A BDD is a rooted, directed acyclic graph, in which nodes are an-
notated with variables and have out-degree 2, indicating that the variable is either true
or false. Furthermore, there are two terminal nodes labeled with 0 and 1. Variables along
any path from the root to one of the two terminals are ordered according to the given
variable ordering. The graph compactly represents a boolean function f over variables
x1, ..., xn: given an instantiation of the xi, we follow a path from the root to either 1
or 0 (indicating f is true or false). Furthermore, the graph must be reduced, that is, it
must not be possible to merge or remove nodes without altering the represented function
(cf. [12] for details). Figure 1, left, shows an example BDD.

From the BDD graph, P (It+1 | It) can be computed in linear time using dynamic
programming. This is realized by a straightforward modification of the algorithm for
inference in ProbLog theories [11]. The algorithm exploits that paths in the BDD from
the root node to the 1-terminal correspond to satisfying assignments for f , and thus se-
lections yielding It+1. By sweeping through the BDD from top to bottom contributions
from all such selections are summed up (Equation 2) without explicitly enumerating all
paths. The efficiency of this method crucially depends on the size of the BDD graph,
which in turn depends strongly on the chosen variable ordering x1, ..., xn. Unfortu-
nately, computing an optimal variable ordering is NP-hard. However, existing imple-
mentations of BDD packages contain sophisticated heuristics to find a good ordering
for a given function in polynomial time.

Interestingly, it is possible to further reduce complexity for the particular problem
we are interested in by adapting a different semantics in the BDD. A zero-suppressed
binary decision diagrams (or ZDD) is an alternative form of graphical representation

1 Variables r.h are standardized apart in case head elements coincide after grounding.
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Fig. 1. Graphical representation of a formula f resulting from the conversion of a CPT-L inference
problem represented as a BDD (left) and ZDD (right)

in which variables appear in a path only if their positive branch is not directly con-
nected to the terminal 0 [13]. Figure 1 shows example BDD and ZDD structures that
represent the same function. We will now show that a reduced ZDD representation of f
will always be smaller than (or identical to) the corresponding BDD representation for
CPT-L:

Theorem 2. Let f be a formula resulting from the conversion of a CPT-L inference
problem, G its BDD representation, and G′ its ZDD representation (for a fixed variable
ordering). Then size(G′) ≤ size(G).

Proof. We first show that in G every path Q from the root to the 1-terminal contains all
variables appearing in f . Assume r.h1 �∈ Q, and let r.h2, ..., r.hl denote the variables
corresponding to the other head elements of rule r. Because of the constraint added in
step 3. of the conversion, f can only be true if exactly one of the r.h1, ..., r.hl is true.
However, this cannot be verified by looking at any subset of the variables, and therefore
they must all be contained in the path. Because all variables appear in every path from
the root to 1, the graph structure G is also a faithful representation of f under the ZDD
semantics. If G as a ZDD is fully reduced, G = G′ because reduced ZDDs, as BDDs,
are a canonical representation. Otherwise, G can be further reduced to the ZDD G′ with
size(G′) < size(G).

Typically a ZDD representation of f will be more compact than the BDD representa-
tion, as shown in Figure 1.
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3.2 Parameter Estimation

Assume the structure of a CPT-theory is given, that is, a set T = {r1, ..., rk} of rules of
the form

ri = (hi1 : pi1) ∨ . . . ∨ (hin : pin) ← bi1, . . . , bim,

where π = {pij}i,j are the unknown parameters to be estimated from a set of
training sequences D. A standard approach is to find max-likelihood parameters
π∗ = arg maxπ P (D | π). To determine a model parameter pij , we essentially need to
know the number of times head element hij has been selected in an application of the
rule ri in the training data, which will be denoted by κij . However, the quantity κij is
not directly observable. To see why this is so, first consider a single transition It → It+1
in one training sequence. We know the set of rules Rt applied in the transition; however,
there are in general many possible selections σ of rule head elements yielding It+1. The
information which selection was used, that is, which rule has generated which fact in
It+1, is hidden. We will now derive an efficient Expectation-Maximization algorithm in
which the unobserved variables are the selections used at every transition, and κij the
sufficient statistics. To keep the notation uncluttered, we present the expectation step
E[κij | π, D] for a single transition τ = It → It+1; contributions from different transi-
tions and different training sequences simply sum up. Let Γ = {σ | It

σ→ It+1} denote
the set of selections yielding τ . The expectation is

E[κij | π, τ ] =
∑

σ

P (δij | σ, π, τ)

=
∑

σ

P (δij | σ)P (σ | π, τ)

=
∑

σ∈Γ

P (δij | σ)
P (σ | π)

∑
σ′∈Γ P (σ′ | π)

(4)

where δij is an indicator variable representing that head hij was selected in rule ri. Note
that P (δij | σ) is simply 1 if the head is selected in σ and 0 otherwise, and P (σ | π) is
defined by Equation 1. Given the expectation, the maximization step is

p
(new)
ij =

E[κij | π, D]
∑

j E[κij | π, D]
.

The key algorithmic challenge is to compute the expectation given by Equation 4 ef-
ficiently. As outlined above, the set Γ of selections yielding the observed transitions
can be compactly represented as the set of paths from the root to the 1-terminal in a
(possibly zero-suppressed) decision diagram.

By analogy to the inference problem, the summation given by Equation 4 can be
performed in linear time given the BDD (ZDD) structure. This is realized by a dynamic
programming algorithm similar to the forward-backward algorithm in hidden Markov
models [3] that sweeps through the BDD structure twice to accumulate the sufficient
statistics κij . Details of the algorithm are straightforward but somewhat involved, and
omitted for lack of space. Note that the presented Expectation-Maximization algorithm,
by taking the special structure of our model into account, is significantly more efficient
than general-purpose parameter learning techniques employed in CP-logic.
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3.3 Prediction

Assume we are given a (partial) observation sequence I0, ..., It, a CPT-theory T , and a
property of interest F (represented as a first-order formula), and would like to compute
P (It+d |=B F | I0, ..., It, T ). For instance, a robot might like to know the probability
that a certain world state is reached at time t + d, given its current world model and
observation history. Note that the representation as a first-order formula allows one to
express richer world conditions than queries on (sets of) atoms, as they are typically
supported in statistical relational learning systems. In CPT-L,

P (It+d |=B F | I0, ..., It, T ) = P (It+d |=B F | It, T )

as the world model is Markov. Powerful statistical relational learning systems are in
principle able to compute this quantity exactly by “unrolling” the world model into
a large dynamic graphical model. However, this is computationally expensive as it
requires to marginalize out all (unobserved) intermediate world states It+1, ..., It+d−1.
In contrast, inference in CPT-theories draws its efficiency from the full observability
assumption.

As an alternative approach, we propose a straightforward sample-based approxi-
mation to P (It+d |=B F | It, T ). Given It, independent samples can be obtained
from the conditional distribution P (It+1, ..., It+d | It, T ) by simply sampling accord-
ing to T from the initial state It. Ignoring It+1, ..., It+d−1 and checking F in It+d

yields independent samples of the boolean event It+d |=B F from the distribution
P (It+d |=B F | It, T ). The proportion of positive samples of this variable will thus
quickly approach the true probability P (It+d |=B F | It, T ).

4 Experimental Evaluation

The proposed CPT-L model has been evaluated in two different domains. First, we
discuss experiments in a stochastic version of the well-known blocks world domain,
an artificial domain that allows to perform controlled and systematic experiments e.g.
with regard to the scaling behavior of the proposed algorithms. Second, the model is
evaluated on real-world data collected from a live server of a massively multi-player
online strategy game. Experiments in these two domains will be presented in turn.

4.1 Experiments in a Stochastic Blocks World Domain

As an artificial test bed for CPT-L, we performed experiments in a stochastic version
of the well-known blocks world domain. The domain was chosen because it is truly
relational and also serves as a popular artificial world model in agent-based approaches
such as planning and reinforcement learning. Application scenarios involving agents
that act and learn in an environment are one of the main motivations for CPT-L. In
such scenarios world-transition dynamics typically stem from actions carried out by
the agents according to some policy. In the blocks-world domain discussed in this sec-
tion, we assume that the policy of the agent is known and the task is to probabilistically
model transition dynamics given the policy. It is straightforward to represent such con-
ditional world models in CPT-theories by including the policy as part of the background
knowledge.
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Fig. 2. Left graph: per-sequence log-likelihood on the training data as a function of the EM it-
eration. Right graph: Running time of EM as a function of the number of blocks in the world
model.

World Model. The blocks world we consider consists of a table and a number of
blocks. Every block rests on exactly one other block or the table, denoted by a fact
on(A, B). Blocks come in different sizes, denoted by size of(A, N)with N ∈{1, ..., 4}.
A predicate free(B) ← not(on(A, B)) is defined in the background knowledge. Ad-
ditionally, a background predicate stack(A, S) defines that block A is part of a stack
of blocks, which is represented by its lowest block S. Actions derived from the policy
are of the form move(A, B). If both A and B are free, the action moves block A on B
with probability 1 − ε, with probability ε the world state does not change. Furthermore,
a stack S can start to jiggle, represented by jiggle(S). A stack can start to jiggle if its
top block is lifted, or a new block is added to it. Furthermore, stacks can start jiggling
without interference from the agent, which is more likely if they contain many blocks
and large blocks are stacked on top of smaller ones. Stacks that jiggle collapse in the
next time-step, and all their blocks fall on the table. Two example rules from this domain
are

(jiggle(S) : 0.2) ∨ (nil : 0.8) ← move(A, B), stack(A, S)

(jiggle(S) : 0.2) ∨ (nil : 0.8) ← move(A, B), stack(B, S),

they describe that stacks can start to jiggle if blocks are added to or taken from a stack.
Furthermore, we consider a simple policy that tries to build a large stack of blocks by
repeatedly stacking the free block with second-lowest ID on the free block with lowest
ID. This strategy would result in one large stack of blocks if the stack never collapsed.

Results in the Blocks-World Domain. In a first experiment, we explore the conver-
gence behavior of the EM algorithm for CPT-L. The world model together with the
policy for the agent, which specifies which block to stack next, is implemented by a
(gold-standard) CPT-theory T , and a training set of 20 sequences of length 50 each
is sampled from T . From this data, the parameters are re-learned using EM. Figure 2,
left graph, shows the convergence behavior of the algorithm on the training data for
different numbers of blocks in the domain, averaged over 15 runs. It shows rapid and
reliable convergence. Figure 2, right graph, shows the running time of EM as a func-
tion of the number of blocks. The scaling behavior is roughly linear, indicating that
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the model scales well to reasonably large domains. Absolute running times are also
low, with about 1 minute for an EM iteration in a world with 50 blocks2. This is in
contrast to other, more expressive modeling techniques which typically scale badly to
domains with many objects. The theory learned (Figure 2) is very close to the ground
truth (”gold standard model”) from which training sequences were generated. On an
independent test set (also sampled from the ground truth), log-likelihood for the gold
standard model is -4510.7, for the learned model it is -4513.8, while for a theory with
randomly initialized parameters it is -55999.4 (50 blocks setting). Manual inspection of
the learned model also shows that parameter values are on average very close to those
in the gold-standard model.

The experiments presented so far show that relational stochastic domains of substan-
tial size can be represented in CPT-L. The presented algorithms are efficient and scale
well in the size of the domain, and show robust convergence behavior.

4.2 Experiments in a Massively Multi-player Online Game

As an example for a massively multi-player online game, we consider Travian3, a com-
mercial, large-scale strategy game with a player community of about 3.000.000 players
worldwide. In Travian, players are spread over several independent game worlds, with
approximately 20.000–30.000 players interacting in a single world. Travian game play
follows a classical strategy game setup. A game world consists of a large grid-map,
and each player starts with a single city located on a particular tile of the map. Dur-
ing the course of the game, players harvest resources from the environment, improve
their cities by construction of buildings or research of technologies, or found new cities
on other (free) tiles of the map. Additionally, players can build different military units
which can be used to attack and conquer other cities on the map, or trade resources on
a global marketplace.

In addition to these low-level game play elements, there are high-level aspects of
game play involving multiple players, which need to cooperate and coordinate their
playing to achieve otherwise unattainable game goals. More specifically, in Travian
players dynamically organize themselves into alliances, for the purpose of jointly at-
tacking and defending, trading resources or giving advice to inexperienced players.
Such alliances constitute social networks for the players involved, where diplomacy is
used to settle conflicts of interests and players compete for an influential role in the
alliance. In the following, we will take a high-level view of the game and focus on
modeling player interaction and cooperation in alliances rather than low-level game el-
ements such as resources, troops and buildings. Figure 3 shows such a high-level view
of a (partial) Travian game world, represented as a graph structure relating cities, play-
ers and alliances which we will refer to as a game graph. It shows that players in one
alliance are typically concentrated in one area of the map—traveling over the map takes
time, and thus there is little interaction between players far away from each other.

We are interested in the dynamic aspect of this world: as players are acting in the
game environment (e.g. by conquering other players’ cities and joining or leaving

2 All experiments were run on standard PC hardware, 2.4GHz Intel Core 2 Duo processor, 1GB
memory.

3 www.travian.com;www.traviangames.com
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Fig. 3. High-level view of a (partial) game world in Travian. Circular nodes indicate cities, shown
in their true positions on the game’s grid-map. Diamond-shaped nodes indicate players, and are
connected to all cities currently owned by the player. Rectangular nodes indicate alliances, and
are connected to all players currently members of the alliance. Moreover, players and cities are
color-coded according to their alliance affiliation.

alliances), the game graph will continuously change, and thereby reflect changes in
the social network structure of the game. As an example for such transition dynamics,
consider the sequence of game graphs shown in Figure 4. Here, three players from the
pink alliance launch a concerted attack against territory currently held by the green and
orange alliances, and partially conquer it.

Data Collection and Preprocessing. The data used in the experiments was collected
from a “live” Travian server with approximately 25.000 active players. Over a period of
three months (December 2007, January 2008, February 2008), high-level data about the
current state of the game world was collected once every 24 hours. This included infor-
mation about all cities, players, and the alliance structure in the game. For cities, their size
and position on the map are available; for players, the list of cities they own; and for al-
liances the list of players currently affiliated with that alliance. From all available data, we
extracted 30 sequences of local game world states. Each sequence involves a subset of 10
players, which are tracked over a period of one month (10 sequences each for December,
January and February). Player sets are chosen such that there are no interactions between
players in different sets, but a high number of interactions between players within one set.
Cities that did not take part in any conquest event were removed from the data, leaving
approximately 30–40 cities under consideration for every player subset.

World Model. The game data was represented using predicates city(C, X, Y, S, P )
(city C of size S at coordinates X, Y held by player P ), allied(P, A) (player P is
a member of alliance A), conq(P, C) (indicating a conquest attack of player P on
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Fig. 4. Travian game dynamics visualized as changes in the game graph (for t = 1, 2, 3, 4, 5).
Bold arrows indicate conquest attacks by a player on a particular city.

city C) and alliance change(P, A) (player P changes affiliation to alliance A). A
predicate distance(C1, C2, D) with D ∈ {near, medium, far} computing the (dis-
cretized) distance between cities was defined in the background knowledge. The final
state descriptions (game graphs) on average contain approximately 50 objects (nodes)
at every step in time, and relations between them. Sequences consists of between 29
and 31 such state descriptions.

We defined a world model in CPT-L that expresses the probability for player actions
such as conquests of cities and changes in alliances affiliation, and updates the world
state accordingly. Player actions in Travian—although strongly stochastic—are typi-
cally explainable from the social context of the game: different players from the same
alliance jointly attack a certain territory on the map, there are retaliation attacks at the
alliance level, or players leave alliances that have lost many cities in a short period of
time. From a causal perspective, actions are thus triggered by certain (relational) pat-
terns that hold in the game graph, which take into account a player’s alliance affiliation
together with the actions carried out by other alliance members. Such patterns can be
naturally expressed in CPT-L as bodies of rules which trigger actions encoded in the
head of the rule. We manually defined a number of simple rules capturing such typical
game patterns. As an example, consider the rules

conq(P, C):0.039 ∨ nil:0.961 ← conq(P, C′), city(C′, , , , P ′), city(C, , , , P ′)
conq(P, C):0.011 ∨ nil:0.989 ←

city(C, , , , P ′′), allied(P, A), allied(P ′, A), conq(P ′, C′), city(C′, , , , P ′′)

The first rule encodes that a player is likely to conquest a city of a player he already
attacked in the previous time-step. The second rule generalizes this pattern: a player
P is likely to attack a city C of player P ′′ if an allied player has attacked P ′′ in the
previous time-step.

Moreover, the world state needs to be updated given the players’ actions. After a con-
quest attack conq(P, C), the city C changes ownership to player P in the next time-step.
If several players execute conquest attacks against the same city in one time-step, one
of them is chosen as the new owner of the city with uniform probability (note that such
simultaneous conquest attacks would not be observed in the training data, as only one
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Fig. 5. Left figure: ROC curve for predicting that a city C will be conquered by a player P within
the next k time-steps, for k ∈ {1, 2, 3, 4, 5}. The model was trained on 10 sequences of local
game state descriptions from December 2007, and tested on 10 sequences from January 2008.
Right figure: AUC as a function of the number k of future time-steps considered in the same
experiment. Additionally, AUC as a function of k is shown for 10 test sequences from February
2008.

snapshot of the world is taken every 24 hours). Similarly, an alliance change(P, A)
event changes the alliance affiliation of player P to alliance A in the next time-step.

Results in the Travian Domain. We consider the task of predicting the “conquest” ac-
tion conq(P, C) based on a learned generative model of world dynamics. The collected
sequences of (local) game states were split into one training set (sequences collected in
December 2007) and two test sets (sequences collected in January 2008 and sequences
collected in February 2008). Maximum-likelihood parameters of a hand-crafted CPT-
theory T as described above were learned on the training set using EM. Afterwards,
the learned model was used to predict the player action conq(P, C) on the test data
in the following way. Let S denote a test sequence with states I0, ..., IT . For every
t0 ∈ {0, ..., T − 1}, and every player p and city c occurring in S, the learned model is
used to compute the probability that the conquest event conq(p, c) will be observed in
the next world state, P (It0+1 |= conq(p, c) | T , I0, ..., It0). This probability is obtained
from the sampling-based prediction algorithm described in Section 3. The prediction is
compared to the known ground truth (whether the conquest event occurred at that time
in the game or not). Instead of predicting whether the player action will be taken in
the next step, we can also predict whether it will be taken within the next k steps, by
computing

P (It0+1 |= conq(p, c) ∨ ... ∨ It0+k |= conq(p, c) | T , I0, ..., It0).

This quantity is also easily obtained from the prediction algorithm for CPT-L. Figure 5,
left, shows ROC curves for this experiment with different values k ∈ {1, 2, 3, 4, 5},
evaluated on the first test set (January 2008). Figure 5, right, shows the corresponding
AUC values as a function of k for both test sets. The achieved area under the ROC curve
is substantially above 0.5 (random performance), indicating that the learned CPT-theory
T indeed captures some characteristics of player behavior and obtains a reasonable
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ranking of player/city pairs (p/c) according to the probability that p will conquer c.
Moreover, the model is able to predict conquest actions several steps in the future,
although AUC is slightly lower for larger k. This indicates that uncertainty associated
with predictions accumulates over time. Finally, predictions for the first test set (January
2008) are slightly more accurate than for the second test set (February 2008). This is not
surprising as the model has been trained from sequences collected in December 2007,
and indicates a slight change in game dynamics over time. In summary, we conclude
that player actions in Travian are indeed to some degree predictable from the social
context of the game, and CPT-L is able to learn such patterns from the data.

Parameter learning for the CPT-L theory T on the training set takes approximately
30 minutes, and the model needed 5 iterations of EM to converge. Predicting the prob-
ability of conq(p, c) for all player/city pairs and the next k time-steps starting from a
particular world state takes approximately 1 minute.

5 Related Work

There are relatively few existing approaches that can probabilistically model sequences
of relational state descriptions. CPT-L can be positioned with respect to them as follows.
First, statistical relational learning systems such as Markov Logic [14], CP-logic [9],
Probabilistic Relational Models [15] or Bayesian Logic Programs [16] can be used in
this setting by adding an extra time argument to predicates (then called fluents). How-
ever, inference and learning in these systems is computationally expensive: they sup-
port very general models including hidden states, and are not optimized for sequential
data. A second class of techniques, for instance [17], uses transition models based on
(stochastic) STRIPS rules. This somewhat limits the transitions that can be expressed, as
only one rule “fires” at every point in time, and it is difficult to model several processes
that change the state of the world concurrently (such as an agent’s actions and naturally
occurring world changes). In contrast, such scenarios are naturally modeled in CP-logic
and thus CPT-L. Another approach designed to model sequences of relational state de-
scriptions are relational simple-transition models [18]. In contrast to CPT-L, they focus
on domains where the process generating the data is hidden, and inferring these hid-
den states from observations. This is a harder setting than the fully observable setting
discussed in this paper, and typically only approximate inference is possible [18].

6 Conclusions and Future Work

We have introduced CPT-L, a probabilistic model for sequences of relational state de-
scriptions. In contrast to other approaches that could be used as a model for such
sequences, CPT-L focuses on computational efficiency rather than expressivity. This
is essential for many real-life applications. The main direction for future work is to
further evaluate the trade-off between representational power and scaling behavior in
challenging real-world domains. Furthermore, we want to explore how the model can
be extended, for instance to account for hidden data, without sacrificing efficiency.
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Abstract. Most semi-supervised learning algorithms have been
designed for binary classification, and are extended to multi-class
classification by approaches such as one-against-the-rest. The main short-
coming of these approaches is that they are unable to exploit the fact that
each example is only assigned to one class. Additional problems with ex-
tending semi-supervised binary classifiers to multi-class problems include
imbalanced classification and different output scales of different binary
classifiers. We propose a semi-supervised boosting framework, termed
Multi-Class Semi-Supervised Boosting (MCSSB), that directly
solves the semi-supervised multi-class learning problem. Compared to
the existing semi-supervised boosting methods, the proposed framework
is advantageous in that it exploits both classification confidence and sim-
ilarities among examples when deciding the pseudo-labels for unlabeled
examples. Empirical study with a number of UCI datasets shows that
the proposed MCSSB algorithm performs better than the state-of-the-
art boosting algorithms for semi-supervised learning.

Keywords: Semi-supervised learning, Multi-Class Classification,
Boosting.

1 Introduction

Semi-supervised classification combines the hidden structural information in the
unlabeled examples with the explicit classification information of labeled exam-
ples to improve the classification performance. Many semi-supervised learning
algorithms have been studied in the literature. Examples are density based meth-
ods [1,2], graph-based algorithms [3,4,5,6], and boosting techniques [7,8]. Most of
these methods were originally designed for two class problems. However, many
real-world applications, such as speech recognition and object recognition, re-
quire multi-class categorization. To adopt a binary (semi-supervised) learning
algorithm to problems with more than two classes, the multi-class problems are
usually decomposed into a number of independent binary classification problems
using techniques such as one-versus-the-rest, one-versus-one, and error-correcting
output coding [9]. The main shortcoming with this approach is that the result-
ing binary classification problems are independent binary class problems. As a
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result, it is unable to exploit the fact that each example can only be assigned to
one class. This issue was also pointed out in the study with multi-class boost-
ing [10]. In addition, since every binary classifier is trained independently, their
outputs may be on different scales, making it difficult to compare them [11].
Though calibration techniques [12] can be used to alleviate this problem in super-
vised classification, it is rarely used in semi-supervised learning due to the small
number of labeled training examples. Moreover, techniques like one-versus-the-
rest, where the examples of one class are considered against the examples of all
the other classes, could lead to the imbalanced classification problem. Although
a number of techniques have been proposed for supervised learning in multi-
class problems [10,13,14], they have not addressed semi-supervised multi-class
learning problems, which is the focus of this study.

Boosting is a popular learning method because it provides a general frame-
work for improving the performance of any given learner by constructing an
ensemble of classifiers. Several boosting algorithms have been proposed for semi-
supervised learning [7,8,15]. They essentially operate like self-training where the
class labels of unlabeled examples are updated iteratively: a classifier trained
by a small number of labeled examples is initially used to predict the pseudo-
labels for unlabeled examples; a new classifier is then trained by both labeled
and pseudo-labeled examples; the processes of training classifiers and predicting
pseudo-labels are altered iteratively till stopping criterion is reached. The main
drawback with this approach is that it relies solely on the pseudo-labels pre-
dicted by the classifiers learned so far when generating new classifiers. Given the
possibility that pseudo-labels predicted in the first few steps of boosting could be
inaccurate, the resulting new classifiers may also be unreliable. This problem was
addressed in [8] by introduction of a local smoothness regularizer. However, since
all the existing semi-supervised boosting algorithms are designed for binary clas-
sification, they will still suffer from the aforementioned problems when applied
to multi-class problems. In this paper, we develop a semi-supervised boosting
framework, termed Multi-Class Semi-Supervised Boosting (MCSSB), that is de-
signed for multi-class semi-supervised learning problems. By directly solving a
multi-class problem, we avoid the problems that arise when converting a multi-
class classification problem into a number of binary ones. Moreover, unlike the
existing semi-supervised boosting methods that only assign pseudo-labels to the
unlabeled examples with high classification confidence, the proposed framework
decides the pseudo labels for unlabeled examples based on both the classification
confidence and the similarities among examples. It therefore effectively explores
both the manifold assumption and the clustering assumption for semi-supervised
learning. Empirical study with UCI datasets shows the proposed algorithm per-
forms better than the state-of-the-art algorithms for semi-supervised learning.

2 Related Work

Most semi-supervised learning algorithms can be classified into three categories:
graph-based, density-based, and boosting-based.
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Semi-supervised SVMs (S3V Ms) or Transductive SVMs (TSVMs) are the
semi-supervised extensions to Support Vector Machines (SVM). They are es-
sentially density-based methods and assume that decision boundaries should lie
in the sparse regions. Although finding an exact S3V M is NP-complete [16],
there are many approximate solutions for it [1,2,17,18,19]. Except for [19], these
methods are designed for binary semi-supervised learning. The main drawback
with [19] is its high computational cost due to the semi-definite programming
formulation.

Graph-based methods aim to predict class labels that are smooth on the graph
of unlabeled examples. These algorithms differ in how to define the smooth-
ness of class labels over a graph. Example graph-based semi-supervised learning
approaches include Mincut [3], Harmonic function [4], local and global consis-
tency [5], and manifold regularization [6]. Similar to density based methods,
most graph-based methods are mainly designed for binary classification.

Semi-supervised boosting methods such as SSMBoost [15] and Assemble [7]
are direct extensions of Adaboost [20]. In [8], a local smoothness regularizer
is introduced to improve the reliability of semi-supervised boosting. Unlike the
existing approaches for semi-supervised boosting that solve 2-class problems, our
study focuses on semi-supervised boosting for multi-class classification.

3 Multi-Class Semi-Supervised Learning

3.1 Problem Definition

Let D = (x1, .., xN ) denote the collection of N examples. Assume that the first
Nl examples are labeled by y1, ..., yNl

, where yi = (y1
i , ..., ym

i ) ∈ {0, +1}m is a
binary vector and m is the number of classes. yk

i = +1 when xi is assigned to
the kth class, and yk

i = 0, otherwise. Since we are dealing with a multi-class
problem, we have

∑m
k=1 yk

i = 1, i.e., each example xi is only assigned to one
and only one class. We denote by ŷi = (ŷ1

i , . . . , ŷi
m) ∈ R

m the predicted class
labels (or confidence) for example xi, and by Ŷ = (ŷ�

1 , . . . , ŷ�
N )� the predicted

class labels for all the examples1. Let S = [Si,j ]N×N be the similarity matrix
where Si,j = Sj,i ≥ 0 is the similarity between xi and xj . For the convenience of
discussion, we set Si,i = 0 for any xi ∈ D, a convention that is commonly used
by many graph-based approaches. Our goal is to compute ŷi for the unlabeled
examples with the assistance of similarity matrix S and Y = (y�

1 , . . . , y�
Nl

)�.

3.2 Design of Objective Function

The goal of semi-supervised learning is to combine labeled and unlabeled exam-
ples to improve the classification performance. Therefore, we design an objective
function that consists of two terms: (a) Fu that measures the consistency between
the predicted class labels Ŷ of unlabeled examples and the similarity matrix S,

1 x� is the transpose of matrix(vector) x.
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and (b) Fl that measures the consistency between the predicted class labels Ŷ
and true labels Y . Below we discuss these two terms in detail.

Given two examples xi and xj , we first define the similarity Zu
i,j based on

their predicted class labels ŷi and ŷj:

Zu
i,j =

m∑

k=1

exp(ŷk
i )

∑m
k′=1 exp(ŷk′

i )
exp(ŷk

j )
∑m

k′=1 exp(ŷk′
j )

=
m∑

k=1

bk
i bk

j = b�i bj (1)

where bk
i = exp(ŷk

i )/(
∑m

k′=1 exp(ŷk′

i )) and bi = (b1
i , . . . , b

m
i ). Note that bk

i can
be interpreted as the probability of assigning xi to class k, and Zu

i,j , the cosine
similarity between bi and bj, can be interpreted as the probability of assigning
xi and xj to the same class. We emphasize it is important to use bk

i , instead
of exp(ŷk

i ), for computing Zu
i,j because normalization in bk

i allows us to enforce
the requirement that each example is assigned to a single class, a key feature of
multi-class learning.

Let Zu = [Zu
i,j ] be the similarity matrix based on the predicted labels. To

measure the inconsistency between this similarity and the similarity matrix S,
we define Fu as the distance between the matrices Zu and S using the Bregman
matrix divergence [21], i.e.,

Fu = ϕ(Zu) − ϕ(S) − tr((Zu − S)�∇ϕ(S)), (2)

where ϕ : R
N×N → R is a convex matrix function. By choosing ϕ(X) =

∑N
i,j=1 Xi,j(log Xi,j − 1) [21], Fu is written as 2

Fu =
N∑

i,j=Nl+1

(

Si,j log
Si,j

Zu
i,j

+ Zu
i,j − Si,j

)

(3)

By assuming that
∑N

i,j=1+Nl
Zu

i,j ≈
∑m

k=1 N2
k and log x ≈ x − 1, where Nk is

the number of examples assigned to class k, we simplify the above expression
as Fu ≈

∑N
i,j=Nl+1 S2

i,j/Z
u
i,j . Since S2

i,j could be viewed as a general similarity
measurement, we replace S2

i,j with Si,j and simplify Fu as

Fu ≈
N∑

i,j=Nl+1

Si,j

Zu
i,j

=
N∑

i,j=Nl+1

Si,j
∑m

k=1 bk
i bk

j

(4)

Remark We did not use ϕ(X) =
∑N

i,j=1 X2
i,j [21], which will result in Fu =

∑N
i,j=Nl+1(Z

u
i,j − Si,j)2. This is because the value of Zu

i,j and Si,j may be on
different scales.

Similarly, we define the similarity between a labeled example xi and an unla-
beled example xj based on their class assignments as follows

Z l
i,j =

m∑

k=1

yk
i bk

j , (5)

2 We can only consider the sub-matrices related to unlabeled examples when defining
Fu.
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and the inconsistency measure Fl between the labeled and unlabeled examples
as follows:

Fl =
Nl∑

i=1

N∑

j=Nl+1

Si,j

Z l
i,j

=
Nl∑

i=1

N∑

j=Nl+1

Si,j
∑m

k=1 yk
i bk

j

(6)

Finally, we linearly combine Fl and Fu to form the objective function:

F = Fu + CFl (7)

where C weights the importance of Fl. It is set to 10, 000 in our experiments to
emphasize Fl

3. Given the objective function F in (7), our goal is to find solution
Ŷ that minimizes F .

3.3 Multi-Class Boosting Algorithm

In this section, we present a boosting algorithm to solve the optimization problem
in (7). Following the architecture of boosting model, we incrementally add weak
learners to obtain a better classification model. We denote by Hk

i the solution
that is obtained for ŷk

i so far, and by hk
i ∈ {0, 1} the prediction made by the

incremental weak classifier that needs to be learned. Then, our goal is to find
hk

i , i = Nl + 1, . . . , N, k = 1, . . . , m and a combination weight α such that the
new solution H̃k

i = Hk
i + αhk

i significantly reduces the objective function F in
Equation 7. For the convenience of discussion, we use symbol ˜ to denote the
quantities (e.g., F̃ ) associated with the new solution H̃.

The key challenge in optimizing F with respect to hk
i and α is that these two

quantities are coupled with each other and therefore the solution of one variable
depends on the solution of the other. Our strategy to solve the optimization
problem is to first upper bound F with a simple convex function in which the
optimal solution for hk

i can be obtained without knowing the solution to α. Given
the solution to hk

i , we then compute the optimal solution for α. Below we give
details for these two steps.

First, the following lemma allows us to decouple the interaction between α
and hk

i within Zu
i,j and Z l

i,j

Lemma 1

1

Z̃u
i,j

≤ 1 + e6α + e−6α

3Zu
i,j

+
e6α − 1
3Zu

i,j

(
m∑

k=1

(bk
i − τk

i,j)h
k
i

)

(8)

1

Z̃ l
i,j

≤ 1 + e6α + e−6α

3Z l
i,j

+
e6α − 1

6

m∑

k=1

hk
i φk

i,j (9)

where

τk
i,j =

bk
i bk

j∑m
k′=1 bk′

i bk′
j

, φk
i,j =

m∑

k′=1

yk
j

bk
i

bk′
i

− yk
i

bk
i

(10)

3 The algorithm is quite stable with different values of C bigger than 1000 according
to our experiment.
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The proof of Lemma 1 can be found in Appendix A. Using Lemma 1, we derive
an upper bound for F̃ in the following theorem.

Theorem 1

F̃ ≤ F
1 + exp(6α) + exp(−6α)

3
+

exp(6α) − 1
3

N∑

i=Nl+1

m∑

k=1

hk
i (αk

i + Cβk
i ) (11)

where αk
i and βk

i are defined as follows:

αk
i =

N∑

j=Nl+1

Si,j(bk
i − τk

i,j)
Zu

i,j

, βk
i =

1
2

Nl∑

j=1

Si,jφ
k
i,j (12)

Theorem 1 can be directly verified by replacing 1/Z̃u
i,j and 1/Z̃ l

i,j in (7) with (8)
and (9). Note that the bound in Theorem 1 is tight because by setting α = 0,
we have H̃ = H and the inequality in Equation 11 is reduced to an equality.
The key feature of the bound in Equation 11 is that the optimal solution for hk

i

can be obtained without knowing the solution for α. This is summarized by the
following theorem.

Theorem 2. The optimal solution for hk
i that minimizes the upper bound of F̃

in Equation 11 is

hk
i =

{
1 k = argmaxk′(αk′

i + Cβk′

i )
0 otherwise

(13)

It is straightforward to verify the result in Theorem 2.
We then proceed to find solution for α given the solution for hk

i . The following
lemma provides a tighter bound for solving α in F 4.

Lemma 2

F̃ − F ≤ (e2α − 1)(Au + CAl) + (e−2α − 1)(Bu + CBl) (14)

where

Au =
N∑

i,j=Nl+1

Si,j

Zu
i,j

m∑

k=1

hk
i bk

i (15)

Al =
1
2

Nl∑

i=1

N∑

j=Nl+1

Si,j

m∑

k,k′=1

yk
i

bk
j

bk′

j hk′

j (16)

Bu =
N∑

i,j=Nl+1

Si,j

Zu
i,j

m∑

k=1

hk
i τk

i,j (17)

Bl =
1
2

Nl∑

i=1

N∑

j=Nl+1

Si,j

m∑

k=1

yk
i

hk
j

bk
j

(18)

4 Note that this tighter bound can not be used to derive hk
i .
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Algorithm 1. MCSSB: Multi-Class Semi-Supervised Boosting Algorithm
Input:
– D: The set of examples; the first Nl examples are labeled.
– s: the number of sampled examples from (N − Nl) unlabeled examples
– T : the maximum number of iterations

for i = 1 to T
– Compute αk

i and βk
i for every example as given in Equation 12.

– Assign each unlabeled example xi to class k∗
i = arg maxk(αk

i +Cβk
i ) and weight

wi = α
k∗

i
i + Cβ

k∗
i

i

– Sample s unlabeled examples using a distribution that is proportional to wi

– Train a multi-class classifier h(x) using the labeled examples and the sampled
unlabeled examples with assigned classes

– Predict hk
i for unlabel examples using h(x), and compute α using Equation 19.

Exit the loop if α ≤ 0.
– H(x) ← H(x) + αh(x)

The proof of Lemma 2 can be found in Appendix B. Using Lemma 2, Theorem 3
gives the optimal solution for α.

Theorem 3. The optimal α that minimizes the upper bound of F̃ in Equation 14
is

α =
1
4

log
(

Bu + CBl

Au + CAl

)

(19)

Algorithm 1 summarizes the proposed boosting algorithm for multi-class semi-
supervised learning. Several issues need to be pointed out: (a) wi, the weight for
the ith unlabeled example, is guaranteed to be non-negative. This is because∑m

k=1 αk
i + Cβk

i = 0 and therefore wi = maxk(αk
i + Cβk

i ) ≥ 0; (b) we adopt the
sampling approach to train a weak classifier. In our experiments, the number of
sampled examples at each iteration is set as s = max(20, N/5); (c) the maximum
number of iteration T is set to be 50 as suggested in [22]5.

Theorem 4 shows that the proposed boosting algorithm reduces the objective
function F exponentially.

Theorem 4. The objective function after T iterations, denoted by FT , is
bounded as follows:

FT ≤ F 0 exp

(

−
T∑

t=1

(
√

At
u + CAt

l −
√

Bt
u + CBu

l )2

F t−1

)

(20)

where Au, Al, Bu and Bl are defined in Lemma 2.

5 We run the algorithm with much larger numbers of iterations and find that both
the objective function and the classification accuracy remains essentially the same
after 50 iterations. We, therefore, set the number of iterations to be 50 to save the
computational cost.
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Proof. Using Lemma 2 and Theorem 3, we have

F̃−F ≤
√

Bu+CBl

Au+CAl
(Au+CAl)+

√
Au+CAl

Bu+CBl
(Bu+CBl)−(Au+CAl+Bu+CBl)

= −
(√

Au + CAl −
√

Bu + CBl

)2
,

which is equivalent to

F̃

F
≤ 1 −

(√
Au + CAl −

√
Bu + CBl

)2

F

≤ exp

(

−
(√

Au + CAl −
√

Bu + CBl

)2

F

)

(21)

The above inequality follows from exp(x) ≥ 1 + x. We rewrite FT as

FT = F 0
T∏

t=1

(F t/F t−1)

By substituting F t/F t−1 with the bound in Equation 21, we have the result in
the theorem.

4 Experiments

In this section, we present our empirical study on a number of UCI data sets.
We refer to the proposed semi-supervised multi-class boosting algorithm as MC-
SSB. In this study, we aim to show that (1) MCSSB can improve several avail-
able multi-class classifiers with unlabeled examples, (2) MCSSB is more effective
than the existing semi-supervised boosting algorithms, and (3) MCSSB is robust
to the model parameters and the number of labeled examples. It is important
to note that it is not our intention to show that the proposed semi-supervised
multi-class boosting algorithm always outperforms the other semi-supervised
learning algorithms. Instead, our objective is to demonstrate that the proposed
semi-supervised boosting algorithm is able to effectively improve the accuracy
of different supervised multi-class learning algorithms using the unlabeled ex-
amples. Hence, the empirical study is focused on a comparison with the existing
semi-supervised boosting algorithms, rather than a wide range of semi-supervised
learning algorithms.

We follow [7] and use Decision Tree and Multi-Layer Perceptron (MLP) as
the base multi-class classifiers in our study. In order to create weak classifiers as
most boosting algorithms do, we restrict the levels of decision tree to be two,
and the structure of MLP to be one hidden layer with two nodes. We create an
instance of semi-supervised multi-class learning boosting algorithm for each base
classifier, denoted by MCSSB-Tree and MCSSB-MLP, respectively. We compare
the proposed semi-supervised boosting algorithm to ASSEMBLE, a state-of-the-
art semi-supervised boosting. Similar to MCSSB, two instances of classifiers are
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Table 1. Description of data sets

# samples # attributes # Classes
Balance 625 4 3
Glass 214 9 6
Iris 150 4 3
Wine 178 13 3
Car 1728 6 4
Vowel 990 14 11
Contraceptive 1473 9 3
Dermatology 358 34 6
Ecoli 336 7 8
Flag 194 28 8
Segmentation 2310 19 7
pendigit 3498 16 10
Optdigits 1797 64 10
Soybean 686 35 19
Waves 5000 21 3
Yeast 1484 8 10
Zoo 101 16 7

created for ASSEMBLE using decision tree and MLP base classifiers, denoted
by Assemble-Tree and Assemble-MLP, respectively. A Gaussian kernel is used
as the measure for similarity in MCSSB-Tree and MCSSB-MLP with kernel
width set to be 15% of the range of the distance between examples 6 for all
the experiments, as suggested in [23]. Table 1 summarizes seventeen benchmark
data sets from the UCI data repository used in this study.

4.1 Evaluation of Classification Performance

Many binary semi-supervised learning studies assume a very small number of
labeled examples, e.g. less that 1% of the total number of examples. This setup
is difficult to be applied to multi-class cases since it may result in some classes
with no labeled examples. As an example, consider Glass data set in Table 1,
where 1% of the examples will provide us with only two labeled examples which
will cover at most two classes. This motivated us to run two different sets of
experiments to evaluate the performance of the proposed algorithm. In the first
set of experiments, we assume that 5% of examples are labeled and in the second
case we assume that 10% of examples are labeled 7. We repeat each experiment
20 times and report both the mean and standard deviation of the classification
accuracy.

6 I.e. 0.15 × (dmax − dmin), where dmin and dmax are minimum and maximum distance
between examples.

7 Our experience with one labeled example per class shows similar results. We omit
the result due to space limitation.
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Table 2. Classification accuracy with 5% of samples as the labeled set(Nl)

Tree MLP Assemble-tree Assemble-MLP MCSSB-tree MCSSB-MLP
Balance 65.0±0.9 82.0±1.4 65.0±0.9 82.2±1.0 72.5±1.0 83.2±0.7
Glass 39.7±1.6 40.3±1.8 39.7±1.6 41.0±1.8 40.1±1.2 40.4±1.1
Iris 32.3±0.1 71.6±2.5 32.4±0.1 74.3±3.8 77.4±2.6 74.0±3.0
Wine 33.4±1.3 70.0±2.7 62.4±3.6 66.0±2.8 78.2±3.5 75.0±3.1
Car 80.5±0.5 76.4±1.0 80.5±0.5 76.8±0.5 81.6±0.3 77.7±0.5
Vowel 27.5±1.1 17.9±0.6 26.0±1.1 18.8±0.6 28.1±1.1 19.3±0.6
Contraceptive 47.3±0.8 45.0±0.7 47.2±0.7 44.1±0.9 47.3±0.8 45.4±0.6
Dermatology 53.6±2.2 48.3±2.0 53.4±2.3 46.2±2.4 77.0±1.2 68.0±1.8
Ecoli 57.8±1.7 61.5±1.8 57.8±1.7 59.3±1.7 52.0±2.2 56.2±1.3
Flag 23.5±1.3 22.1±1.1 23.5±1.3 25.1±1.2 30.3±1.1 26.0±1.2
Segmentation 47.6±2.1 43.2±1.3 45.9±2.1 44.8±1.5 47.6±2.1 44.5±1.6
pendigit 33.8±1.5 30.0±1.0 32.5±1.5 29.8±0.8 59.3±1.1 54.7±1.7
Optdigits 33.0±1.8 23.3±1.0 30.6±1.4 23.3±0.7 33.0±1.8 21.9±0.6
Soybean 37.2±1.3 25.0±0.9 35.2±1.4 25.4±1.1 42.4±1.1 33.4±0.9
Waves 65.0±0.3 73.3±1.7 65.0±0.3 73.3±1.8 65.4±0.3 74.8±0.8
Yeast 43.6±0.7 40.2±0.6 43.4±0.6 40.4±0.9 42.7±0.9 39.4±1.2
Zoo 32.6±2.7 39.8±3.0 41.7±4.0 40.7±3.0 59.0±2.7 56.9±2.6

Table 2 shows the result of different algorithms for the first experiment (5%
labeled examples) with the performance of the best approach for each dataset
highlighted by bold font. First, notice that MCSSB significantly8 improves the
accuracy of both decision tree and MLP for 10 of the 17 data sets. For six data
sets, including ‘Glass”, “Vowel”, “Contraceptive”, “Segmentation”, “Optdigits”,
and “Yeast”, the classification accuracy remains almost unchanged after apply-
ing MCSSB to the base multi-class learning algorithm. Only for data set “Ecoli”,
MCSSB-MLP performs significantly worse than MLP. Note that for several data
sets, the improvement made by the MCSSB is dramatic. For instance, the clas-
sification accuracy of decision tree is improved from 32.8% to 77.4% for data set
“Iris”, and from 33.4% to 78.2% for data set “Wine”; the classification accuracy
of MLP is improved from 48.3% to 68.0% for data set “Dermatology”, and from
30.0% to 54.7% for data set “pendigit”. Second, when compared to ASSEMBLE,
we found that the proposed algorithm significantly outperforms ASSEMBLE for
14 of the 16 data sets for both decision tree and MLP. Only for data set “Ecoli”,
ASSEMBLE performs better than MCSSB when using MLP as the base classi-
fier. The key differences between MCSSB and ASSEMBLE is that MCSSB is not
only specially designed for multi-class classification, it does not solely rely on the
pseudo-labels obtained in the iterations of boosting algorithm. Thus, the suc-
cess of MCSSB indicates the importance of designing semi-supervised learning
algorithms for multi-class problems.

Table 3 shows the performance of different algorithms when 10% of the ex-
amples are labeled. Similar to the previous case, MCSSB outperforms both the
base classifiers and the ASSEMBLE method for 8 of the 17 data sets. For the
8 The variance reported in the table clearly shows the advantage of our method com-

pared to the baseline.
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Table 3. The accuracy of different methods with 10% labeled examples

Tree MLP Assemble-tree Assemble-MLP MCSSB-tree MCSSB-MLP
Balance 67.7±0.7 86.0±1.1 67.8±0.7 87.0±0.5 69.5±1.0 86.6±0.6
Glass 46.9±1.7 42.7±1.5 46.8±1.7 45.4±1.6 45.3±1.5 43.8±1.7
Iris 68.5±2.4 79.2±3.0 68.7±2.4 77.2±2.6 79.7±2.7 84.1±2.3
Wine 73.0±2.7 78.2±2.4 73.0±2.7 74.7±3.0 81.8±1.2 83.2±1.2
Car 83.2±0.5 77.1±0.6 83.1±0.5 78.4±0.7 83.7±0.5 78.0±0.4
Vowel 27.2±1.1 21.2±0.5 24.8±1.0 21.7±0.9 27.6±1.0 22.8±1.1
Contraceptive 42.6±0.0 31.9±3.2 42.6±0.0 28.6±3.5 81.4±1.8 71.0±2.8
Dermatology 64.6±1.6 48.7±2.0 63.9±1.5 50.4±2.7 78.4±1.4 65.6±2.1
Ecoli 65.1±1.7 64.8±1.6 65.0±1.7 65.2±1.4 61.4±1.9 64.0±1.6
Flag 38.7±1.5 29.2±1.3 38.5±1.4 30.3±1.5 38.9±1.4 28.3±1.1
Segmentation 48.5±2.3 46.3±1.5 46.4±2.0 42.9±1.3 48.5±2.3 46.8±1.7
Pendigits 36.5±1.5 31.7±0.8 34.0±1.4 31.3±0.9 57.7±1.2 52.2±1.4
Optdigits 33.9±1.3 26.3±0.8 31.9±1.1 27.5±0.6 33.9±1.3 27.6±1.1
Soybean 37.7±1.1 33.4±1.0 37.2±1.6 31.7±1.0 42.8±1.1 39.9±1.2
Waves 65.5±0.3 76.6±1.4 65.5±0.3 76.7±2.3 65.5±0.3 79.3±0.9
Yeast 47.9±0.7 41.0±1.1 47.5±0.6 41.7±0.9 47.8±0.6 41.6±1.1
Zoo 52.0±1.8 51.8±2.5 52.0±1.8 50.8±2.3 74.3±1.9 71.9±1.5

rest of data sets, including “Balance”, “Glass”,“Car”, “Vowel”, “Ecoli”, “Flag”,
“Segmentation”, “Optdigits”, “Waves ”, and “Yeast”, the classification accuracy
remains unchanged after applying MCSSB to the base supervised learning al-
gorithms. Noitce that the amount of improvement in this case is less than the
case with 5% labeled examples. This is because as the number of labeled exam-
ples increases, the improvement gained by a semi-supervised learning algorithm
decreases. Moreover, notice that similar to the case of 5% labeled examples, AS-
SEMBLE is not able to improve the performance of the base classifier. Based
on the above observation, we conclude that the proposed semi-supervised boost-
ing algorithm is able to effectively exploit the unlabeled data to improve the
performance of supervised multi-class learning algorithms.

4.2 Sensitivity to the Number of Labeled Examples

To study the sensitivity of MCSSB to the number of unlabeled examples, we
run MCSSB and the baselines by varying the number of labeled examples from
2% to 20% of the total number of examples. Figure 1 shows the result of this
experiment on 4 of the datasets when the base classifier is tree9. Notice that as
the number of labeled examples increases, the performance of difference meth-
ods improves. But MCSSB keeps its superiority for almost all the cases when
compared to both the base classifier and the ASSEMBLE algorithm. We also
observe that overall ASSEMBLE is unable to make significant improvement
over the base classifier regardless of the number of labeled examples. More sur-
prisingly, for data set “Soybean”, ASSEMBLE performs worse than the base
9 We omit the result for other data sets and MLP as the base classifier due to space

limitation.
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Fig. 1. Sensitivity of MCSSB to number of labels

classifier. These results indicate the challenge in developing boosting algorithms
for semi-supervised multi-class learning. Compared to ASSEMBLE that relies on
the classification confidence to decide the pseudo labels for unlabeled examples,
MCSSB is more reliable since it exploits both the classification confidence and
similarities among examples when determining the pseudo labels.

4.3 Sensitivity to Base Classifier

In this section, we focus on examining the sensitivity of MCSSB to the com-
plexity of base classifiers. This will allow us to understand the behavior of
the proposed semi-supervised boosting algorithm for both weak classifiers and
strong classifiers. To this end, we use decision tree with varying number of
levels as the base classifier. Only the results for datasets Balance, Dermatol-
ogy, Soybean, and Pendigit are reported in this study because these were the
only four data sets for which the fully grown decision tree had more than two
levels.

Figure 2 shows the classification accuracy of Tree, ASSEMBLE-tree and
MCSSB-tree when we vary the number of levels in decision tree. Notice that
in each case, the maximum number of level in the plot for each data set is set to
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Fig. 2. Sensitivity of MCSSB to depth of the tree

the tree fully grown for that data set. It is not surprising that overall the classi-
fication accuracy is improved with increasing number of levels in decision tree.
We also observe that MCSSB is more effective than ASSEMBLE for decision
trees with different complexity.

5 Conclusion

Unlike many existing semi-supervised learning algorithms that focus on binary
classification problems, we address multi-class semi-supervised learning directly.
We have proposed a new framework, termed multi-class semi-supervised boosting
(MCSSB), that is able to improve the classification accuracy of any given base
multi-class classifier. We showed that our proposed framework is able to improve
the performance of a given classifier much better than Assemble, a well-known
semi-supervised boosting algorithm, on a large set of UCI datasets. We also show
that MCSSB is very robust to the choice of base classifiers and the number of
labeled examples.
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Appendix A: Proof of Lemma 1

Proof. Bound in Equation (8) can be derived as follows:
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The inequality in (22) follows the convexity of reciprocal function, i.e.,

1
∑m

k=1 bk
i bk

j exp(α(hk
i + hk

j ))
=

1
∑m

k=1 bk
i bk

j

1
∑m

k=1 τk
i,j exp(α(hk

i + hk
j ))

≤ 1
∑m

k=1 bk
i bk

j

m∑

k=1

τk
i,j exp(−α(hk

i + hk
j )

The inequality in (23) follows the convexity of exponential function, i.e.,

exp(α(hk1
i + hk2

j − hk3
i − hk3

j )) = exp

⎛

⎝6α
h

k1
i +h

k2
j −h

k3
i −h

k3
j +2

6 +

0 × −h
k1
i −h

k2
j +h

k3
i +h

k3
j +2

6 + 6α1
3

⎞

⎠

≤
hk1

i + hk2
j − hk3

i − hk3
j + 2

6
exp(6α) +

1
3

exp(6α) +
−hk1

i − hk2
j + hk3

i + hk3
j + 2

6
Bound in Equation 9 can be derived as follows

1

Z̃ l
i,j

=
m∑

k′,k=1

yk
i exp(Hk′

j − Hk
j + α(hk′

j − hk
j ))

≤ 1 + exp(6α) + exp(−6α)
3Zl

i,j

+
exp(6α) − 1

6

m∑

k=1

hk
i

(
m∑

k′=1

yk′

j

bk
i

bk′
i

− yk
i

bk
i

)



Semi-Supervised Boosting for Multi-Class Classification 537

The inequality used by the above derivation follows the convexity of exponential
function, i.e.,
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Using the definition of φk
i,j , we have the result in Equation 9.

Appendix B: Proof of Lemma 2

Proof. Following the result in (22), we have
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tion (similar to the proof of Lemma 1). For Z l
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i,j in (8) and (9) with the above bounds, we have the
result in Lemma 2.



A Joint Segmenting and Labeling Approach for
Chinese Lexical Analysis

Xinhao Wang, Jiazhong Nie, Dingsheng Luo, and Xihong Wu�

Speech and Hearing Research Center,
Key Laboratory of Machine Perception (Ministry of Education),

School of Electronics Engineering and Computer Science,
Peking University,

100871, Beijing, China
{wangxh,niejz,dsluo,wxh}@cis.pku.edu.cn

Abstract. This paper introduces an approach which jointly performs a
cascade of segmentation and labeling subtasks for Chinese lexical anal-
ysis, including word segmentation, named entity recognition and part-
of-speech tagging. Unlike the traditional pipeline manner, the cascaded
subtasks are conducted in a single step simultaneously, therefore error
propagation could be avoided and the information could be shared among
multi-level subtasks. In this approach, Weighted Finite State Transduc-
ers (WFSTs) are adopted. Within the unified framework of WFSTs, the
models for each subtask are represented and then combined into a single
one. Thereby, through one-pass decoding the joint optimal outputs for
multi-level processes will be reached. The experimental results show the
effectiveness of the presented joint processing approach, which signifi-
cantly outperforms the traditional method in pipeline style.

Keywords: WFSTs, Chinese lexical analysis, joint segmentation and
labeling.

1 Introduction

The Chinese lexical analysis involves solving a cascade of well-defined segmenta-
tion and labeling subtasks, such as word segmentation, named entity recognition
and part-of-speech (POS) tagging. Like many problems in natural language pro-
cessing, the cascade is traditionally processed in a pipeline manner. However,
it has the disadvantage that errors introduced by earlier subtasks propagate
through the pipeline and will never be recovered in downstream subtasks. More-
over, this manner prevents information sharing among multi-level processes. For
example, the POS information is helpful to make better prediction in word seg-
mentation and named entity recognition, while this is prohibited in pipeline
processing.

To tackle these problems, several techniques were proposed recently. Rerank-
ing method has been widely applied in a number of different natural language
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processing problems, such as parsing [1,2], machine translation [3] and so on. In
handling the cascaded tasks, a k -best list is preserved at each level firstly, and
then reranked in the following subtasks [4,5,6]. Nevertheless, as an approxima-
tion of joint processing, reranking may miss the true result, which usually lies
out of the k -best list. Another intuitive approach is to take multiple subtasks as
a single one [7,8]. Such as in [9], the constituent labels of the Penn TreeBank are
augmented with semantic role labels (SRL), thus parsing the trees also serves as
a SRL system. Similarly in [10,11], word segmentation and POS tagging are per-
formed simultaneously by marking each Chinese character with a word level POS
tag. But an obvious obstacle of these label transformations is the requirement of
corpus annotated with multi-level information, which is usually unavailable in
many situations. Unlike the strategies mentioned above, some unified probabilis-
tic models are proposed to process a cascade jointly. Sutton et al. [12] proposed
the Dynamic Conditional Random Fields (DCRFs), which are trained jointly
and performs the subtasks in one step, but it is expensive in training and ex-
act inference. Moreover in [13], the Factorial Hidden Markov Model (FHMM)
was also introduced to the joint labeling tasks of POS tagging and noun phrase
chunking. Compared with DCRFs, FHMM has the computational advantage as
a generative model, and the exact inference can be achieved easier. However,
both DCRFs and FHMM also suffer from the absence of multi-level annotated
corpus.

In this paper, based on Weighted Finite State Transducers (WFSTs), an in-
tegrated Chinese lexical analyzer is presented to jointly perform the cascade
of segmentation and labeling tasks, including word segmentation, named entity
recognition and part-of-speech tagging. Traditionally, WFSTs have already been
successfully used in various fields of natural language processing, such as partial
parsing [14], named entity recognition [15], semantic interpretation [16], as well
as Chinese word segmentation [17,18]. However, being different from those appli-
cations, this study employs WFSTs to jointly conduct segmentation and labeling
tasks. WFSTs turn to be an ideal choice for our purpose due to two following
remarkable features: On one hand, most of the widely used models, like lexi-
cal constraints, n-gram language model and Hidden Markov Models (HMMs),
can be encoded into WFSTs, and thus a unified transducer representation for
these models is able to be achieved. On the other hand, since there exist mathe-
matically well-defined operations to integrate multiple transducers into a single
composed one, the optimal candidate can be extracted by one-pass decoding
with multi-level knowledge sources represented by each transducer. In contrast
to the joint processing techniques mentioned above, the presented approach has
the following advantages. Firstly, rather than reranking the k -best candidates
preserved at each level, it holds the full search space and chooses the optimal
results based on the multi-level sources. Secondly, similar to the strategy of [19],
the models for each level subtask are trained separately, while the decoding is
conducted jointly. Accordingly, it avoids the necessary of corpus annotated with
multi-level information. Other than [19], in this study the used generative mod-
els bring the benefit in computation, which is important in a joint processing
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task, especially as the scale of subtasks increasing. Thirdly, in the case when a
segmentation task precedes a labeling task, the consistency restriction imposed
by the segmentation task must be maintained in the successive labeling task.
For instance, the POS tags assigned to each character in a segmented word
must be the same. While for the methods taking the smallest characters in the
segmentation task as modeling units, such as Chinese Characters in Chinese
word segmentation, this restriction is not naturally satisfied. The WFSTs based
approach ensures this restriction by the composition operation, i.e., the input
sequence of one transducer and the output sequence of the other transducer
must be identical. In addition, the unified framework of WFSTs provides the
opportunity to easily apply the presented analyzer in other natural language
related applications which are also based on WFSTs, such as speech recognition
[20] and machine translation [21]. Since more linguistic knowledge in multi-level
is modeled by the analyzer, performance improvements possibly can be achieved
for those applications.

The remainder of this paper is structured as follows. Section 2 introduces
the formal definition and notation of WFST. In section 3, by describing the
integrated Chinese lexical analyzer in detail, the joint segmenting and labeling
approach is presented. Then simulations are performed to evaluate the new ana-
lyzer in section 4. Finally, section 5 draws the conclusion and discusses the future
work.

2 Weighted Finite State Transducers

The Weighted Finite State Transducer (WFST) is the generalization of the finite
state automata. In weighted transducer, besides of an input label, an output
label and a weight are also placed on each transition. With these labels, the
transducer is capable of realizing a weighted relation between strings. In the
most general case, the definition of WFST depends on the algebraic structure
of a semiring,(K, ⊕, ⊗, 0, 1) [22,23,24]. In a semiring, two operation ⊕ and ⊗
are associative and closed over the set K. 0, 1 are their identities respectively.
Unlike a ring, a semiring may not have negation. For example, (N, +, ∗, 0, 1) is
a semiring.

2.1 Definition

In this paper, a weighted transducer W over the semiring K is formally defined
as a 6-tuple W = (Q, i, F, Σ, Δ, T ) , where

– Q is the set of its states,
– i ∈ Q is an initial state,
– F ∈ Q is the set of final states,
– Σ is the input alphabet,
– Δ is the output alphabet,
– T ⊂ Q×Q×Σ∪{ε}×Δ∪{ε}×K is the set of transitions. Each t ∈ T consists

of a source state src(t) ∈ Q, a destination state des(t) ∈ Q, an input label
in(t) ∈ Σ ∪ {ε}, an output label out(t) ∈ Δ ∪ {ε} and a weight wght(t) ∈ K.
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A successful path π in W , is a chain of successive transitions: p = t1t2...tn, satis-
fying src(t1) = i, des(tn) ∈ F and des(ti) = src(ti+1) 1 ≤ i ≤ n − 1. The input
and output strings mapped by this path are the concatenation of transitions’ input
and output labels: in(p) = in(t1)in(t2)...in(tn), out(p) = out(t1)out(t2)...out(tn),
where the symbol ε represents the empty string. The weight of π is the ⊗-product
of its transitions’ weights: wght(π) = wght(t1) ⊗ wght(t2) ⊗ ... ⊗ wght(tn). For
a given input string s and an output string r, the set pathW (s, r) consists of all
the successful paths in W , whose input and output strings match s and r respec-
tively. The weight associated by W to the (s, r) is the ⊕-sum of the paths’ weights
in pathW (s, r) and 0:

W (s, r) = (
∑

p∈pathW (s,r)

wght(p)) ⊕ 0

In our system, probabilities are adopted as weights and each string pair is
associated with a weight indicating the probability of the mapping between
them. Due to the numerical stability, log probabilities are used in implemen-
tation instead of probabilities. The appropriate semiring for the finite-state
representation of log probabilites and operations is the tropic semiring (R+ ∪
{∞}, min, +, ∞, 0) [22].

2.2 Decoding and Composition

Given an input string s and a WFST W , the goal of decoding is to find the
best output string r∗ maximizing W (s, r). Similarly, when multiple WFSTs are
involved, a joint decoding is desired to find the optimal final output string r∗,
which maximizes the ⊗ -product of each mapping W1(s, m1) ⊗ Wi(mi−1, mi) ⊗
... ⊗ Wn(mn−1, r), where mi is an arbitrary string on Wi’s output alphabet.
An efficient way to implement this desired decoding is using the composition
algorithm to combine multiple WFSTs into a single one [22,23,24].

For two WFSTs E and F satisfying the input alphabet of F and output alpha-
bet of E are the same, the composition G = E ◦ F represents the composition
of the weighted relations realized by E and F . As in the classical finite state
automata intersection, the states in G are pairs of states in E and F . G’s initial
state is the pair of initial states of E and F , and final states are pairs of a final
state in E and a final state in F . For each pair of transition tE from e to e′ in
E and transition tF from f to f ′ in F , there exists exactly one transition t in G
from (e, f) to (e′, f ′). The input label of t is taken from tE and output label from
tF . Wght(t) is the ⊗ -product of wght(tE) and wght(tF ), when the weights cor-
respond to probabilities. For transducers have ε transitions, special treatments
are needed as in [25]. Figure 1 shows two simple transducer Figure 1(a) and
Figure 1(b), and the result of their composition, Figure 1(c). All of them are
defined on the tropic semiring.

Apparently, for a path in E mapping s to v and a path in F mapping v to r,
G has exactly one path mapping s to r directly and its weight is the ⊗ -product
of the corresponding paths’ weights in E and F . This property enables us to find
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Fig. 1. Example of WFSTs composition. Two simple WFSTs are showed in (a) and
(b), in which states are represented by circles and labeled with their unique numbers.
The bold circles represent initial states and double circles for final states. The input
and output labels as well as weight of transition t are marked as in(t):out(t)/wght(t).
In (c), the composition of (a) and (b) is illustrated

the optimal final output string among multiple WFSTs by finding the optimal
output string in the combination of these WFSTs W = ((W1◦W2)...◦Wn),which
can be easily realized by a standard Viterbi search.

3 Joint Chinese Lexical Analysis

Word segmentation is the first stage of Chinese text processing since Chinese is
typically written without blanks, and POS tagging is to assign the part-of-speech
to each segmented word in a sentence. Both tasks face the challenge of tackling
unknown words that are out of the dictionary. In this study, two kinds of typical
unknown words, person names and location names, are also focused.

In this section, within the unified framework of WFSTs, the models for three
level subtasks, i.e. words segmentation, POS tagging and named identity recog-
nition, are presented, and then they are combined to reach an integrated Chinese
lexical analyzer.

3.1 Multiple Subtasks Modeling

For word segmentation, the class based n-gram technique is adopted. Given an
input character sequence, it is encoded by a finite state acceptor FSAinput. For
example, the input “ ”(while synthesizing molecule) is represented as
Figure 2(a). Then a dictionary can be represented by a transducer with empty
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Table 1. Toy dictionary

Chinese Words English Words
together

synthesize
element
molecule

the period of the day from 11 p.m.to l a.m.
present

Table 2. Definition of word classes

Classes Description
wi Each word wi listed in dictionary

CNAME Chinese person names as one class
TNAME Translated person names as one class

LOC Location names
NUM Number expressions

LETTER Letter strings
NON Other non Chinese character strings

BEGIN Beginning of sentence as one class
END End of sentence as one class

weights, denoted as FSTdict. Figure 2(b) illustrates a toy dictionary listed in
Table 1, in which a successful path encodes a mapping from a Chinese character
sequence to some word in dictionary. Afterwards a class based n-gram language
model is used to weight the candidate segmentations. In Figure 2(c), a toy bigram
with three words is depicted by WFSTn−gram, and the word classes are defined
in Table 2.

For both POS tagging and named entity recognition, the Hidden Markov
Model (HMM) is used. Each HMM is represented with two WFSTs. Taking
the POS tagging as an example, Figure 3(a) models the generation of words by
POS (P (word/pos)), and similar to the word n-gram, Figure 3(b) models the
transitions between POS tags. For named entity recognition, the HMM states
correspond to 30 named entity role tags, such as surname, the first character
of a given name with two characters, the first character of a location name,
and so on.

Besides the primary WFSTs described above, there are also some other finite
state transducers, which are used to represent various rules for recognizing the
number strings and letter strings, or to be responsible for the transformation
from name roles to word classes.

3.2 Integration of Multiple Models

Based on the WFSTs built above, an integrated model is obtained by combining
them into a single one using the composition algorithm as describe in section 2.
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Fig. 2. Word WFSTs. (a) is the FSA representing an input example; (b) is the FST
representing a toy dictionary; and (c) is the WFSA representing a toy bigram language
model, where un(w1) denotes the unigram of w1; bi(w1, w2) and back(w1) respectively
denotes the bigram of w2 and the backoff weight given the word history w1.

To perform word segmentation, a WFST embracing all the possible candidates
is obtained as below:

WFSTwords = FSAinput ◦ FSTdict ◦ WFSTne ◦ WFSAn−gram (1)
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Fig. 3. POS WFSTs. (a) is the WFST representing the relationship between the word
and the pos; (b) is the WFSA representing a toy bigram of POS.

As the class based n-gram is adopted, the named entity recognition is conducted
along with word segmentation. Taking the POS tagging into account, the de-
coding, which aims to extract the joint optimal results according to multi-level
information, is performed on the WFST composed as following, where α is a
weight for combining different level subtasks.

WFSTanalyzer = (α ∗ WFSTwords) ◦ WFSTPOS . (2)

4 Simulation

To evaluate the presented analyzer, two systems are constructed, as illustrated
in Figure 4, where the system based on the pipeline style method is taken as
the baseline. The experimental corpus comes from the People’s Daily of China
in 1998 from January to June, annotated by the Institute of Computational
Linguistics of Peking University1. The January to May data are taken as the
training set. The first two thousand sentences of June data are extracted as the
develop set, which is used to fix the composition weight α in equation 2, and the
remains are taken as the test set. A dictionary including about 113,000 words
is extracted from the training data. The models for different level subtasks are
trained separately, where the class based language model is trained with the

1 http://icl.pku.edu.cn/
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Fig. 4. The pipeline system vs The joint processing system

SRI Language Modeling Toolkit2. While the decoding is implemented through
one-pass Viterbi search on the combined WFST.

In Table 3 the performances of the pipeline baseline and the integrated an-
alyzer are compared. Due to the joint decoding, the integrated analyzer out-
performs the pipeline baseline on all the tasks in F1-score metric, especially
for the case of person name recognition. It is as expected that person names
are greatly improved when incorporating POS information during recognition,
where the POS appears effective in preventing to segment a person name into
pieces (possibly into characters).

In addition, to further investigate the significance of performance improve-
ment, a statistical test using approximate randomization approach [26] is per-
formed on the word segmentation results. In this approach, the responses for
each sentence produced by two systems are shuffled and equally resigned to each
system, and then the significance level is computed as to whether shuffles bring
differences not smaller than the difference produced when running two systems
on the test data. In general, given n test sentences, the shuffle times s is fixed
as in equation 3, i.e., when n is small, no larger than 20, the exact randomization

2 http://www.speech.sri.com/projects/srilm/
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Table 3. Performance comparison between the pipeline baseline and the integrated
analyzer. The system performances are measured with F1-score in the tasks of word
segmentation (WS), POS tagging, as well as the person and location name recognition.

Pipeline Baseline Integrated Analyzer
Word Segmentation 95.94% 96.77%
POS Tagging 91.06% 91.81%
Person Name Recognition 83.31% 88.51%
Location Name Recognition 89.90% 90.91%

is performed, otherwise, only the approximate randomization is performed since
the number of different shuffle ways, 2n, is too large to be exhaustively evaluated.

s =
{

2n, n � 20
220 = 1048576, n > 20 (3)

However, in our test set there are more than 21,000 sentences, the use of 220

shuffles to approximate 221000 shuffles as in formula 3 turns unreasonable any
more. Thus, here ten sets (500 sentences for each) are randomly selected from
the test corpus. For each set, we run 1048576 shuffles twice and calculate the
significance level p−value according to the shuffled results. Statistical test shows
that all p − values are less than 0.001 on the ten sets, which reveals that the
performance improvement introduced by the integrated analyzer is statistically
significant.

5 Conclusion and Future Work

In this research, within the unified framework of WFSTs, a joint processing ap-
proach is presented to perform a cascade of segmentation and labeling subtasks.
It has been demonstrated that the joint processing is superior to the traditional
pipeline manner. The finding suggests two directions for future research: Firstly,
more linguistic knowledge will be integrated in the analyzer, such as organiza-
tion name recognition and shallow parsing. For some tough tasks in related areas,
such as large vocabulary continuous speech recognition and machine translation,
rich linguistic knowledge will play an important role, thus incorporating our in-
tegrated lexical analyzer may lead to a promising performance improvement,
and these attempts will be another future work.
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Abstract. Dimensionality reduction is one of the widely used techniques for data
analysis. However, it is often hard to get a demanded low-dimensional represen-
tation with only the unlabeled data, especially for the discriminative task. In this
paper, we put forward a novel problem of Transferred Dimensionality Reduction,
which is to do unsupervised discriminative dimensionality reduction with the help
of related prior knowledge from other classes in the same type of concept. We
propose an algorithm named Transferred Discriminative Analysis to tackle this
problem. It uses clustering to generate class labels for the target unlabeled data,
and use dimensionality reduction for them joint with prior labeled data to do sub-
space selection. This two steps run adaptively to find a better discriminative sub-
space, and get better clustering results simultaneously. The experimental results
on both constrained and unconstrained face recognition demonstrate significant
improvements of our algorithm over the state-of-the-art methods.

Keywords: Transfer Learning, Dimensionality Reduction, Clustering.

1 Introduction

In many machine learning applications, such as computational biology, appearance-
based image recognition and image retrieval, one is confronted with high-dimensional
data. However it is considered that the original data naturally reside on lower dimen-
sional manifolds. Finding this compact representation is usually a key step. Using
an efficient representation, the subsequent phases, such as clustering or classification,
will become much faster and more robust [14]. Thus some dimensionality reduction
approaches have been developed. For unsupervised methods, e.g. principle compo-
nent analysis (PCA) [20] and locality preserving projections (LPP) [14], the compact
manifold should preserve the most relevant structure information of the original data
point cloud. For supervised case, e.g. linear discriminant analysis (LDA) [1], the low-
dimensional representation should find the most discriminative subspace for different
classes based on the labeled data. Recently, the semi-supervised method has also been
developed [3], which makes use of both labeled and unlabeled data.

In the last few years, several similar works [26,9,23] have been done to couple unsu-
pervised dimensionality reduction with clustering, forming an adaptive dimensionality
reduction framework. It performs discriminant analysis and clustering adaptively to se-
lect the most discriminative subspace and find a suitable clustering simultaneously. The
most recent work [26] uses the method called discriminative k-means (DisKmeans),

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 550–565, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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which outgoes the traditional PCA+K-means framework and other similar works in
their experiments. However, we observe that this type of methods is efficient only for
specific data distributions, which is very limited. For example, we show three cases of
a toy problem in Fig. 1.

To alleviate this limitation, additional prior information should be considered. The
most straightforward and powerful information is the label, such as the idea of su-
pervised and semi-supervised methods. However, in practice, the label information for
these target unknown classes may hardly be obtained. The works from knowledge trans-
fer [22] inspire us to make use of the information from other class domains prior known.
Though from different classes, the labeled samples may share some common character-
istics with the target task, as they are from the same type of concept.

For example, in face recognition, we want to detect or recognize the face images for
a number of persons. When they are all unlabeled, the conventional methods usually
cannot get satisfied results, as they cannot use any supervised information. On the other
hand, there are already some databases with labeled faces, such as AT&T [18] and Yale
[13]. These labeled face data contain some common information for face recognition.
So we can use them to improve the original unsupervised learning task. In this situation,
though both labeled and unlabeled data appear, the previous semi-supervised methods
cannot work, as the labeled and unlabeled data are from different classes. This is a more
general problem of learning with both labeled and unlabeled data [15].

This problem brings forward a novel issue which we call transferred dimensionality
reduction (TDR). It transfers the task-related information from the classes prior known
to the target unlabeled class domains, and finds a better subspace to discriminate them.
In this paper, we propose a method called transferred discriminative analysis (TDA) to
tackle the TDR problem. This method extracts the discriminative information from the
labeled data and transfers it into unsupervised discriminative dimensionality reduction
to revise the results iteratively. Finally, using both these labeled and unlabeled data
from different classes, we can find the most discriminative subspace and an optimal
clustering result simultaneously. The toy problem in Fig. 1 explains this problem more
intuitively. It shows that, the labeled samples from known classes can help us to find a
much better subspace to discriminate the unknown classes.

The rest of the paper is organized as follows. In section 2, we briefly review the
related works. Then we introduce TDA algorithm in section 3. Experiments are given
in section 4. Finally, we give our conclusion and suggest some future works based on
the novel problem of TDR in section 5.

2 Related Work

2.1 Discriminative Dimensionality Reduction and Clustering

Over the past few decades, a lot of attention has been paid to dimensionality reduction.
Some algorithms have been developed. A large family of them can be explained in a
graph view [25]. The low-dimensional vector representation can be obtained from the
eigenvectors corresponding to the eigenvalues of the graph Laplacian matrix with cer-
tain constraints. It preserves similarities between the pairs of the data, where
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Fig. 1. Toy problem: There are four classes of data. Each class contains 50 random samples and
forms a moon shape manifold. Suppose the class 3 and 4 are unlabeled, and we want to find the
suitable subspace to discriminate them. There are three situations, each one in a row. PCA+K-
means framework fails for any case, as in (a), (d) and (g). DisKmeans only works for the case
that class 3 and 4 are slightly staggered in (b). When they are paralleled in (e) or staggered too
much in (h), it cannot work well either. However, with the help of class 1 and 2, which are labeled
beforehand, we can find the suitable subspace for each case as in (c), (f) and (i).

similarity is measured by a graph similarity matrix that characterizes certain statisti-
cal or geometric properties of the data set.

To get the discriminative structure of data, supervised methods try to find a transfor-
mation that minimizes the within-class scatter and maximizes the between-class scatter
simultaneously. Given l labeled samples XL = (x1, x2, ..., xl) from C classes, where
xi ∈ R

d. The within-class scatter matrix Sw, the between-class scatter matrix Sb and
the total-scatter matrix St are defined as:

Sw =
∑C

j=1
∑lj

i=1 (xi − mj)(xi − mj)T = XLwXT (1)

Sb =
∑C

j=1 lj(mj − m)(mj − m)T = XLbXT (2)

St =
∑l

i=1 (xi − m)(xi − m)T = Sb + Sw = XLtXT , (3)
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where mj = 1
lj

∑lj
i=1 xi (j = 1, 2, ..., C) is the mean of the samples in class j, lj is

the number of samples in class j, and m = 1
l

∑l
i=1 xi is the mean of all the samples.

And the corresponding graph Laplacians are [14]:

Lw = I − H(HT H)−1HT (4)

Lb = H(HT H)−1HT − 1
l 1l1T

l (5)

Lt = I − 1
l 1l1T

l , (6)

where H = {0, 1}l×C is an indicator matrix: Hij = 1 if xi belongs to the j-th class,
and Hij = 0 otherwise.

LDA is one of the most popular and representative supervised methods. It is to solve
the optimization problem:

max
W

trace((WT SwW)−1(WT SbW)). (7)

or
max

W
trace((WT StW)−1(WT SbW)). (8)

The solution is the eigenvectors corresponding to the C−1 largest eigenvalues of S−1
w Sb

or S−1
t Sb [11].

Clustering is another important topic to exploit the discriminative structure of the
data. K-means is one of the simplest and most popular algorithms to solve the clustering
problem. Given u unlabeled samples XU = (x1, x2, ..., xu) from K classes. Standard
k-means finds the partition of the data to minimize the energy function:

JK =
K∑

k=1

∑

i∈Ck

‖xi − mk‖2
2 = trace(Sw). (9)

The clustering state can also be specified by an dummy indicator matrix H̃u×K .
It is clear the k-means clustering is to minimize the within-class scatter matrix Sw,

or maximize the between class scatter matrix Sb, since the total scatter St is a constant.
It also can be represented in graph form using equation (4). On the other hand, its ker-
nelized version can also be explained under the graph view, which has close connection
with other spectral clustering methods [8].

The discriminative analysis and clustering methods all emphasize on pursuing the
intrinsic discriminative structure of the data. So [9,23,26] combine them together to get
better learning result.

Though the combined method of discriminative k-means does a good job in some
situations. It focuses too much on the present unlabeled samples, and sometimes is
trapped into a very bad result, even worse than the PCA+K-means method, which is
shown in the third case in Fig. 1. To overcome this problem, we consider to introduce
more information from outer classes within the same concept domain. As the differ-
ent classes of data in the same concept domain often lie on similar lower dimensional
manifolds in certain extent, they should share some common discriminative structure.
We can extract this structure easily from the labeled classes using discriminative anal-
ysis. Then, we can transfer the shared information to the unlabeled data, and find their
discriminative structure using the clustering method.
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2.2 Transfer Learning and Semi-supervised Learning

TDA has a similar motivation with knowledge transfer, or transfer learning, which has
been recognized as an important topic in machine learning field. It is the ability to apply
knowledge and skills learned in previous tasks to novel tasks. Early works raised some
significative issues [17,21,4]. There are still more and more attentions paid to this topic
recently [16,7]. Most of the previous works focus on transferring the related knowl-
edge for supervised learning tasks. In this work, however, we address on the single-
task problem, and transfer the supervised information to unsupervised task. Though it
seems like semi-supervised learning [5], they have obvious distinctions. In traditional
semi-supervised learning the labeled and unlabeled data come from the same class do-
mains. There should be both labeled and unlabeled data in each class. The unlabeled
data should have the same distribution with the labeled ones, then a large number of
data points can expose the manifold information and improve the learning result of the
labeled data.

In our problem, on the contrary, the labeled and unlabeled data are from different
classes, and they have different distributions. We extract the useful discriminative infor-
mation from the labeled data to improve the subspace selection of the unlabeled data.
It is quit different with semi-supervised learning and cannot be solved using existing
semi-supervised methods. As a result, we name this problem as transferred dimension-
ality reduction.

3 Transferred Discriminative Analysis

In learning tasks, it is vital to use the prior information. In traditional methods, the prior
is often assumed to be given by the designer’s experience. We cannot expect this prior
to be always right, as it is hard to propose a suitable prior even for an expert. However,
in TDR we extract the information directly from the data prior known, and embed this
information into the task using the cross similarity part between the source prior known
and the target to be dealt with.

In TDR, suppose we have the labeled source data set, contains l points DL = {XL,
YL}, XL = (x1, x2, ..., xl), YL = (y1, y2, ..., yl)T . The label is y ∈ {1, . . . , C}.
We want to find the compact subspace of u newly arrived unlabeled points DU =
{XU}, XU = (xl+1, xl+2, ..., xl+u), from K classes which are different from the
classes in YL. Each point x ∈ R

d is a d-dimensional vector. We denote all data as
D = {DL,DU}, and X = {XL,XU}. For simplicity, we assume n = l + u, and the
sample mean of D is zero, which is m = 1

n

∑n
i=1 xi = 0.

3.1 The Objective Function

The manifold structure is interpreted as that nearby points will have similar embedding.
As the labeled and unlabeled data are from different manifolds of the same concept do-
main. The discriminative structure can be shared to some extent among this manifolds.
We can transfer this information from source data DL to target data DU through the
intervention between these two parts.
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In our TDR, we measure the between-class information of the data set D as follows:

Sb = Sbl + S̃bu =
C∑

i=1

limim
T
i +

K∑

j=1

ljm̃jm̃
T
j . (10)

The first part is the between-class scatter of the labled data. However, for the unlabeled
data, we can estimate this information using clustering method, which is expressed as
the second part, treating each cluster as a class.

In the between-class scatter, the labeled and unlabeled parts are separately presented.
To properly describe the structure of all data, we should introduce the relationship be-
tween labeled and unlabeled parts.

Under the existence of unlabeled data, Graph Laplacian has been generally used to
describe the data structure [5]. We define G = (V, E) as a graph associated with the
data. V is the vertex set of graph, which is defined on the observed set, including both
labeled and unlabeled data. E is the edge set, which contains the pairs of neighboring
vertices (xi, xj). A typical adjacency matrix M of neighborhood graph is defined as:

Mij =

{
exp{− ‖xi−xj‖2

2σ2 } if (xi, xj) ∈ E
0 otherwise

(11)

then the normalized graph Laplacian [6] is:

L = I − D− 1
2 MD− 1

2 , (12)

where the diagonal matrix D satisfies Dii = di, and di =
∑l+u

j=1 Mij is the degree of
vertex xi.

Introducing the graph Laplacian into the total scatter, we can make use of both labled
and unlabeled information to describe the structure of the data set D properly. With the
zero sample mean, it becomes

(St + λXLXT ) = X(I + λL)XT (13)

It is also can be seen in the regularization of discriminative analysis [10].
As described above, the target of TDA becomes:

max
W,H̃u

trace((WT (St + λXLXT )W)−1(WT (Sbl + S̃bu(H̃u))W)). (14)

It is to optimize the objective function w.r.t two variables. One is the dummy indicator
matrix H̃u, representing the clustering structure of the unlabled data, and the other one
is the projection direction W for the dimensionality reduction.

Direct optimizing the objective function is complex and not advisable. Instead, we
optimize it alternatively. We can use clustering method to estimate the discriminative
structure of the unlabeled data, and project all data into lower dimension by super-
vised method to revise the clustering result. Using the method in [23], the process will
converge to the optimal solution for the objective, while we will using the k-means
clustering in our experiment, which gives a local solution but is good enough.
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The introduction of the labeled parts in between-class scatter, total scatter and graph
Laplcian adds more restriction into the problem. They restrict that in the low-dimensional
subspace of unlabeled data, the discriminative structure of labeled data should still be
preserved. The labeled data will bring in punishment if the structure is violated. This
will force the unlabeled data clustering to form similar discriminative structure with the
labeled data, and the information is transferred like this. The alternation process will stop,
when the structure consistency of all data in the subspace and the clustering structure
within unlabeled data are balanced. Following this process, the knowledge is transferred
through the intervention between the labeled and unlabeled structures, and then affects
the clustering and projection process.

The above explanation is intuitive. We can also explanation this intervention more
explicitly from kernel learning view. [26] analyzes that the clustering step of the adap-
tive framework is just the kerneled version of k-means clustering, using kernel matrix

XT
UW(WT(XUXT

U + λLU)W)−1WTXU, (15)

which is learned from the unlabeled data. In our method, the kernel matrix becomes

XTW(WT(XXT + λL)W)−1WTX, (16)

which is learned from all available data, both the source and target. So, the prior infor-
mation from the source is embedded in the kernel matrix and transferred adaptive to the
target task. Finally, we can find the most discriminative projection direction, and get a
reasonable clustering result of the unlabeled data at the same time.

3.2 The Algorithm

Given the labeled data DL = {XL,YL} belong to C classes, and unlabeled data DU =
{XU} with their class number K. The TDA algorithm is stated below:

Step 1. Initialization: Initially assign the cluster index for the K classes of unlabeled
data using k-means. Construct the graph matrix M as in equation (11), and calculate the
graph Laplacian L as in equation (12).

Step 2. Supervised Dimensionality Reduction: Find the optimal subspace with di-
mension m = C + K − 1, using eigenvalue decomposition for the objective function
(14) w.r.t W, which is similar to LDA. Then the optimal solution is given by:

(St + λ1XLXT + λ2I)w∗
j = ηj(Sbl + S̃bu(H̃u))w∗

j ,

j = 1, ..., m, where w∗
j (j = 1, ..., m) are the eigenvectors corresponding to the m

largest eigenvalues of (St + λ1XLXT + λ2I)−1(Sbl + S̃bu(H̃u)), with fixed H̃u. λ2I
is a regularization term, which ensures the nonsingularity of the matrix St +λ1XLXT ,
and λ2 is an arbitrary small real number.

Step 3. Compact Clustering for Target Data: Cluster the unlabeled data in the sub-
space finding in step 2. It is to fix projection direction W and use the clustering
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method to get an optimal indicator matrix H̃u for the unlabeled data. K-means is used
in this step to solve the problem

max(H̃u) S̃bu(H̃u)

Step 4. Stop Condition: Goto step 2 until convergence. It is to stop when the clustering
result, the indicator matrix H̃u, for previous two iterations is unchanged.

Step 5. TDA Embedding: Let the projection matrix Wtda = [w∗
1, . . . , w

∗
m]. The sam-

ples can be embedded into m dimensional subspace by: x → z = WT
tdax.

3.3 Kernelization

In this section we present the generalized version of our algorithm using the kernel trick.
We show a simple method under a graph view, using the similar treatment with [2]. It
performs TDA in Reproducing Kernel Hilbert Space (RKHS), getting kernel TDA.

Let φ : x → F be a function mapping the points in the input space to feature space,
which is a high-dimensional Hilbert space. We try to replace the explicit mapping with
the inner product K(xi, xj) = (φ(xi) · φ(xj)). According to Representer Theorem
[19], the optimal solution w∗

j can be given by:

wφ∗
j =

l+u∑

i=1

α∗
jiφ(xi) j = 1, ..., m (17)

where αji is the weight that defines how wφ∗
j is represented in the space spanned by a

set of over-complete bases {φ(x1), φ(x2), ..., φ(xl+u)}.
For convenience, we rewrite the data matrix in RKHS as Xφ

L = [φ(x1), φ(x2), ...,
φ(xl)], X

φ
U = [φ(xl+1), φ(xl+2), ..., φ(xl+u)], and Xφ = (Xφ

L,Xφ
U ). Then, Wφ can

be expressed as Wφ = Xφα. The kernel matrices are defined as K = XφT Xφ. Thus
we have

WφT Sφ
b W

φ
= αT KT LbKα

WφT Sφ
t W

φ
= αT KT IKα

WφT XφLXφT Wφ = αT KT LKα
WφT Wφ = αT Kα

(18)

Using the graph expression of (1) ∼ (6) and the graph Laplacian (12).
As

H =
[
Hl×C

l 0
0 H̃u×K

u

]

,Lb =
[
Ll×C

bl 0
0 L̃u×K

bu (H̃u)

]

,

the indicator matrix composed with two parts for labeled and unlabeled samples indi-
vidually, and the between-class scatter is also composed by two parts respectively.

We can then give the objective function of kernel TDA (KTDA) as:

max
α,H̃u

trace((αT KT (Lt + λ1L + λ2)Kα)−1(αT KT LbKα)). (19)
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The solution is obtained by solving the generalized eigenvalue decomposition problem:

KT (Lt + λ1L + λ2)Kα∗
j = ηjKT LbKα∗

j (20)

where α∗ = (α∗
1, α

∗
2, ..., α

∗
m) corresponds to the m largest eigenvalues. α∗

j should be
resized as 1√

α∗T
j Kα∗

j

α∗
j to satisfy the constraint of α∗T Kα∗ = I.

3.4 The Computational Complexity

The TDA contains both dimensionality reduction and clustering. The process may have
several iterations. The empirical result shows it converges vary fast. The number of it-
erations is often less than ten. In supervised dimensionality reduction, it needs to solve
a generalized eigenvalue decomposition, which is of order O(d2nt). d is the dimension
of data, n = l + u is the number of total data points, and t is the number of iterations.
For clustering method, we use k-means. The computational complexity is O(dnt). As
a result, the total computational complexity is of order O(d2nt), and the complexity
is focus on the original dimension of data. As a result, we can use PCA to initially
reduce the dimension of the data, and this can accelerate the running speed of our algo-
rithm. The computational complexity of kernel TDA is O(n2dt) analyzed in the same
way.

4 Experiments

We have already shown a toy problem in the introduction. Using TDA we can find
the true structure with the help of the labeled data using only a few iterations, which
is very fast. In this case, the data prior known can exactly express the discriminative
information of the unlabeled samples, which is an ideal situation.

In this section, however, we will give the examples of real problems and show that,
most of the time, the transferred information is helpful. We perform the comparisons
under the problem of face recognition, both constrained and unconstrained. We com-
pare our TDA method with two of the most popular and representative appearance-
based methods including Eigenface (based on PCA)[20] and Laplacianface (based on
LPP)[14], and the adaptive dimensionality reduction method with clustering
DisKmeans [26].

All images in our experiments are preprocessed to the same size of 56 × 46 pixels
with 256 gray levels. In each experiment, we randomly choose C classes as labeled data,
and K classes unlabeled. TDA runs on all of these data. The comparison methods are
operated on the K classes of unlabeled data. We compare their clustering results in the
corresponding subspace which they have found. TDA and DisKmeans can cluster the
data at the same time of subspace selection. However for the other two methods, we use
the k-means for clustering, and run k-means 10 times for each projection then choose
the best result in each experiment. For each fixed (C, K), we run the experiment for
50 times, each time on randomly selected labeled and unlabeled classes, then show the
average result. For comparison of different methods, we use the clustering result as the
measurement of dimensionality reduction performance. We use two standard clustering
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performance measures, which are Clustering Accuracy (ACC) and Normalized Mutual
Information (NMI) [24,26].

The heuristic parameter in TDA and DisKmeans is the Laplacian weight λ1. We
set it to a fixed value of 1. As a matter of fact, the algorithm is not sensitivity to this
parameter for a wide range. For the heuristic parameter of PCA and LPP, the reduced
dimensionality, we choose them using cross validation.

4.1 What to Transfer

Usually there are several classes of labeled samples in the data set prior known. But
not all of them are helpful for a specific unsupervised task. Because each of them has
different discriminative structure. Only some of them are the same with the unlabeled
samples. The others are not, and using these data is harmful, on the contrary. On the
other hand, using all prior data needs much more computational time, which is not
practical. As a result, we choose a proper subset of labeled data for our learning task.
As the task is to maximize the discriminative ability of the target data, we just use this
as the selection criterion. In following experiments, we randomly select C classes from
the prior data set, and repeat for R times. Each time we will find an optimal pair of
(Wi

T ,Hiu), and use the best one. This is,

max
i∈R

trace((Wi
T (S̃wu(H̃iu) + λXULXU

T )Wi)−1(Wi
T S̃bu(H̃iu)Wi)). (21)

As a result, the computational complexity will be multiplied by R to O(d2ntR). We fix
R = 10. The complexity will not be changed significantly and remain in the same level.

4.2 Face Recognition Using Conventional Benchmarks

Face Data Sets. In the experiments for this section, we use the face data sets, AT&T
[18] and Yale [13]. The typical faces of these data sets are shown in Fig. 2.

Transferred within the Same Data Set. In these experiments we use the labeled data
and unlabeled data in the same data set.

For AT&T database, we chose each integer C from {2,. . . ,10} and K from {2,. . . ,10}.
Table 1 gives a part of the results using ACC measure as the limit of space. However,
we show the result of all comparisons in both two measures in Fig. 3, where each
point represent an average result of a fixed (C,K). We only show the improvement over
DisKmeans in the figures, as it is the second best among all comparison methods. The
results tell that TDA is much better than the unsupervised method. For Yale database,
we chose C traversing all integers from {2,. . . ,7}, and K traversing from {2,. . . ,7}. The
result is also shown in Fig. 3.

(a) AT&T face examples (b) Yale face examples

Fig. 2. Face Data Examples
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Table 1. Results in AT&T, using ACC measure (mean ± std)

AT&T PCA LPP DisKmeans TDA

C=2,K=2 0.80(0.15) 0.72(0.12) 0.91(0.16) 1.00(0.02)
C=2,K=3 0.90(0.11) 0.78(0.08) 0.90(0.13) 0.96(0.10)
C=3,K=2 0.84(0.13) 0.70(0.13) 0.89(0.16) 1.00(0.02)
C=3,K=3 0.93(0.08) 0.81(0.08) 0.89(0.15) 0.97(0.07)
C=2,K=4 0.86(0.10) 0.80(0.08) 0.89(0.12) 0.91(0.11)
C=4,K=2 0.84(0.14) 0.69(0.11) 0.89(0.20) 1.00(0.02)
C=3,K=4 0.88(0.08) 0.83(0.06) 0.88(0.10) 0.92(0.10)
C=4,K=3 0.90(0.11) 0.80(0.10) 0.86(0.14) 0.97(0.07)
C=4,K=4 0.88(0.08) 0.79(0.09) 0.91(0.11) 0.92(0.10)
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Fig. 3. Comparison results of TDA and DisKmeans in ACC and NMI measures, for transfer
within either AT&T or Yale, each point represents 50 times average for a fixed (C, K) pair

As the above result cannot show how the change of (C,K) will affect the performance
improvement, we give another representation in Table 2. It is the difference matrix be-
tween the clustering result of TDA and DisKmeans for each pair of (C,K). In Table 2,
we can find that TDA improves significantly over other unsupervised methods for small
K, which is the number of unlabeled classes. However, the improvement becomes less
significant, with the increase of K. This is because the unknown target discriminative
structure becomes more and more complex, and the limited prior cannot describe it
properly. However, the increase of the number of labeled classes can not affect the re-
sult distinctively. This is because discriminative structure among the labeled data also
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Table 2. Difference matrix of TDA and DisKmeans for AT&T, each element is calculated as
DMkc = ACCTDA

kc − ACCDis
kc . The bold items show significant improvements of TDA.

AT&T C = 2 C = 3 C = 4 C = 5 C = 6 C = 7 C = 8 C = 9 C = 10
K=2 0.22 0.29 0.41 0.34 0.22 0.23 0.25 0.51 0.22
K=3 0.08 0.14 0.16 0.05 0.05 0.11 0.10 0.09 0.13
K=4 0.02 0.06 0.02 0.04 0.01 0.02 0.03 0.06 0.09
K=5 0.00 0.04 0.09 0.00 0.03 0.04 0.03 0.00 0.06

becomes more and more complex. On one hand it brings more information, on the other
hand it contains some structure not consistent with the unlabeled data and may confuse
the unsupervised dimensionality reduction. Another capable reason is the limit of the
number of samples in each labeled class. There are only tens of samples in each labeled
class, which cannot fully express their class characteristics. The discriminative infor-
mation should increase exponentially fast in order of the labeled classes number, while
the increase of the labeled samples actually in linear order. So the description ability
becomes less and less, and the result cannot be much improved. As described above,
using limited number of samples in each labeled class, we can only expect significant
improvements for not too many classes of unlabeled data.

Transferred between the Different Data Sets. It is a more interesting and practical
problem to transfer the information from one exiting data set to a newly collected one.
We randomly choose the labeled classes from AT&T and unlabeled classes from Yale
for every integer C from {2,. . . ,10} and K from {2,. . . ,10}. The result is shown in
Table 3. We can get a similar result to transfer Yale into AT&T. Both comparison plots
are shown in Fig. 4.

From these experiments, we can see that though from different data set, the face
images still share some common characteristics. This is helpful knowledge to improve
the learning result. It suggests that we can use existing labeled data set to handle other
unlabeled classes of data, which is a novel and promising learning problem.

Table 3. Results for AT&T transferred to Yale, using ACC measure (mean ± std)

AT&Tto Yale PCA LPP DisKmeans TDA

C=2,K=2 0.90(0.03) 0.68(0.12) 0.94(0.13) 0.99(0.02)
C=2,K=3 0.84(0.14) 0.70(0.12) 0.91(0.12) 0.95(0.10)
C=3,K=2 0.94(0.03) 0.68(0.08) 0.93(0.12) 0.99(0.02)
C=3,K=3 0.83(0.15) 0.71(0.12) 0.89(0.15) 0.95(0.10)
C=2,K=4 0.90(0.11) 0.72(0.13) 0.92(0.10) 0.97(0.06)
C=4,K=2 0.91(0.05) 0.71(0.08) 0.96(0.09) 0.98(0.02)
C=3,K=4 0.88(0.12) 0.73(0.11) 0.91(0.08) 0.95(0.08)
C=4,K=3 0.83(0.16) 0.68(0.11) 0.91(0.12) 0.97(0.07)
C=4,K=4 0.89(0.13) 0.73(0.10) 0.90(0.11) 0.94(0.07)
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Fig. 4. Comparison results of TDA and DisKmeans in ACC and NMI measures, for transfers
between different databases. Each point represents 50 times average for a fixed (C, K) pair.

4.3 Unconstrained Face Recognition

The databases in the last subsection are created under controlled conditions to facili-
tate the study of specific parameters on the face recognition problem, such as position,
pose, lighting etc. Practically there are also many applications in which the practitioner
has little or no control over such parameters. This is provided as a unconstrained face
recognition problem. It is much more difficult than the constrained problems and needs
novel approaches to solve.

In following experiments, we will use a recently published unconstrained data set
and test the performance of our TDA algorithm.

Unconstrained Face Data Set. Labeled Faces in the Wild (LFW): This is a database of
face photographs designed for studying the problem of unconstrained face recognition.
The database contains more than 13,000 images of faces collected from the web. 1680
of the people pictured have two or more distinct photos in the database. More details
can be found in [12]. To make the data set more balanced and comparable with the
constrained data set, we only take the images of persons who have more than 10 and

(a) Original Images (b) Preprocessed Images

Fig. 5. LFW Face Data Examples
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Fig. 6. Comparison results of TDA and DisKmeans for LWF, in ACC and NMI measures. Each
point represents 50 times average for a fixed (C, K) pair.

Table 4. Results for AT&T transferred to LFW, using ACC measure (mean ± std)

AT&T to LWF PCA LPP DisKmeans TDA

C=2,K=2 0.72 (0.14 ) 0.63 (0.09) 0.73 (0.15 ) 0.78 (0.16)
C=3,K=2 0.71 (0.14 ) 0.63 (0.08) 0.71 (0.17 ) 0.81 (0.15)
C=4,K=2 0.72 (0.15) 0.63 ( 0.09) 0.72 (0.17 ) 0.81 (0.15)
C=5,K=2 0.69 (0.12) 0.61(0.09) 0.71(0.16) 0.80(0.16)
C=2,K=3 0.60 (0.12 ) 0.60 (0.11 ) 0.58 (0.09 ) 0.61 (0.11)
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Fig. 7. Comparison result of TDA and DisKmeans in ACC and NMI measures, for AT&T trans-
ferred to LFW. Each point represents 50 times average for a fixed (C, K) pair.

less than 20 photos in LFW, which are 1401 images for 101 persons. Then take out the
head part of the images, resize them to 56 × 46 pixels, and turn into gray images. The
typical images are shown in Fig. 5.

Transferred within LFW Data Set. In this part we use the labeled data and unlabeled
data all in the LFW database. We choose C from {2,. . . ,10} and K from {2,. . . ,10}. The
results are shown in Fig. 6. Though TDA outperforms other methods, in practice, we
cannot always expect that the unconstrained data set is labeled. In this situation, can we
use the constrained ones? If yes, it will make the transfer strategy more powerful.
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Transferred from Conventional Data Set. In this part, we will transfer the informa-
tion from exiting constrained data set to this unconstrained data set. It is a practical
problem of how to deal with new complex data set based on much easier one.

We choose the labeled classes from AT&T and unlabeled classes from LFW. Use the
same setting of (C,K) pairs as in the last experiment. The result is shown in Table 4 and
Fig. 7.

The improvement of TDA over the unsupervised methods shows the advantage of our
TDA method and gives a new approach to tackle a complex problem using the helpful
information from other easier works already solved. It is to solve a difficult problem
with the knowledge of more easier problems, which is similar with how human learns
things.

5 Conclusion and Discussion

In this paper, we bring forward a problem of transferred dimensionality reduction. It
uses the labeled and unlabeled data from different class domains, which is different
from the traditional semi-supervised learning method. And it is more practical for nowa-
days drastic increase of various sorts of unlabeled information through internet. To solve
this problem, we introduce the algorithm, transferred discriminative analysis. It trans-
fers the specific discriminative information from supervised knowledge to the unlabeled
samples in other class domains, and finds more suitable subspace for the lower dimen-
sional embedding. It is fast and robust to run. The experimental results demonstrate its
effectiveness and usefulness.

The TDR problem is a practical problem for nowadays computer techniques. In many
cases, however, we cannot even know the class number of the data. It is a more chal-
lenging issue for our further research, which needs better clustering step of the TDA al-
gorithm. Another interesting issue for the task-specified problems is to introduce more
types of knowledge from many other source domains, which may expose the relation-
ship of different concepts.
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Abstract. Several manifold learning techniques have been developed to
learn, given a data, a single lower dimensional manifold providing a com-
pact representation of the original data. However, for complex data sets
containing multiple manifolds of possibly of different dimensionalities, it
is unlikely that the existing manifold learning approaches can discover
all the interesting lower-dimensional structures. We therefore introduce
a hierarchical manifolds learning framework to discover a variety of the
underlying low dimensional structures. The framework is based on hi-
erarchical mixture latent variable model, in which each submodel is a
latent variable model capturing a single manifold. We propose a novel
multiple manifold approximation strategy used for the initialization of
our hierarchical model. The technique is first verified on artificial data
with mixed 1−, 2− and 3−dimensional structures. It is then used to
automatically detect lower-dimensional structures in disrupted satellite
galaxies.

1 Introduction

In the current machine learning literature, the manifold learning has been pre-
dominantly understood as learning (a single) underlying low-dimensional man-
ifold embedded in a high dimensional data space, where the data points are
assumed to be aligned (up to some noise) along the manifold. Typical repre-
sentatives of such approaches are principal component analysis (PCA)[1], self-
organizing mapping (SOM)[2], locally linear embedding (LLE)[3] and Isomap
[4]. In these methods, intrinsic (manifold) dimension d is either treated as a
prior knowledge given by user or as a parameter to be estimated. Estimating the
intrinsic dimension of a data set (without the structure learning considerations)
is discussed e.g. in [5] [6], [7]. To our best knowledge, there has been no sys-
tematic work on dealing with situations when the data is aligned along multiple
manifolds of various dimensionalities, potentially corrupted by noise.

In this paper we propose a a framework for learning multiple manifolds. With
each manifold we associate a probability density (generative model), so that
the collection of manifolds can be represented by a mixture of their associated
density models. These generative models are formulated as latent variable model
along the lines of [8] or [9]. Our proposed approach consists of several steps. First,
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we filter data points according to the intrinsic dimensionality of the local mani-
fold patch they are likely to belong to (modulo some manifold aligned “noise”).
Then we detect multiple manifolds in each such dimension-filtered set. Finally,
we construct a hierarchical probabilistic model containing density models of the
detected noisy manifolds. We illustrate our framework on learning multiple man-
ifolds with dimension d = 1 and d = 2 embedded in a 3-dimensional space.

The paper is organized as follows: the next section briefly reviews related work
on manifold learning, intrinsic dimension estimation and hierarchical latent vari-
able modeling; Section 3 describes our framework of learning multiple manifolds
based on probability density modeling; Section 4 contains experimental results
on artificial data and a data set produced by realistic galaxy collision models.
Finally, section 5 concludes the paper and discusses the directions of our future
work.

2 Related Work

Some manifold learning algorithms are designed to find a single function y =
g(x,U) representing the mapping between high dimensional observation x and
its low dimensional representation y. Principal component analysis (PCA) im-
plements the transformation function by linear projection Ux. The d orthonor-
mal principal axes vectors ui in the observation (data) space form the matrix
U = (u1,u2, . . . ,ud). In contrast, the Generative Topographic Mapping (GTM)
[9] is a probabilistic reformulation of the self-Organizing Map (SOM) [2]. It rep-
resents the non-linear mapping from a low-dimensional latent space to the high-
dimensional data space as a generalized linear regression model WΦ(y), where
Φ(y) consists of M fixed basis functions {φj(y), j = 1, . . . , M}, W is D × M
weights matrix of outputs of basis functions (D is the dimensionality of the data
space). A probabilistic generative model of PCA called probabilistic principal
component analysis (PPCA) was also proposed in [8]. Other approaches, like
locally linear embedding (LLE) [3], Isomap [4] and Laplacian eigenmaps [10],
learn the embedding without formulating an explicit mapping. LLE and Lapla-
cian eigenmaps compute the low dimensional representation preserving the local
neighborhood structure in data space. Isomap applies multidimensional scaling
(MDS) to estimated geodesic distance between points. To generalise the results
of LLE, Saul and Roweis proposed in [11] a probabilistic model for the joint
distribution p(x,y) over the input and embedding spaces, which also provides a
way to generalise the results from Isomap or Laplacian eigenmaps.

As in the case of manifold learning, most intrinsic dimensionality estimators
assume that all the data points are aligned along a single ‘manifold’. In [6], local
PCA is applied to each node of the optimal topology preserving map (OPMT),
intrinsic dimension is the average over the number of eigenvalues which approx-
imates the intrinsic dimensionality at data clusters. Levina and Bickel [5] also
average the estimated dimension over all observation. A point level dimensional-
ity estimator proposed in [7] is appealing due to the ability to deal with manifolds
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of different dimensionality. The authors first represent data point by a second
order, symmetric, non-negative definite tensor, whose eigenvalues and eigenvec-
tors fully describe the local dimensionality and orientation at each point. A
voting procedure accumulates votes from its neighbors and provides an estimate
of local dimensionality.

Finally, we review some examples of hierarchical model and its structure es-
timation strategy. To reveal the interesting local structures in a complex data
set, a hierarchical visualization algorithm based on a hierarchical mixture of la-
tent variable models is proposed in [12]. The complete data set is visualized at
the top level with clusters and subclusters of data points visualized at deeper
level. Tino and Nabney [13] extended this visualization by replacing the latent
variable model by GTM (generative topographic mapping) so that the non-
linear projection manifolds could be visualized. Structures of the hierarchy in
these visualization systems are built interactively. A non-interactive hierarchy
construction was proposed in [14].

3 Multiple Manifolds Learning Framework

In this section, a multiple manifolds learning framework is proposed to learn
from the dataset of points aligned along different manifolds of different dimen-
sionalities, as shown in figure 1. Although the methods presented in the previous
section could easily learn manifolds from either the first or the second set, no
methods have been developed for learning their mixture. To identify these man-
ifolds, we (1) cluster them by their intrinsic dimensions d; (2) use the data with
same intrinsic dimension to discover and construct the d dimensional surfaces
by the multi-manifolds learning algorithm presented later, then initialize a la-
tent variable model for each manifold, (3) build a hierarchical mixture model
consisting of the generative model for manifolds.

+ + =

Fig. 1. Multiple manifolds example: 700 3D points aligned along a 1D manifold, 2000
3D points from lying on a 2D manifold and 600 3D points generated form a mixture
of 3 Gaussians
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3.1 Intrinsic Dimension Estimation

In the first step, we estimate each point’s intrinsic dimension and cluster the
entire dataset according to the intrinsic dimensions found. The intrinsic dimen-
sion of a point is revealed by the dimensionality of the local manifold patch on
which the point is laying. With the assumption that manifold is locally linear,
we represent the local patch by the covariance matrix of the points on it. In
our implementation, points on xi’s local patch are xi’s K nearest neighbours in
the dataset (denoted by ζ). The set of K nearest neighbors of xi is denoted by
K(xi, ζ). Decomposing the (local) covariance matrix as

∑D
i λiuiuT

i , we obtain
the orthogonal components as eigenvectors ui and their corresponding eigenval-
ues λi (we rescale them, so that

∑D
i λi = 1). The covariance matrix, in the 3D

data example, is rewritten as

3∑

i=1

λiuiuT
i = S1u1uT

1 +
1
2
S2(u1uT

1 + u2uT
2 ) +

1
3
S3(u1uT

1 + u2uT
2 + u3uT

3 ),

where u1uT
1 , 1/2(u1uT

1 +u2uT
2 ) and 1/3(u1uT

1 +u2uT
2 +u3uT

3 ) are the covariance
matrices of the structures having intrinsic dimension d = 1, d = 2 and d = 3
respectively. Therefore the saliences of these structures are computed as S1 =
λ1 − λ2, S2 = 2(λ2 − λ3) and S3 = 3λ3. Note that S1 + S2 + S3 = 1. Intrinsic
dimension of the point is then d = arg maxi Si.

The intrinsic dimension estimator is a variation of the approach in [7], where
in contrast to [7], we operate directly on the tangent spaces of the underlying
manifold.

Figure 2 demonstrates the performance of our intrinsic dimension estima-
tor on the multiple manifolds dataset in figure 1. Therefore the whole set ζ =
{x1,x2, . . . ,xN} is substituted by a partition ζ1∪. . . ζd . . .∪ζD with d indicating
the intrinsic dimension of the subset.

+ +

Fig. 2. Three intrinsic-dimension-filtered subsets of data from Fig. 1

3.2 Multi-manifolds Learning Algorithm

The goal of our multiple manifolds learning algorithm is to represent manifolds
contained in each set ζd(d < D) by latent variable models, respectively. We use
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the notation Md to denote the set of manifolds’ generative models p(x|d, q),
where q is the index for the manifold found with dimension d. In the proposed
work, the latent variable model we used is GTM [9]. In the following, we first
briefly introduce GTM and then demonstrate the local optima problem in GTM’s
training. This motivates us to propose a novel robust manifold learning algorithm
which provides a better initialization aligned along the non-linear manifold.

Generative Model for Noisy Manifolds. Generative topographic mapping
(GTM) represents the non-linear transformation by a generalized linear regres-
sion model fd,q = Wd,qΦd,q(yd,q). The latent variable space is a d-dimensional
(hyper)cube and is endowed with a (prior) probability distribution p(yd,q) - a
set of delta functions. Noise model p(x|yd,q) is a radially-symmetric Gaussian
distribution with mean fd,q(yd,q) and covariance 1/βd,qI, where βd,q > 0. The
generative model p(x|d, q) can be obtained by integrating over the latent vari-
ables

p(x|d, q) =
1

Zd,q

Zd,q
∑

z=1

p(x|yd,q
z ,Wd,q, βd,q)

=
1

Zd,q
(
βd,q

2π
)(D/2) exp{−βd,q

2
||fd,q(yd,q

z ) − x||2}

(1)

where Zd,q denotes the number of the latent variable yd,q, the map fd,q is defined
above and Φd,q(yd,q

k ) is a column vector

Φd,q(yd,q
z ) = [φ1(yd,q

z ), φ2(yd,q
z ), . . . , φd,q

M (yd,q
z )]T (2)

We can in principle determine Wd,q and βd,q by maximizing the log likelihood
function through E-M. But the optimization procedure cannot guarantee the
global optimum in case of a strong non-linear manifold structure, because original
GTM is typically initialized through a linear global PCA.

We demonstrate the performance of GTM on a strong non-linear manifold
data, spiral dataset. This set of 700 points were generated from the following
distribution of two dimensional (x1, x2) points:

x1 = 0.02t sin(t) + 0.3 + εx1 ; x2 = 0.02t cos(t) + 0.3 + εx2 (3)

where t ∼ U(3, 15), εx1 ∼ N (0, 0.01), εx2 ∼ N (0, 0.01), U(a, b) is the uniform
distribution over the interval (a, b) and N (0, δ) is the zero-mean Gaussian dis-
tribution with standard deviation δ.

In figure 3(a), we illustrate the initialization and training result of classi-
cal GTM on the dataset described above. The initial Gaussian centers are ob-
tained by mapping the one dimensional latent variables pre-defined through
global PCA. The training result with this initialization approximates the non-
linear spiral data manifold poorly. In contrast to figure 3(a), figure 3(b) shows
an improved fit by the GTM initialized by the method described below.

Identifying One Manifold. Here we propose a novel strategy to identify the
embedded manifolds and capture their (high) non-linear structure in the learning
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Fig. 3. Learning results from different GTM initializations

procedure. In our proposed framework, we describe the low dimensional latent
manifold by an oriented graph G = (Y, E), where Y represents the graph vertices
and E represents the edges. We label the i-th vertex in Y by a d-dimensional
point yi ∈ Rd. The directed edges from the vertex yi are collected in Ei that
can be also thought of as the set of destination vertices. The coordinates of
these destination vertices (children of the source/parent vertex yi and denoted
by Ch(yi)) can be calculated as

Ch(yi) = yi + l × eo
i (4)

where eo
i is a collection of unit directional vectors of the outgoing edges, and

l represents the length of the edge (fixed to be 1 in our implementation). We
denote the outgoing edges from vertex yi as Ei = {eo

i } for simplicity.
An example of a graph structure for d = 2 is illustrated in figure 4. We

describe our manifold learning approach based on this case. Partitioning all the
vertices according to the number of their parents, we obtain Y = Y0 ∪ Y1 ∪ Y2,
where Y0, Y1, Y2 represent collections of vertices with 0−, 1− and 2− parents,
respectively. The set Y0 contains the unique parentless vertex in the graph. We
refer to this vertex as the origin of the graph and set its coordinates to 0 ∈ Rd.
The edges from the origin correspond to 2d = 4 outgoing edges (orthonormal
vectors) denoted by E0 and specified as {(1, 0), (−1, 0), (0, 1), (0, −1)} in the
implementation.

Knowing Y0 and E0, we could retrieve all the vertices in this graph by eq. (4)
from their parents and whose outgoing edges Ei. And we obtain the outgoing
edges by the following equation:

Ei =

⎧
⎨

⎩

E0 yi ∈ Y0
EPa(i)\ − EI

i yi ∈ Y1
EI

i yi ∈ Y2

(5)
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where EI
i denotes the directions of the incoming edges of vertex yi, Pa(i) stands

for vertex yi’s only parent when yi ∈ Y1, A\B is the operation of removing
items in A if they are also in B and −B returns the opposite directions of B.

A mapped graph Gm = (X , Ex) = F (G) in high dimensional space RD (here
D = 3) is also illustrated in figure 4. The vertices {ym

i } and directed edges {Em
i }

in the high dimensional graph are obtained by mapping the vertices {yi} and
the edges {Ei} respectively. The vertex mapping Fy(yi) is described as follows:

X0 = Fy(Y0)
Ch(ym

i ) = Fy(Ch(yi)) = ym
i + L × Fe(Ei,yi) (6)

where X0 is the origin of the mapped graph Gm. Fe is the edge mapping and
L is the fixed edge length in the mapped graph. The mapped edges in the data
space are then obtained via the mapping

Fe(Ei,yi) =

⎧
⎨

⎩

Mym
i
Em

0 yi ∈ Y0

Mym
i
Em

pa(i)\ − EmI
i yi ∈ Y1

Mym
i
EmI

i yi ∈ Y2

(7)

where Mym
i

is the projection matrix onto the manifold patch around the point
ym

i and given by
Mym

i
= Bym

i
BT

ym
i

, (8)

where Bym
i

denotes the matrix of basis vectors which are the first d eigenvectors
with largest eigenvalues corresponding to principle directions of the neighbor-
hood of the vertex ym

i . In eq. (7), Em
0 denotes the orthonormal outgoing edges

of the mapped origin X0.
We present an algorithm to simultaneously learn the graph G and the associ-

ated mapped graph Gm from a dataset ζd.

– Initialization
Learning of the mapped graph is initialized by specifying X0, L in eq. (6),
and Em

0 in eq. (7). In a dataset without outliers (isolated points not lying
“close” to any apparent manifold), the origin X0 of the mapped graph can
be associated with any randomly chosen point. Since the presence of outliers
cannot be ruled out, we include outlier detection (steps 1, 2) in the algorithm
initialization.

– Recursive learning
With the initialization, we set the origins Y0 and X0 to be the current genera-
tions of graphs G and Gm, denoted by CG and CGm. The learning procedure
forms the graphs together iteratively from the current generation to its next
generation (NG and NGm) until the boundary of the manifold is detected.

• [NG, NGm] = Redun remove(NG, NGm)
This procedure removes duplicate vertices in NG and NGm. The dupli-
cate vertices are generated in the learning procedure, because vertices
may have more than one parent. For example, in the graph G, any ver-
tex ys ∈ Y2 is a child of two parents. It is then learnt as a set of ver-
tices {ys1,ys2} ∈ NG from the current generation. Since these vertices
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Mapping

Fig. 4. The directed graph representing 2-dimensional latent space and its mapped
graph lying on 2 dimensional manifold in the 3 dimensional data space

Initialization

1. For all xi ∈ ζd do:
(a) Count the presence of K(xi, ζ) in dataset ζd, i.e., k =the size of

{K(xi, ζ) ∩ ζd},
(b) If k > α1K (0 < α1 < 1), then X0 = xi, break;

2. EndFor
3. If X0! = null, then

(a) Find K(X0, ζ
d) with parameter K2 (neighborhood size).

(b) Em
0 = {u1, . . . ,ud, −u1, . . . , −ud}, where {u1, . . . ,ud} are the first d

principal directions of K(X0, ζ
d).

(c) L is set to be the average of the distance from the neighbours to X0.
4. EndIf

Learning

1. NG = {}; NGm = {}
2. While CG! = null do:

(a) i. For all yi ∈ CG
A. NG = {NG; Ch(yi)};
B. NGm = {NGm; Fy(Ch(yi)}

ii. EndFor
(b) [NG, NGm] = Redun remove(NG,NGm)
(c) [CG, CGm] = Boud check(NG, NGm)
(d) Y = {Y; CG};
(e) X = {X ; CGm};

3. EndWhile
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have the same coordinates, we replace this set by ys. The corresponding
mapped set {ym

s1,y
m
s2} ∈ NGm should also be replaced by a single vertex

ym
s ∈ Ym even though the mapped vertices may not overlap in the data

space.

Learning ::Redun remove(NG,NGm)

1. For all {ys1,ys2} ∈ NG of the same coordinate
(a) Replace them by ys with the same coordinate.
(b) Collapse the corresponding ym

s1,ym
s2 into its mean with the notation

Fy(ys).
(c) Collect incoming edges of ys and ym

s by their directions in EI
s and

EIm
s

2. EndFor

• [CG, CGm] = Boud check(NG, NGm)
This procedure checks for the manifold boundary. The learning procedure
should stop when the boundary is reached. Close to the boundary, the
local density of points around the current point decreases rapidly. In such
situations the set of nearest neighbors overlaps significantly (determined
by parameter K3) with the set of already visited points on the manifold.

Learning ::Boud check(NG, NGm)

1. CG = {}; CGm = {};
2. For all ym

j ∈ NGm

(a) Find K(ym
j , ζd) and O = the size of {K(ym

j , ζd) ∩ K(CGm, ζd)}.
(b) If O < K3, then

i. CG = {CG, yj};
ii. CGm = {CGm,ym

j }
(c) EndIf

3. EndFor

Initializing GTM with Learnt Graphs. Each detected manifold will be
modeled by a single GTM initialized using the graphs G and Gm. Vertices in
graph G are the low dimensional latent variables and vertices in the mapped
graph Gm are the images the latent variables under the GTM model. Therefore,
we determine Wd,q by minimizing the error

Err =
1
2

Zd,q
∑

z=1

||Wd,qΦ(yd,q
z ) − Fy(yd,q

z )||2. (9)

The parameter βd,q is initialized to be the larger of the average of the d + 1
eigenvalues from PCA applied on each vertex in Ym and the square of half of
the grid spacing of the mapped vertices Ym in the data space.
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As an example, figure 3(b) shows the result of GTM fitting the spiral data after
being initialized with our manifold learning technique. With this initialization,
we can see that a little or no further GTM training is required.

Learn Multiple Manifolds. Since the proposed manifold learning algorithm
explores the dataset starting from a single ”seed” point and then “crawls” on
the manifold, points in the data space which are not connected in the same
manifold will be left unvisited. For datasets having more than one underlying
manifolds, we utilize an iterative procedure (see below) to explore the unvisited
set ζ̃ (entire filtered set at the beginning), learn the manifolds and initialize the
corresponding generative models one by one.

1. ζ̃d = ζd(1 ≤ d < D); q = 0
2. While ζ̃d > K2

(a) Learn G and Gm from ζ̃d; q = q + 1.
(b) Initialize Wd,q , βd,q in p(x|d, q) associating with the G and Gm.
(c) ζ̃d = ζ̃d\K(X , ζ̃d)

3. EndWhile

3.3 Hierarchical Mixture Model

In this section, we formulate a two-level hierarchical model T and the EM algo-
rithm to fit T to the entire data set ζ = {x1,x2, . . . ,xN}.

Model Formulation. We formulate the hierarchical model T by first mixing
the models p(x|, d, q) ∈ Md at the second level hierarchy with πq|d, for each
intrinsic dimensionality d,

∑
q πq|d = 1 (q > 0). If Md = null, then we set q = 0

and π0|d = 0. We the mix these intrinsic dimensionality groups with πd at the
first level hierarchy. Thus we obtain:

p(x|T ) =
D∑

d=1

πd

∑

q∈Md

πq|dp(x|d, q). (10)

The probabilistic models in Md (1 ≤ d < D) are formulated in eq. (1). We
use a Gaussian mixture (11) to model the data points collected in ζD.

p(x|D, 1) =
ZD,1
∑

z=1

p(z)p(x|z; D, 1)

=
ZD,1
∑

z=1

p(z)
1

√
||2πΣz ||

exp{−1
2
(x − μz)T Σ−1

z (x − μz)}

(11)

where ZD,1 is the number of Gaussian components, μz and Σz are the mean and
covariance of the z−th component, and p(z)’s are the mixing coefficients with
∑ZD,1

z=1 p(z) = 1.
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EM Algorithm. The mixing coefficients at each hierarchical level and the
parameters of each submodel can be determined by maximizing the log likelihood
function of the model (10).

L =
N∑

n=1

ln p(xn|T ) (12)

We use binary assignment variables υn,d to represent that the data xn be-
longs to the group of manifolds having dimension d, and υn,q|d to represent the
situation that data xn is generated from q-th manifold in the group with dimen-
sion d. Even if this was known, we still need to decide which latent space center
yd,q

z ∈ Yd,q, z = 1, 2, . . . , Zd,q in the latent variable model p(x|d, q) (1 ≤ d < D)
corresponds to the Gaussian that generated xn, We represent this by indicator
variables υd,q

n,z.
For d = D, MD contains a single unconstrained Gaussian mixture model.

The complete data likelihood function reads

Lc =
N∑

n=1

D∑

d=1

υn,d

∑

q∈Md

υn,q|d
Zd,q
∑

z=1

υd,q
n,z ln{πq|dπdp(xn|d, q)} (13)

Taking the expectation (with respect to the posterior given the data) over all
types of hidden variables, we arrive at the expected complete-data likelihood

< Lc >=
N∑

n=1

D∑

d=1

Rd|n
∑

q∈Md

Rq|d,n

Zd,q
∑

z=1

Rz|q,d,n ln{πdπq|dp(xn, |d, q)} (14)

The M-step of the EM algorithm involves maximizing (14) w.r.t. the param-
eters.

We obtain the following updates:

π̃d =
1
N

N∑

n=1

Rd|n (15)

π̃q|d =
∑N

n=1 Rd|nRq|d,n
∑N

n=1 Rd|n
(16)

p(z) =
∑N

n=1 RD|nRz|D,n
∑N

n=1
∑ZD,1

z=1 Rd|nRz|d,n

(17)

As for the manifold models, using eq. (1) and (2), we have

N∑

n=1

Rnd

Zd,q
∑

z=1

Rz|d,qn(Wd,qΦ(yd,q
z ) − xn)ΦT (yd,q

z ) = 0 (18)

The responsibilities Rd|n and Rz|n,d,q are calculated with the current (old) weight
and inverse variance parameters of the probabilistic models p(x|d, q).
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Written in matrix notation, we have to solve

(Φd,q)T Bd,q(Φd,q)T (Wd,q)T = (Φd,q)T Rd,qT (19)

for Wd,q.
The above system of linear equations involves the following matrices:

– Φ is a Zd,q × Md,q matrix with elements (Φd,q)ij = φj(yd,q
z ).

– T is a N × D matrix storing the data points x1,x2, . . . ,xN as rows.
– Rd,q is a Zd,q × N matrix containing, for each latent space center yd,q

z , and
each data point xn, scaled responsibilities (Rd,q)zn = Rd|nRq|n,dRz|q,d,n

– Bd,q is a Zd,q × Zd,q diagonal matrix with diagonal elements corresponding
to responsibilities of latent space centers for the whole data sample ζ, where
(B)ii =

∑N
n=1 Rd|nRq|d,nRz|q,d,n.

The GTM mapping fd,q can be regularized by adding a regularization term
to the likelihood (1). Inclusion of the regularizer modifies eq.(19) to

[(Φd,q)T Bd,q(Φd,q)T +
αd,q

βd,q
I](Wd,q)T = (Φd,q)T Rd,qT (20)

where I is the Zd,q × Zd,q identity matrix.
Finally, the re-estimation formulation

1
βd,q

=
∑N

n=1 Rd|nRq|d,n

∑Zd,q

z=1 Rz|n,d,q||Wd,qφ(yd,q
z ) − xn||2

D
∑N

n=1 Rd|nRq|d,n

(21)

where Wd,q is the “new” weight matrix computed by solving (19) in the last
step.

We also obtain

μz =
∑N

n=1 RD|nRz|D,nxn
∑D

n=1 RD|n
(22)

ΣD
z =

∑N
n=1 RD|nRz|D,n(xn − μz)(xn − μz)T

∑N
n=1 RD|n

(23)

In the E-step of the EM algorithm, we estimate the latent space responsi-
bilities Rz|n,d,q in submodels for manifolds and component responsibilities Rz|D
in Gaussian mixture model. Model responsibilities in each group Rq|n,d and the
group responsibilities Rd|n(1 ≤ d ≤ D) are specified as well.
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Rz|d,q,n =
p(xn|yz , d, q)

∑Zd,q

z′=1 p(xn|y′
z , d, q)

(24)

Rz|D,n =
p(z)p(xn|z, D)

∑ZD

z′=1 p(z′)p(xn|z, d, q)
(25)

Rq|d,n =
πq|dp(xn|d, q)

∑
q′∈Md

πq′|dp(xn|d, q′)
(26)

Rd|n =
πd

∑
q∈Md

πq|dp(x|d, q)
∑D

d′=1 πd′
∑

q′∈Md′ πq′|d′p(xn|d′, q′)
(27)

Parameter Initialization. There are two groups of parameters to be initialized
before running EM algorithm to fit T to the data.

An unconstrained GMM is used to model the set ζD. The corresponding
parameters including Gaussian centers and covariance can be initialized e.g. by
a simple K-means algorithm. Parameters in latent variable model p(x|d, q), where
d < D are initialized using our multi manifold learning algorithm described in
the previous section.

4 Experiments

Multi-manifolds with Varying Dimensions. We first present the multiple
manifolds learning results on the dataset illustrated in figure 1. Figure 2 shows
the filtered subsets of data points with respect to their intrinsic dimensionality.
Note that because the manifolds cross, there is a gap splitting the single 1d man-
ifold into two parts. The points in the gap were taken to the set of intrinsically
2-dimensional points. Given a strong prior knowledge concerning connectiveness
of the data manifolds, we could deal with such situations, however in the ab-
sence of such information we would prefer to have several isolated components
dictated by the data.

We use our multi manifold initialization alongside with EM algorithm to fit
the full hierarchical model to the dataset. The results shown in figure 5. The
manifolds of varying dimensionality and shape were correctly identified.

Identifying Streams and Shells in Disrupted Galaxies. Recent exciting
discoveries of low-dimensional structures such as shells and streams of stars in
the vicinity of large galaxies led the astronomers to investigate the possibility
that such structures are in fact remnants of disrupted smaller satellite galaxies.
One line of investigation models the disruption process using realistic particle
models of both the large galaxy (e.g. M31) and the disrupted one (e.g. M32)
[15,16]. Realistic set of initial conditions are applied and the results of particle
simulations are compared with the observed structures for each initial condition
setting. This is of most importance for understanding the disruption process and
prediction of the future continuation of the satellite disruption. We will show that
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Fig. 5. Manifolds learnt from the artificial dataset dataset in figure 1. We use param-
eters K = 20, α1 = 0.8, K2 = 20, K3 = 18.

(a) (b)

Fig. 6. Identified 2-dimensional manifolds in disrupted satellite galaxy at an early (a)
and later (b) stages of disruption by M31

our multi manifold learning methodology can be used for automatic detection of
low dimensional streams and shells in such simulations, thus enabling automated
inferences in large scale simulations.

Using one realistic setting of the particle model [15,16] for satellite galaxy dis-
ruption by M31, we obtained several stages of the disrupted satellite, modeled
by approximately 30,000 particles (stars). In each stage we applied the multi
manifold learning. In figure 6 we show (along with the stars (particles)) the
detected two-dimensional manifold structures (”skeletons of the mixture compo-
nents) in an early and a later stage of the disruption process. 1- and 3-dimensional
structures are not shown. In the early stage a single stream was automatically
detected, whereas in the later stage a stream and two shells were correctly identi-
fied. Two-dimensional structures are of most importance in such investigations,
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but our system can be used for investigation of structures across a variety of
dimensions. It can also be used to build a hierarchical mixture model for the full
system (large galaxy + a satellite) for the purposes of principled comparison of
the simulated system with the real observations (in the projected plane). The is
a matter for our future work.

5 Conclusions and Discussion

We presented a novel hierarchical model based framework to learn multiple mani-
folds of possibly different intrinsic dimensionalities. We first filter the data points
with respect to the intrinsic dimensionality of the manifold patches they lie on.
Then our new multi manifold learning algorithm is applied to each such filtered
dataset of dimensionality d to detect d-dimensional manifolds along which the
data are aligned. This is later used to initialize generative latent variable mod-
els representing noisy manifolds underlying the data set. The generative models
are combine in a hierarchical mixture representing the full data density. The
proposed approach is significantly different from the current manifold learning
approaches which typically assume that the whole data set is sampled from a
single low dimensional manifold, which may not always be realistic.

As with other manifold learning approaches, parameter selection (e.g. neigh-
borhood size) can be an issue. Model selection approaches can be used to select
the appropriate values for a given application, but obviously much more work
is required in this direction. In this paper we present a proof of concept and
show that our multi manifold learning framework can be potentially applied in
interesting application domains, such as astronomy.

Acknowledgments. We would like to thank Somak Raychaudhury and Arif
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References

1. Moore, B.: Principal component analysis in linear systems: Controllability, ob-
servability, and model reduction. IEEE Transactions on Automatic Control, 17–32
(February 1981)

2. Kohonen, T. (ed.): Self-Organization and Associative Memory. Springer, Heidel-
berg (1997)

3. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embed-
ding. Science 290, 2323–2326 (2000)

4. Tenenbaum, J.B., Silva, V.d., Langford, J.C.: A Global Geometric Framework for
Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2323 (2000)

5. Levina, E., Bickel, P.: Maximum likelihood estimation of intrinsic dimension. In:
Advances in NIPS (2005)

6. Bruske, J., Sommer, G.: Intrinsic dimensionality esitmation with optimally topol-
ogy preserving maps. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 572–575 (May 1998)



Multiple Manifolds Learning Framework 581

7. Mordohai, P., Medioni, G.: Unsupervised dimensionality estimation and manifold
learning in high-dimensional spaces by tensor voting. In: International Joint Con-
ference on Artifcial Intelligence, pp. 798–803 (2005)

8. Tipping, M., Bishop, C.: Probabilistic principal component analysis. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) (3), 611–622 (1999)

9. Bishop, C.M., Svensen, M., Williams, C.K.I.: GTM: The generative topographic
mapping. Neural Computation 10(1), 215–234 (1998)

10. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. In: Neural Computation, pp. 1373–1396 (June 2003)

11. Saul, L.K., Roweis, S.T.: Think globally, fit locally: Unsupervised learning of low
dimensional manifolds. Journal of machine learning research, 119–155 (2003)

12. Bishop, C.M., Tipping, M.E.: A hierarchical latent variable model for data visu-
alization. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3),
281–293 (1998)

13. Tino, P., Nabney, I.: Hierarchical GTM: constructing localized non-linear projec-
tion manifolds in a principled way. IEEE Transactions on Pattern Analysis and
Machine Intelligence (in print, 2001)

14. Williams, C.: A MCMC approach to hierarchical mixture modelling. In: Advances
in Neural Information Processing Systems 12, pp. 680–686. MIT Press, Cambridge
(2000)

15. Fardal, M.A., Babul, A., Geehan, J.J., Guhathakurta, P.: Investigating the an-
dromeda stream - ii. orbital fits and properties of the progenitor. Monthly Notices
of the Royal Astronomical Society 366, 1012–1028 (2006)

16. Fardal, M., Guhathakurta, P., Babul, A., McConnachie, A.W.: Investigating the
andromeda stream - iii. a young shell system in m31. Monthly Notices of the Royal
Astronomical Society 380, 15–32 (2007)



Estimating Sales Opportunity Using
Similarity-Based Methods

Sholom M. Weiss1 and Nitin Indurkhya2

1 IBM Research, Yorktown Heights, NY 10598, USA
2 School of Comp Sci & Engg, UNSW, Sydney, NSW 2052, Australia

Abstract. We describe an application of predicting sales opportunity
using similarity-based methods. Sales representatives interface with cus-
tomers based on their potential for product sales. Estimates of this
potential are made under optimistic conditions and referred to as the
opportunity: How much can be sold if a sale were to be made? Since
this can never be verified exactly, the direct use of predictive models is
difficult. In building systems for estimating sales opportunity, the key
issues are: (a) predictions for targets that cannot be verified, (b) ex-
planatory capabilities (c) capability to incorporate external knowledge
(d) parallel computation of multiple targets and other efficiencies (e)
capability to calibrate optimism in the predictions. (f) method stabil-
ity and ease of maintenance for incorporating new examples. Empirical
experiments demonstrate excellent predictive accuracy while also meet-
ing these objectives. The methods have been embedded in a widely-used
similarity-based system for IBM’s worldwide sales force.

1 Introduction

Consider the scenario of sales representatives marketing products, often in per-
son, to companies. They prepare for a sales pitch and invest much time and effort.
Actual success depends on many factors including the skills of sales represen-
tatives, product quality, competition and pricing. The amount of effort can be
adjusted by the representatives and their management. For expensive products
and services, these efforts are often made based on the magnitude of poten-
tial sales under optimistic scenarios, as opposed to the likelihood of an actual
sale. Even though a sale is not likely, if the sales opportunity is large enough, a
sales representative will do a pitch on the outside chance that the customer may
switch from a competitor. In many organizations where sales representatives are
involved, estimates of opportunity are taking on an increasing importance as a
critical measure relative to sales effort. It gives the organization a rationale for
dedicating increased resources to close a sale.

Our objective is to build a system that computes opportunity for sales to
a customer. This system will compute sales opportunity both for current cus-
tomers and for new customers. For current customers, opportunity will suggest
possibilities for expanded sales. New customers make up a much larger uni-
verse. For these customers, opportunity will suggest direction in a large space of
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possibilities. Representatives cannot call every customer. The opportunity com-
putations can suggest those customers where a potential sale will compensate
for the required effort.

In building systems for estimating sales opportunity, the key issues are: (a)
predictions for targets that cannot be verified, (b) explanatory capabilities (c)
capability to incorporate external knowledge (d) parallel computation of mul-
tiple targets and other efficiencies (e) capability to calibrate optimism in the
predictions. (f) method stability and ease of maintenance for incorporating new
examples. We show how these issues can be successfully addressed by using
similarity-based methods to find current customers who are similar to new cus-
tomers. Our approach results in excellent predictive accuracy in our application
while also meeting all the operational requirements.

2 Sales Opportunity

Our interest is in sales opportunity, which is a more optimistic target than ex-
pected sales. One view of opportunity is the expected magnitude of sales when
a sale is made. This relationships is expressed in equation 1, where the distri-
bution of sales to a company is conditional on a company’s features like its size
and industry.

opportunity = expected(sales|sales > 0) (1)

Sales opportunity is inherently an optimistic estimate, and optimism can be
adjusted by modifying equation 1. Instead of an expected value over the distri-
bution of possible sales to a company, which is an averaged value, a percentile
could be used, for example the 75-th percentile. Instead of any positive sale, a
constant threshold could be specified to reflect minimum satisfactory sales goals.

The real-world incarnation of this problem is expressed as a sample of com-
pany data over a designated feature set. For current customers, the actual sales
are known. In our application, information is available for most companies of
moderate or large size. For these companies, we know the number of employees,
their revenue, and their industry code. We can assemble labeled data about com-
panies, matching company features to actual product sales. To estimate sales to
a company, whether expected or potential, a nearest-neighbor method will find
similar companies. The sales to these similar companies can be used as a proxy
for a sample from the distribution of possible sales to that company. Once similar
companies can be identified, estimates for opportunity can readily be computed
from recorded sales to these similar companies using equation 1 or an optimistic
variation substituting percentiles or thresholds.

3 Similarity-Based Methods

Similarity-based methods, nearest neighbors, can offer highly competitive results
with other predictive methods. They have strong theoretical bounds on predic-
tive performance. In practice, the similarity or distance function may need exten-
sive tuning to achieve good results. Prediction methods are typically compared
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and evaluated by measuring their accuracy on sample data. For structured data
and very large numbers of examples, alternative prediction methods have of-
ten been preferred because they can be applied by invoking a compact function
without online access to the original examples. With more powerful comput-
ing, similarity-based prediction methods become more enticing for embedding in
web-based systems. The similarity-based methods are relatively slow – each new
case must be compared to the stored cases. Some new computational approaches
can substantially reduce computing time[1]. Alternatively, for some systems, the
predictions may be computed and stored prior to invoking the system, thereby
reducing the time observed by a system user.

In modern similarity-based systems, for example search or information re-
trieval systems, users have access to a huge set of examples. These are specialized
operating environments, where examples are sparse within the feature space, for
example, a word representation within a document, where most words do not
occur in a specific document or the search string. For predictive purposes, not all
data may be needed, and methods for simplification have evolved from condensed
nearest neighbors [2] to conditional random sampling [3]. Still, from a systems
perspective, it is important to have access to full data. While this is critical for
document retrieval, it is also essential for structured data management systems
containing customer information that must be accessible in full detail.

Many commercial applications of similarity methods fall into the category of
collaborative filtering methods and recommender systems[4], [5]. From a method-
ological perspective, our application is closely related to those systems, while
maintaining strong explanatory capabilities[6]. There are numerous twists to
our application that distinguish it from recommender systems. Here, products
are not recommended directly. Rather, an estimate of opportunity for product
sales is provided that can range from zero to millions of euros. The sales rep-
resentative is an intermediary, not a purchaser, who decides whether to pursue
an opportunity based on many additional factors including personal knowledge
of the customer or industry. Unlike most collaborative filtering applications, like
those based on product ratings, the input features are nonuniform and are pre-
sented on many different scales from binary to real-valued. Because our target
is opportunity, rather than an outright purchase, the exact value of the tar-
get variable, i.e. the opportunity, is unknown for all members of the customer
database.

4 Data Description and Data Transformation

In our application, customers are companies. We obtained data on American
and Canadian companies from Dun and Bradstreet. This includes such fields
as number of employees, revenue, and an industry code. Extracting data from
a proprietary internal database, we consider the sales of 5 IBM brands and
the sum of sales for the five brands. These brands constitute most of IBM’s
software sales. Table 1 summarizes the dimensions of the data we used in all
experiments.
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Table 1. Data Summary

total inputs 16
numericals 14

codes 2
number of code values 3 and 26

outputs 6
total records 650,110

non-customers 612,677
customers 37,433

The feature space is relatively modest, but the number of examples is large.
This can be a good environment for a nearest neighbors method because of the
absence of large numbers of noisy features that can degrade predictive perfor-
mance [7] [8]. One of the main challenges of designing a similarity function is
to compute similarity on a normalized scale when the features are all measured
in different units, for example revenue versus employee counts. One general ap-
proach is to weight the features by importance. Both linear [9] and nonlinear
approaches have been described [10]. Examples of classification applications us-
ing weighted similarity functions are [11] and [12]. A generalized and automated
scheme for weighting features is highly advantageous, but the best results may
only be achievable by experimentation and application-specific tuning.

We employed a simple, yet highly effective transformation. All features were
transformed to binary variables as follows: The codes are mapped into n binary
variables, where n is the number of distinct codes. All continuous numerical
variables are binned into 4 intervals as determined by k-means clustering. The
net result is the transformation of the data from 16 features into 85 binary input
features (14*4+3+26). Now all input features are on the same binary scale. The
quality of the similarity function remains a question, but the similarity function
is completely transparent. Just rank the neighbors by counting the number of
matches between the new vector and the stored vectors.

To test hypotheses, we randomly divide the customer data into 70% train
and 30% test. In our results, we report on the test data. In our experiments,
we stratified the data into 5 groups based on the total sales to make sure that
the smaller number of very large sales were represented in both train and test
samples. The customer data will have labels in the form of actual sales. The
non-customers have zero sales across all products, and estimates will be inferred
by comparing to the smaller customer population.

5 System Evaluation

5.1 Evaluating Predictive Performance

While our major interest is examining factors other than predictive accuracy,
we must still consider whether the similarity-based method is competitive with
alternatives. We know that our primary target for estimation, the sales opportu-
nity, is not directly known. It is highly related to expected or actual sales which
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are known for current customers. For a given company’s set of similar companies,
the computation of expected sales versus sales opportunity differs only in the
thresholds or designated percentiles for equation 1. We will use these targets in a
sample of companies and their actual sales. Our immediate goal is to see whether
a nearest-neighbors method will produce predictions that are close in accuracy
to results produced by prominent alternative methods. This goal should not re-
quire that nearest neighbors produce the best results for opportunity estimates.
But, it does require that the nearest-neighbor approach be competitive to other
methods when using the same features.

We compared results for several regression methods using the previously de-
scribed train and test data sets. Figure 1 summarizes the results on the test
examples. The results for prediction were measured by rmse, a measure of dif-
ference between actual and predicted sales. In the graph, the RMSE values are
plotted relative to the baseline RMSE of ten nearest neighbors, 10-NN. For k-NN
methods, the average of the k nearest neighbors is taken as the prediction.

The methods that we compared to nearest neighbors, k-nn, were linear least
squares, a regression tree, and bagged trees. We also include the results of simply
using the mean value of product sales computed from training cases. The linear
method was run with all features. The trees were checked at various sizes and
k-nn was tested with various values of k. Results for k-nn were slightly better
with feature selection (FS), when a few features were deleted by greedy backward
elimination on the training data.

Clearly, the k-nn method is competitive and effective. The linear method, which
is highly popular in industrial circles for predicting sales, was relatively weak.
Bagging and k-nn were competitive. Nearest neighbor, and other similarity-based
methods, have a rich history of effectiveness in many applications. These results
support its use when an appropriate similarity measure can be developed for the
application.

5.2 Describing and Measuring Optimism

One view of opportunity is the expected sale magnitude given a sale occurs.
This was expressed in Equation 1. A company is trying to gauge potential for
sales prior to committing additional resources. The hope is that these additional
resources, whether additional preparation or a stronger sales team may improve
the yield from past experiences, or they may entice a new customer with a better
deal.

The degrees of overall optimism can be specified in several ways. In Equation
1, the threshold can be increased to some non-zero threshold, m, as in Equation 2.

opportunity = Average(sale|sale > m) (2)

Increasing the threshold will evaluate customers as if a bigger sale will be
closed. It treats the sales below the threshold as zero. Generally, this increases
overall opportunity estimates unless raised to the point of non-occurrence of
sales.
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Fig. 1. Comparison of Methods for Sales Prediction

An alternative and complementary approach to varying optimism is to replace
the ”average” with another measure. The median, i.e. the 50th percentile value,
is an obvious choice, but the concept can be generalized to any percentile. We
have computed values at the 75th and 50th percentile for this application. The
average has the highest optimism among these measures. That’s because a few
extremely large customers, like banks and insurance companies, have much larger
purchases than most customers. These very large customers are typically at the
tail of the sales distribution. Figure 2 shows the relative ratios to expected sales
(i.e. no minimum threshold) for the average-value as a measure of optimism
of this application. These are shown for exceeding several threshold values, m,
of Equation 2 for current customers only. The average is contrasted with the
75th percentile and the 50th percentile in Figure 3 where the optimism at two
thresholds is shown. As expected, the average has the highest value of the three.
The maximum value could also be used as a measure of opportunity. It does not
change with threshold, so the optimism measure would be unchanged over the
thresholds. In our application, the optimism as measured by the maximum value
was 37.39 – substantially higher than any of the other measures.

The degree of optimism is best decided by knowledge and goals set by the
sales executives. Alternatively, the system designers can examine the effects of
various measures on global optimism, and then make decisions accordingly. We
want optimism, but we do not want to set the bar so high that it is unrealistic.
How can we measure the global effect of optimism? Equation 3 describes a simple
ratio for yearly sales of a product. The overall optimism is the ratio of total
opportunity to total current sales.

optimism = opportunity/currentSales (3)

All these computations are trivial for a similarity-based method. The k-most
similar companies are identified and grouped. This can be a relatively small
group, in our case, as small as 10 or 20 similar companies. Once grouped, almost
no additional effort is needed to estimate opportunity by any of the measures
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Fig. 2. Average as a Measure of Optimism

Fig. 3. Comparison of Optimism Measures

of optimism. Because our notion of opportunity is based on similar companies,
we add a floor to the estimate as in Equation 4. Opportunity for selling to a
company can be no less than current sales to that company.

finalOpportunity = Max(initialOpportunity, currentSales) (4)
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5.3 Explanatory Capabilities

The ultimate consumers of our opportunity estimates are sales representatives.
They will make decisions on sales efforts by examining these numbers in the
context of current sales results. An analogy can be made with a search engine
and its rankings. There, the rankings are a means to presenting answers to a user.
Multiple answers are listed, all of them similar to the query. The objective is to
rank based on similarity criteria, but many answers are presented to the user.
The user will examine results and make decisions about the usefulness of the
retrieved documents. The quality of the answer depends both on the similarity
rankings and the actual answers.

We could look narrowly at our sales opportunity task and conclude that the
estimates are the sole conveyor of meaning in this application. Yet that would
ignore an important component of the estimates. Just like the answers from
the search engine, the actual answers, the most similar companies, also have
meaning. They explain how the estimate was derived, but just as important,
can aid the sales representative in moving forward. For example, when a sale is
concluded in a particular industry, it is natural to look for similar companies to
make a similar sales pitch. Or even if a sale was not closed and was won by a
competitor, it could be expedient to examine similar possibilities.

Because company records are structured with precise values, additional un-
structured information may be missing. Once the estimates are derived and
similar companies are found, all supporting materials could be examined to for-
mulate a sales plan. The list of similar companies could be considered a form of
triage, where these companies are examined carefully to look for additional clues,
possibly not recorded in the structured record, that could lead to success in the
sales effort. The key concept is that the task need not be just the estimation of
sales opportunity. Rather, the component records of companies used to estimate
sales opportunity can be most valuable in supporting both the estimate and the
planning for future actions.

Using similarity measures, our objectives can be restated as illustrated in
Figure 4. Estimating sales opportunity is still a principal goal. To this, we add the
presentation of the constituent companies used to formulate the estimate. These
can be ordered by similarity as would be done for a search engine. Depending on
user queries, full information about these companies and their prior purchases
could be made available.

– estimate sales opportunity
– order similar companies
– present k most similar companies with complete sales histories

Fig. 4. Objectives for Similarity Measures
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5.4 Compatibility with Knowledge

The general approach is to build an automated system. The system will process
empirical data about companies and estimate their sales opportunities. After
assembling a feature set based on availability and knowledge, we might expect
to make this a purely empirical application of similarity-based methods. Yet, we
have strong incentives to incorporate knowledge into the system. Two consider-
ations drive our preference for additional knowledge:

1. Sales opportunity is unknown, making our data unlabeled.
2. Presenting a list of similar companies to a user implies consistency with

intuitive knowledge of the field.

Enhancing the system with knowledge can constrain the answers to be less
variable and more compatible with human expectations, possibly with a reduced
accuracy when tested on data sampled from a specific time period. Still, mating
knowledge to an empirically-driven system can be satisfying for this application
because the consumers are humans who must take action. They will not blindly
accept numbers that are incompatible with their experience and might defeat
their sales approach.

What kind of knowledge is of interest, and how well does it fit with a similarity-
based method? With hundreds of thousands of examples, a case-based
reasoning[13] approach to specifying the examples is ill-suited. Our main ve-
hicle for incorporating knowledge is the similarity function. A company may be
represented as a vector of data, but the components of that vector also have
meaning. When we say that two companies are similar, it must also meet our
intuitive notion of similarity. For example, we may not feel that two companies
are similar when they engage in completely different industries. Adding condi-
tions that enhance the intuitive notion of similarity will meet the objective of
effective explanations to the sales representatives. They will review the matched
companies, and various constraints on the matches will increase satisfaction or
at least remove some answers that might seem inadmissible. Two simple notions
are very sensible, yet readily fit within a function for computing similarity of
two companies. If two companies are similar, then

1. they are in the same industry
2. they are approximately the same size.

The industry code for a company is readily obtainable from Dun and Brad-
street or other sources at different resolutions. We used a single letter code with
25 possibilities. For size, both the number of employees and company revenue
can be obtained. A window on size can be placed on the compatibility of two
companies. We use a heuristic that a company Y must have sales (or employees)
no more than twice that of company X for it to be considered a match.

Figure 5 illustrates the difference in predictive performance for predicting ac-
tual sales with these heuristics. We show the performance of four simple heuris-
tics and compare with the baseline where no match heuristics are used. For sales
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Fig. 5. Impact of Match Heuristics

and size matching, we clustered values into four bins (determined by training
data) and declared a match if values fell in the same bin. The performance drops
slightly on the test data, mostly from the required industry match. However, the
matches themselves would be more intuitive and more acceptable to the sales
representatives who must take the information and call on customers, while often
citing purchases by their competitors.

The records of companies are not extracted from a single data source. Rather,
the information is found in different sources and merged. In our application, we
consider the sales of five product lines. For each company the proprietary sales
numbers for these five products are merged with other information about these
companies, such as sales revenue and number of employees. Although companies
can be stored with unique identifiers, for example, ”duns numbers,” errors are
unavoidable, both in the record matching process for assembling data or in the
data sources. Knowledge of the relationships among variables leads to other
heuristic rules for adjusting the numbers used for estimation. For example, given
a company has revenue X, we can estimate that no more than 10% of X will be
spent on information technology purchases. Although there may be exceptions
to this rule, generally it is effective because a higher estimate will not serve as a
good template for similar expectations.

5.5 Ease of Maintenance

Because a similarity-based method does not directly model labels and does not
build any intermediate structure (like a tree), system maintenance is greatly
simplified. No need to learn a distinct model for each target. This reduces the
problem to computing similarity from the initial set of input features. In our
application, the set of features will remain stable. It’s very unlikely or at least
infrequent that new features will be found that are useful and can be measured
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for tens of thousands of examples. New companies may be added to the database
and the measurements for the stored companies, both input features and output
product sales, will regularly be updated. In our application, these numbers are
updated every quarter. The similarity-based method is remarkably tranquil in
this environment. Compare the expectations for a decision tree versus similarity
methods. The tree would likely be re-learned for every target and a new tree
induced for each. With similarity methods, one possible course of action is to
do nothing, since the estimates are computed dynamically based on a query. If
the estimates are needed in a batch for all companies, then very little is done
other than recomputing the k most similar companies for each company and the
estimates from these neighbors. The binarized distance function that we have
specified leaves little to vary. Possibly the size of k could be rechecked as well
as the number of discrete intervals for a real-valued variable. In our application,
these would be checked every quarter. How stable is a nearest neighbors method?
Table 2 contrasts the k-nearest neighbors with the decision tree for the target
variable of total sales. All results are relative to those for 10-nn. For each of the
n companies in the database, we measure the standard error within the partition
for the tree and form the weighted average over all companies as in Equation
5 where StdDevi for selected tree = standard deviation over all members of
partition i, and StdDevi for k-nn = standard deviation across all members of
the k neighbors of i.

stability =
n∑

i=1

StdDevi (5)

Table 2. Stability of tree and k-NN

Method Relative Average Mean Relative Stability
Tree 1.5512 9.0718

10-NN 1.0 1.0
20-NN 0.8794 0.7855
50-NN 0.7142 0.5531

Here we see that the nearest neighbors estimates are far more stable than those
for the tree. While the accuracy of results are important, the stability that the
similarity-based method is also desirable, since it would need less maintenance
and less frequent retraining.

5.6 Computational Efficiency

Similarity methods can be quite slow. Given a training set, the simplest varia-
tion compares each new example to the full training set, an O(n) process, where
n is the size of the training set. To get estimates for all stored companies, the
process is O(n2). Fortunately, when embedded within a system for computing
sales opportunity, various factors ameliorate this disadvantage. The fastest al-
gorithms for computing nearest neighbors offer a large improvement over direct
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comparison. While the high computational cost for finding similar companies is
a criticism of nearest neighbors, several critical characteristics of our system, dis-
cussed in the previous sections, lessen its importance. Some of these factors may
even make nearest neighbors computationally advantageous when compared to
other methods.

The results of similarity computations are reusable. For any given company,
we need to know its estimated sales opportunity, which is computed from similar
companies. However, we need not recompute these number dynamically every
time a company is referenced. The possible list of queries is limited to single
companies, so we know every possible query, and the estimates can be pre-
computed and stored. When a user queries a company, the estimates can be
directly retrieved. Thus, the more intensive computation is separated from its
repeated use, and values can be computed in batch mode with no ramifications
for user delays.

The central comparison is ”Compare company X to current customers.” We
want to estimate opportunity for both current customers and potential new cus-
tomers. The set of potential new customers, sometimes referred to as whitespace,
is generally much larger than current customers. In our case, 20 times larger.
Given j customers and k new customers, all estimates are made by comparing to
the j customers. If sequential comparisons are made, the number of comparisons
is j ∗ (j + k). The number of comparisons is substantially less than suggested by
the full number of companies in the sample.

A major advantage of the similarity methods over many alternative learning
methods is its inherent parallelism in computing estimates for multiple targets.
Most learning methods rely on training to a specific target, the label; a separate
solution is induced for each target. For example, a separate tree would be induced
for each label. In our system, 5 products would require 5 different trees and
possibly another for total sales. The estimates computed by similarity can be
described by following simple two-step algorithm:

1. Find k most similar companies to company X.
2. From the k companies of step 1, compute all estimates.

For example, if expected sales were to be computed, then the estimates are
the average sales for each product to the k companies . To compute the oppor-
tunity, an estimate for opportunity in Equation 1 is the average of the positive
values for each product. Because of the little work in computing the estimates
from the product values of the k companies, the number of products is almost
inconsequential to the computations. One thousand products will take just a
little more time than one product. In all our results, the same value of k was
used over all companies and products.

In our application, we have a mixture of categorical and real-valued features.
A similarity or distance function can benefit from re-scaling the variables. Ear-
lier, we described our data transformations, where the original features are all
mapped into binary variables. This is straightforward for the categorical vari-
ables, and it requires some slight additional computations for the real-valued
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variables. The transformed data had 85 binary features from which similarity is
computed.

This type of binary representation has potential for very efficient computation.
Consider the simple similarity function that we actually used:

similarity = Count(matchingOnes(X, Y )) (6)

We measure similarity as the count of matching ones between the company X
and a candidate neighbor, company Y. Because the features are binary-valued,
the counts can be computed like words in text for information retrieval (IR).
There, for each feature, i.e. a word, token or phrase, an inverted list of records
with a positive feature occurrence is computed. When a new search pattern of
words is entered, only the inverse lists for these words are accessed to compute
similarity. In our application, the search space will not be as sparse, but effi-
ciencies can still be great. When computing the similar companies for company
X, only the positive features in the vector for X will be considered. For each of
the positive features, the companies appearing in the inverted list will have their
matching count incremented by one. This simple algorithm is typical for IR and
can be readily adapted to our similarity computations as describe below, where
inverse(i,j) is the j-th company on the inverse list of feature i.

1. Initialize counts all training cases to zero.
2. For each positive feature i in company X

For each j such that inverse(i,j) exists, increment count(j).
3. Select top k counts.

One additional computational efficiency is worth noting. A suitable value
for k must be determined. This is determined both empirically and based on
knowledge of the domain. Our data support a small value of k, on the order
on 10 or 20. All our results are for 10. With such a small value of k, the 10
largest values can be found by dynamically keeping a simple linear table of the
10 current best companies and adjusting when a new insertion is made.

6 Discussion

We have described an important application, where opportunities for sales to
companies are estimated. The end-user of these estimates is most likely a sales
representative who will call on customers. These sales representatives need an
estimate that captures the potential for sales under optimistic conditions. The
optimism could be a variation of the concept of ”how much product could be
sold if a sale is made?”

In a situation with human involvement, such as this one with sales repre-
sentatives, merchants may move away from ”expected” value to a ”potential”
perspective. This allows for optimism and separates the past from the future.
A more concerted effort may result in improved sales. However, this effort will
only be expended when justified by potential sales.
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A similarity-based method is a good fit to this application. All necessary
company data is kept online, so no additional resources are devoted to this rep-
resentation. The method itself has a very strong intuitive appeal for promoting
sales initiatives. The process of estimation is not arcane. Home appraisals have
long been made by comparing a new home on the market to similar homes that
have recently sold. Here, we compare potential product sales to a customer with
those sales made to similar customers.

The target of the estimate is sales opportunity which is an unknown quan-
tity. We offered a formulation of the problem that circumvents the need for
labeled data and bootstraps from the available prior sales records. We offered
several ways to quantify and adjust the optimism in these estimates. Because the
training data are unlabeled (technically, the opportunity is not known), but still
related to the known and labeled historical sales data, there is room for alter-
natives to our approach to estimating and predicting opportunity. One related
approach for regression is semi-supervised learning using nearest neighbors[14],
where both labeled and unlabeled samples are collected. Here our data are la-
beled, but the actual target, opportunity, is related, but not identical to the
label.

From an applications perspective, this project is a success. The system, as
described in this paper, has been implemented and deployed. The estimates are
embedded in a system that is routinely accessed by hundreds of sales representa-
tives. Starting with just the USA sales, the system has gradually been expanded
to cover two dozen countries including most of Europe and the larger countries
in the Asia-Pacific region. These estimates are updated worldwide every quarter
by geographical region. Besides providing estimates for sales opportunity, the
system can function on a query basis, giving details of similar companies and
their transactions. Studies of the users’ clicks relative to completed sales show
strong usage on the part of the sales force, and executives estimate that over
$100M of sales are traceable to the system.

From an evaluation perspective, we showed that nearest neighbors was a
highly competitive approach. This evaluation could follow the typical scenario
of considering machine learning methods as interchangeable building blocks and
basing decisions on predictive performance. In our study, that goal remains im-
portant, and it is no surprise that k-nearest neighbors do well in this application,
even when implemented in a binary fashion.

Our goals for evaluation are more general. The prediction method is embedded
in a system that will function in a structured environment, yet can respond to
online queries. This leads us to consider an evaluation along dimensions other
than empirical and predictive performance. Such factors as compatibility with
knowledge, explanatory capabilities, stability, computational parallelism, and
quantification of sales optimism can all play important roles in a real-world
system’s architecture. We have shown that a similarity-based system can perform
well along these dimensions and have supplied empirical evidence and practical
arguments to support these claims. We have provided the case for similarity-
based systems but an alternative approach may also do well along these very
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same dimensions[15]. In an age of building systems with embedded learners and
predictors, one can expect that factors beyond pure empirical performance will
play a larger role in the design of applied systems.
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Abstract. This paper addresses the problem of learning dynamic
Bayesian network (DBN) models to support reinforcement learning. It fo-
cuses on learning regression tree (context-specific dependence) models of
the conditional probability distributions of the DBNs. Existing algorithms
rely on standard regression tree learning methods (both propositional and
relational). However, such methods presume that the stochasticity in the
domain can be modeled as a deterministic function with additive noise.
This is inappropriate for many RL domains, where the stochasticity takes
the form of stochastic choice over deterministic functions. This paper in-
troduces a regression tree algorithm in which each leaf node is modeled as a
finite mixture of deterministic functions. This mixture is approximated via
a greedy set cover.Experiments on three challengingRLdomains show that
this approach finds trees that are more accurate and that are more likely to
correctly identify the conditional dependencies in the DBNsbased on small
samples.

Recent work in model-based reinforcement learning uses dynamic Bayesian net-
work (DBN) models to compactly represent the transition dynamics of the ac-
tions and the structure of the reward function. DBN models require much less
space than tabular models (Dean & Kanazawa, 1989), and they are able to gen-
eralize to novel parts of the state space. Additional compactness can be ob-
tained by representing each conditional probability distribution by a regression
tree (Boutilier et al., 1995), a structure we will refer to as a TDBN. Boutilier
and colleagues have developed a family of approximate value iteration and pol-
icy iteration algorithms that manipulate tree-structured representations of the
actions, the rewards, and the value functions (Boutilier et al., 2000).

An additional advantage of DBN representations is that they explicitly iden-
tify which state variables at time t influence the state variables at time t + 1.
By analyzing the structure of such dependencies, it is possible to identify le-
gal state abstractions in hierarchical reinforcement methods such as MAXQ
(Dietterich, 2000). In recent work, Jonsson and Barto (2006) and Mehta, et
al. (2007) have shown how to automatically discover subroutine hierarchies
through structural analysis of the action and reward DBNs.

Algorithms for learning TDBNs generally employ the standard set of techniques
for learning classification and regression trees (Breiman et al., 1984). Internal
nodes split on one or more values of discrete variables or compare continuous
values against a threshold. If the target variable is discrete, a classification tree
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is constructed (Quinlan, 1993), and each leaf node contains a multinomial distri-
bution over the values of the target variable. One variation on this is to search for
a decision graph (i.e., a DAG, (Chickering et al., 1997)). Search is typically top-
down separate-and-conquer with some form of pruning to control overfitting, al-
though Chickering et al. (Chickering et al., 1997) employ a more general search
and control overfitting via a Bayesian scoring function. If the target variable is
continuous, a regression tree is constructed. Each leaf node contains a Gaussian
distribution with a mean and (implicitly) a variance (Breiman et al., 1984).

Many generalizations of the basic methods have been developed. One gener-
alization is to allow the splits at the internal nodes of the tree to be relational
(e.g., by evaluating a predicate that takes multiple variables as arguments or by
evaluating a function of one or more variables and comparing it against a thresh-
old (threshold Kramer, 1996; Blockeel, 1998)). Another is to allow the leaf nodes
of regression trees to contain regression models (so-called Model Trees; Quinlan,
1992) or other functions (Torgo, 1997). Gama’s (2004) Functional Trees combine
functional splits and functional leaves. Vens et al. (2006) combine relational splits
with model trees.

It is interesting to note that for discrete random variables, the multinomial
distribution in each leaf represents stochasticity as random choice across a fixed
set of alternatives. However, in all previous work with regression trees, each leaf
represents stochasticity as Gaussian noise added to a deterministic function.

In many reinforcement learning and planning problems, this notion of stochas-
ticity is not appropriate. Consider, for example, the GOTO(agent, loc) action
in the real-time strategy game Wargus (2007). If the internal navigation routine
can find a path from the agent’s current location to the target location loc, then
the agent will move to the location. Otherwise, the agent will move to the reach-
able location closest to loc. If we treat the reachability condition as unobserved,
then this is a stochastic choice between two deterministic outcomes, rather than
a deterministic function with additive Gaussian noise. Another case that arises
both in benchmark problems and in real applications is where there is some
probability that when action a is executed, a different action a′ is accidentally
executed instead. A third, more mundane, example is the case where an action
either succeeds (and has the desired effects) or fails (and has no effect).

The purpose of this paper is to present a new regression tree learning algorithm,
DMT (for Discrete Mixture Trees), that is appropriate for learning TDBNs when
the stochasticity is best modeled as stochastic choice among deterministic alter-
natives. Formally, each leaf node in the regression tree is modeled as a multinomial
mixture over a finite set of alternative functions. The learning algorithm is given a
(potentially large) set of candidate functions, and it must determine which func-
tions to include in the mixture and what mixing probabilities to use. We describe
an efficient algorithm for the top-down induction of such TDBNs. Rather than pur-
suing the standard (but expensive) EM-approach to learning finite mixture models
(McLachlan & Krishnan, 1997), we instead apply the greedy set cover algorithm
to choose the mixture components to cover the data points in each leaf. The
splitting heuristic is a slight variation of the standard mutual information (infor-
mation gain) heuristic employed in C4.5 (Quinlan, 1993).
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We study three variants of DMT. The full DMT algorithm employs relational
splits at the internal nodes and mixtures of deterministic functions at the leaves
(DMT). DMT-S (“minus splits”) is DMT but with standard propositional splits.
DMT-F (“minus functions”) is DMT but with constant values at the leaves. We
compare these algorithms against standard regression trees (CART) and model
trees (M5P). All five algorithms are evaluated in three challenging domains. In
the evaluation, we compute three metrics: (a) root relative squared error (RRSE;
which is most appropriate for Gaussian leaves), (b) Recall over relevant variables
(the fraction of relevant variables included in the fitted model), and (c) Precision
over relevant variables (the fraction of the included variables that are relevant).
The results show that in two of the domains, DMT gives superior results for all
three metrics. In the third domain, DMT still has better Recall but produces
mixed results for RRSE and Precision.

1 Tree Representations of DBNs

Figure 1(a) shows a DBN model involving the action variable a, three state
variables x1, x2, x3, and the reward value r. In this model (and the models em-
ployed in this paper), there are no probabilistic dependencies within a single
time step (no synchronic arcs). Consequently, each random variable at time t+1
is conditionally independent given the variables at time t. As always in Bayesian
networks, each node x stores a representation of the conditional probability dis-
tribution P (x|pa(x)), where pa(x) denotes the parents of x.

In this paper, we present a new algorithm for learning functional tree repre-
sentations of these conditional probability distributions. Figure 1(b) shows an
example of this representation. The internal nodes of the tree may contain re-
lational splits (e.g., x2(t) < x3(t)) instead of simple propositional splits (e.g.,
x2(t) < 1). The leaves of the tree may contain multinomial distributions over
functions. Hence the left leaf in Figure 1(b) increments x1 with probability 0.7
and decrements it with probablity 0.3.

There are many ways in which functional trees provide more compact represen-
tations than standard propositional regression trees (Figure 1(c)). First, relational
splits are much more compact than propositional splits. To express the condition
x2(t) < x3(t), a propositional tree must check the conjunction of x2(t) < θ and
x3(t) ≥ θ for each value of θ. Second, functional leaves are more compact than
constant leaves. To express the leaf condition x1(t + 1) := x1(t) + 1, a standard
regression tree must introduce additional splits on x1(t) < θ for each value of θ.
Finally, standard regression trees approximate the distribution of real values at a
leaf by the mean. Hence, the left-most leaf of Figure 1(c) would be approximated
by the constant 0.4 with a standard deviation (mean squared error) of 0.92.

This compactness should generally translate into faster learning, because in
the functional trees, the data are not subdivided into many “small” leaves. How-
ever, if the learning algorithm must consider large numbers of possible splits and
leaf functions, this will introduce additional variance into the learning process
which could lead to overfitting and poor generalization. Hence, to obtain the



600 M. Wynkoop and T. Dietterich

a(t)

x1(t)

x2(t)

x3(t)

r(t+1)

x1(t+1)

x2(t+1)

x3(t+1)

x2(t) < x3(t)

0.3: x1(t) – 1

0.7: x1(t) + 1
0

x2(t) < 1

x2(t) < 2x3(t) < 2

x1(t) < 1

0.3: –1

0.7: +1
x1(t) < 2

0.3: 0

0.7: 2
0.3: 1

0.7: 3

0 … …

(a) (b) (c)

Fig. 1. (a) time slice representation of the DBN. The square action node a(t) affects
all nodes at time t + 1, but for readability those arcs have been omitted. Circles repre-
sent state variables, and the diamond is the reward node. (b) a tree representation for
P (x1(t + 1)|x1(t), x2(t), x3(t)) with relational internal nodes and a probability distri-
bution over functions (x1(t + 1) := x1(t)+ 1 and x1(t + 1) := x1(t)− 1) in the left leaf.
(c) a tree with propositional nodes and constant leaves must be much more copmlex
to represent the same conditional probability distribution.

benefits of functional trees, the engineer must identify a constrained set of can-
didate relational splits and functional leaves. We adopt a proven approach from
inductive logic programming (Lavrac & Dzeroski, 1994) and specify these can-
didate splits and functions for each domain via a context-free grammar.

Because different actions exhibit different probabilistic dependencies, all work
in tree-based DBN learning—including our own—learns a separate set of regres-
sion trees for each action.

As mentioned above, other researchers have studied regression trees with rela-
tional splits and functional leaves. Our contribution is to extend these to handle
multinomial mixtures of functions in the leaves.

2 Algorithm

To construct a regression tree for xi(t + 1), we follow the standard recursive
top-down divide-and-conquer approach using the values of x1(t), . . . , xn(t) as
the input features and xi(t + 1) as the response variable. However, we introduce
two modifications. First, given a set of N values for xi(t + 1) (i.e., at a leaf), we
fit a mixture of functions by applying the well-known greedy set cover algorithm
(Johnson, 1973). That is, we score our candidate leaf functions according to the
number of training values that they fit and choose the function that fits the
most points. Those points are then removed from consideration, and the process
is repeated until all points are covered. The result of the set cover is a list of
the form ((f1, n1), (f2, n2), . . . , (fk, nk)), where each fj is a function and nj is
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the number of data points covered by fj that were not covered by functions
f1, . . . , fj−1. We then estimate the multinomial distribution as P (fj) = nj/N .

This approach introduces two approximations. First, greedy set cover is not op-
timal set cover (although it does give very good approximations; Slav́ık, 1996).
Second, there may be points that are consistent with more than one of the func-
tions f1, . . . , fk. Strictly speaking, the probability mass for such points should be
shared equally among the functions, whereas we are assigning it to the first func-
tion in the greedy set cover. In our application problems, this second case occurs
very rarely and typically only affects one or two data points.

Our second modification concerns the loss function to use for scoring candi-
date splits. Virtually all regression tree algorithms employ the expected squared
error of the children and choose the split that minimizes this squared error. This
is equivalent to assuming a Gaussian likelihood function and maximizing the
expected log likelihood of the training data. If we followed the same approach
here, we would score the expected log likelihood of the training data using the
multinomial mixture models. However, this does not work well because we as-
sume that the mixture components (i.e., the individual functions) are themselves
deterministic, so if a leaf node contains a single function with assigned proba-
bility of 1, the log likelihood of a data point is either 0 (if the function matches
a data point) or −∞ (if it does not). This leads to a very non-smooth function
that does not work well for scoring splits. Instead, we adopt the approach that
has worked well for learning classification trees (Quinlan, 1993): we score each
candidate split by the expected entropy of the probability distributions in the
leaves and choose the split that minimizes this expected entropy.

To prevent overfitting, we employ a form of “pre-pruning”. If no test reduces
the expected entropy by more than a constant ε, we stop splitting. In future work,
we plan to replace this by a more sophisticated technique such as pessimistic
pruning or MDL pruning.

Algorithm 1 shows the algorithm. It follows the standard recursive divide-and-
conquer schema for top-down induction of decision trees. Ties in split selection
are broken in favor of splits that introduce fewer new variables into the tree.

2.1 Efficient Splitting Function Search

Algorithm 1 requires performing two greedy set cover computations to evaluate
each split. Despite the fact that greedy set cover is very efficient, this is still
extremely time-consuming, especially if the set of candidate leaf functions is
large. We therefore developed a method based on Uniform Cost Search (UCS) for
finding the best set cover without having to evaluate all candidate leaf functions
on all candidate splits.

Suppose we define a partial set cover to have the form ((f1, n1), (f2, n2), . . . ,
(fk−1, nk−1), (else, nk))).This represents the fact that there are nk data points
that have not yet been covered by any leaf function. A node in the Uniform Cost
Search consists of the following information:

– the candidate splitting condition s, Pleft, and Pright

– partial set covers Cleft and Cright for the branches
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Algorithm 1. DMT: Grow a decision tree top-down
1: GrowTree(examples: E, treenode: T , setcover: C, real: ε)
2: E is the set of training examples
3: T is a tree node (initially a leaf)
4: C is the set cover (with associated probability distribution) of the node
5: let hroot := Entropy(C)
6: Initialize variables to hold information about the best split:
7: let h∗ := hroot

8: let E∗
left := E∗

right := empty set
9: let C∗

left := C∗
right := empty set cover

10: let s∗ := null
11: for all candidate splits s do
12: let Eleft := {e ∈ E|s(e)} {Examples for which s is true}
13: let Eright := {e ∈ E|¬s(e)} {Examples for which s is false}
14: let Pleft := |Eleft|

|E| ; Pright := |Eright|
|E|

15: let Cleft := GreedySetCover(Eleft)
16: let Cright := GreedySetCover(Eright)
17: let hs = Pleft · Entropy(Cleft) + Pright · Entropy(Cright)
18: if hs < h∗ then
19: let h∗ := hs; s∗ := s
20: E∗

left := Eleft; E∗
right := Eright; C∗

left := Cleft; C∗
right := Cright

21: if |hroot − h∗| > ε then
22: set T.split := s∗

23: let Tleft := new treenode(LEAF,C∗
left)

24: let Tright := new treenode(LEAF,C∗
right)

25: set T.left := GrowTree(E∗
left, Tleft, C

∗
left, ε)

26: set T.right := GrowTree(E∗
right, Tright, C

∗
right, ε)

– the entropy of the partial set covers hleft and hright

– the sets of uncovered response values Vleft and Vright

– the current expected entropy h = Pleft · hleft + Pright · hright

The key observation is that the current expected entropy is a lower bound on
the final expected entropy, because any further refinement of either of the partial
set covers Cleft or Cright will cause the entropy to increase.

The split selection algorithm starts by creating one UCS node for each can-
didate split s with empty set covers Cleft and Cright and pushing them on to a
priority queue (ordered to mininize h). It then considers the best greedy addition
of one leaf function to Cleft and to Cright to expand the two set covers, recom-
putes Vleft, Vright, and h, and pushes this new node onto the priority queue.
Note that the size of the priority queue remains fixed, because each candidate
split is expanded greedily rather than in all possible ways (which would produce
an optimal set cover instead of a greedy set cover).

The algorithm terminates when a node popped off the priority queue has
Vleft = Vright = the empty set. In which case, this is the best split s∗, because it
has the lowest expected entropy and all other items on the priority queue have
higher entropy.
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3 Experiments

To evaluate the effectiveness of our DMT algorithm, we compared it experi-
mentally to four other algorithms: CART (Breiman et al., 1984), Model Trees
(Quinlan, 1992), DMT with propositional splits and functional leaves (DMT-S,
“minus splits”) and DMT with relational splits but constant leaves (DMT-F,
“minus functions”). In effect, CART is DMT-SF, DMT without relational splits
or functional leaves.

The experiment is structured as follows. We chose three domains: (a) a version
of the Traveling Purchase Problem (TPP) adapted from the ICAPS probabilistic
planning competition (2006), (b) the Trucks Problem, also adapted from ICAPS,
and (c) a resource gathering task that arises in the Wargus real-time strategy
game (2007). In each domain, we generated 200 independent trajectories. In TPP
and Trucks, each trajectory was generated by choosing at random a legal starting
state and applying a uniform random policy to select actions until a goal state
was reached. In Wargus, all trajectories started in the same state because they
were all generated from the same map, and there is only one legal starting state
per map. On average, the trajectories contained 96.9 actions in TPP (standard
deviation of 56.7), 600.0 actions in Truck (s.d. of 317.8), and 2065 actions in
Wargus (s.d. of 1822). The 200 trajectories were randomly partitioned into a
training set of 128 and a test set of 72 trajectories. To generate learning curves
and to obtain independent training trials, the 128 training trajectories were
further divided into 2 subsets of 64, 4 subsets of 32, 8 subsets of 16, 16 subsets
of 8, 32 subsets of 4, 64 subsets of 2, and 128 subsets each containing only one
trajectory. For each of these training sets, each of the five algorithms was run.
The resulting DBN models were then evaluated according to three criteria:

– Root Relative Squared Error (RRSE). This is the root mean squared error in
the predicted value of each state variable divided by the RMS error of simply
predicting the mean. Some variables are actually 0-1 variables, in which case
the squared error is the 0/1 loss and the RRSE is proportional to the square
root of the total 0/1 loss.

– State variable Recall. Because we wish to use the learned trees to guide
subroutine discovery algorithms (2006; 2007), we want algorithms that can
correctly identify the set of parents pa(x) of each variable x. The recall is
the fraction of the true parents pa(x) that are correctly identified in the
DBN model.

– State variable Precision. We also measure precision, which is the fraction of
parents in the learned DBN that are parents in the true DBN.

3.1 Domains

Here are the detailed specifications of the three domains.

Traveling Purchase Problem. (TPP) is a logistics domain where an agent
controls a truck that must purchase a number of goods from different markets
and then return them to a central depot. Each market has a supply of goods, as
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well as its own price, both of which are random for each problem instance and
are provided as state variables. The state also contains variables that represent
the remaining demand. These variables are initialized with the total demand
for that product, and they are decremented as the agent buys goods from the
markets. Actions in this domain consist of goto actions, actions that buy units
of products from markets, and an action to deliver all purchased products to the
central depot.

For these experiments, the domain was restricted to two markets, one central
depot, and three products. This results in an MDP with 15 state variables and
10 actions. Initial values for product supply and demand can range from zero
to 20, which produces an MDP with over 1012 states. The price variables do
not count toward the size of the state space, because their values are constant
throughout an instance of the problem.

The Truck Problem. is another logistics problem. However in this domain, the
focus is on the logistics of picking up packages, placing them in the right order
on the truck, dropping them off, and delivering them to their proper destination.
Here the agent is in control of two trucks; each truck has two areas (front and
rear) in which it can hold packages. As in a real delivery truck, these areas must
be loaded and unloaded in the proper order. For example, if there is a package
in the front area, an action that attempts to remove the package from the rear
of the truck fails.

For our experiments, the two trucks are asked to deliver three packages from
one of five locations to another of the five locations. Once a package is dropped
off at the correct location, an action must be taken by the agent to deliver the
package to the customer. Actions in this domain include loading and unloading
a package on a truck, driving a truck to a location, and delivering a package to
the customer once it is at its goal location. The domain has 25 actions and 12
state variables, with 4.3 · 108 states.

Wargus. is a resource gathering domain where an agent controls one or more
peasants and directs them in a grid world that contains gold mines, stands of
trees, and town halls. The agent can navigate to anywhere on the map with a
set of goto actions. These are temporally extended actions that bring a peasant
to specified region of the map. The regions are defined by the “sight radius” of
the peasants. Within this radius, they can execute other actions such as mining
gold, chopping wood, and depositing their payload in the town hall. Once the
peasant has deposited one set of gold and one set of wood to the town hall, the
episode ends and reward is received.

For this set of experiments, we use a single peasant on a map with a single gold
mine and a single town hall. Trees are distributed randomly around the map.
The state contains variables that list the position of the peasant on the map,
what the peasant is holding, what objects of interest are within sight radius of
the peasant (wood, gold, town hall), and the status of the gold and wood quotas.
The domain has 19 actions and 9.8 · 104 states.



Learning MDP Action Models Via Discrete Mixture Trees 605

This domain differs from the other two domains because it is not fully observ-
able. The map that the peasant is navigating is a hidden variable that determines
not only the navigation dynamics but the presence of trees, gold mines, and town
halls within the peasant’s sight radius.

3.2 Results

For each combination of a domain, training set, output state variable (or re-
ward), and action, we measured the three metrics. We performed an analysis of
variance on each metric, holding the domain, action, variable and training set
size constant and treating the multiple training sets as replications. We treated
DMT as the baseline configuration and tested the hypothesis that the metric
obtained by each of the other algorithms was significantly worse (a “win”), bet-
ter (a “loss”), or indistinguishable (a “tie”) at the p < 0.05 level of significance.
The test is a paired-differences t test. Note that the power of this test decreases
as the number of training trajectories increases. When the training set contains
only 1 trajectory, there are 128 replications, but when the training set contains
64 trajectories, there are only 2 replications. Hence, we generally expect to see
the percentage of ties increase with the size of the training set.

Table 1 aggregates the results of these statistical tests over all state variables
and all actions in each domain. The large number of ties in each cell is largely an
artifact of the loss of power for large training set sizes. Let us first compare DMT
with DMT-F (constant leaves). In TTP and Truck, DMT performs much better
than DMT-F. In Wargus, the situation is less clear. On Recall, DMT is always at
least as good as DMT-F, but on RRSE the algorithms each have a large number
of wins, and on precision, DMT-F tends to be better. Next, consider DMT and
DMT-S (propositional splits). In this case, DMT is dominant except for Wargus
precision, where DMT sometimes includes unnecessary variables that DMT-S
avoids. Next, compare DMT with CART (i.e., DMT-SF). Here, DMT is almost
always superior on all metrics. Note in particular that for RRSE, it is superior in
1057 out of 1120 cases (94.4%) in TTP, 2085 out of 2100 cases (99.3%) in Truck,
and 519 out of 662 cases (78.4%) in Wargus. So the number of ties is actually
quite small, despite the low number of replicates at large sample sizes. The only
case of less than overwhelming superiority is again Precision in Wargus. Finally,
compare DMT with M5P, which is the Weka implementation of model trees.
DMT is again dominant in the TPP and Truck domains. In Wargus, DMT is
always at least as good as M5P for Recall, but on Precision DMT is more often
inferior to M5P than the reverse, and on RRSE, DMT has 247 wins whereas
M5P has 207, so there is no overall winner.

Table 1 hides the effect of increasing sample size. To visualize this, Figure 2
shows the win/loss/tie percentages as a function of training set size for Recall
comparing DMT versus CART. Each vertical bar is divided into three parts
indicating wins, losses, and ties (reading from bottom to top). In virtually all
cases, there are no losses, which means that DMT’s Recall is almost always
better than or equal to CART’s Recall. Note also that as the size of the training
set gets large (and hence, the number of training sets gets small), we observe
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Table 1. Statistical wins, losses and ties for DMT all other tested algorithms on each
domain. These results are over all non-reward variable models. A win (or loss) is a
statistically significant difference between DMT and the indicated algorithm (p < 0.05;
paired t test).

TTP
DMT-F DMT-S CART M5P

Win Loss Tie Win Loss Tie Win Loss Tie Win Loss Tie
Precision 671 3 446 7 3 1110 787 9 324 358 4 758
Recall 404 0 656 20 0 1040 411 0 649 390 0 670
RRSE 716 40 364 44 21 1055 1057 38 25 475 37 608

Truck
DMT-F DMT-S CART M5P

Win Loss Tie Win Loss Tie Win Loss Tie Win Loss Tie
Precision 594 0 1504 55 0 2043 1240 7 851 679 1 1418
Recall 356 22 1645 117 1 1905 566 14 1443 467 16 1540
RRSE 1046 83 971 211 56 1833 2085 5 10 838 9 1253

Wargus
DMT-F DMT-S CART M5P

Win Loss Tie Win Loss Tie Win Loss Tie Win Loss Tie
Precision 14 87 930 15 21 995 291 135 605 120 206 705
Recall 118 0 946 15 1 1048 212 0 852 176 0 888
RRSE 172 182 308 55 16 591 519 87 56 247 207 208

more ties. This is a consequence of the loss of statistical power of the t test.
Space limits prevent us from showing these curves for the other metrics or for
the reward TDBNs.

Figure 3 presents learning curves for RRSE. We do not have space to show
the learning curve for every combination of action and variable, so we chose one
variable-action pair from each domain. For the TPP Supply variable (Purchase
action), we see that for training sets of size 8 and above, DMT has the lowest
RRSE, DMT-S and M5P come next, the DMT-F and CART are the worst. For
the Truck variable Truck Area (Load action), DMT always has the lowest RRSE.
At 8 trajectories, it is joined by DMT-F, while the other three algorithms have
much higher error levels. This suggests that using relational splits is critical
in this domain, and we observed this for several other variable-action-domain
combinations. Finally, for the Wargus Reward variable (Navigate action), the
three DMT variants have the lowest RRSE (and are indistinguishable). M5P
comes next, and CART gives the worst performance. The explanation for this
is less clear. Evidentally, good performance requires either relational splits or
functional leaves but not both!

Also shown in Figure 3 is the model sizes for the variable-action pairs depicted
in the corresponding RRSE plots. For the Supply variable (Purchase action) in
the TPP domain, both DMT and DMT-S perform the best, followed by M5P,
CART and DMT-F. DMT-S returns a single mixture of functions in this case
because it does not have access to the more complex splits of full DMT. In
the Truck domain’s Load action (Truck Area variable), DMT always produces
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Fig. 2. Recall of DMT vs. CART for state variables for TPP, Truck, and Wargus. Each
bar is divided into three sections (wins, losses, and ties). The losses are too infrequent
to be visible in this plot.

the smallest models, followed by M5P, DMT-F, DMT-S and CART. Finally,
in the reward node for a GOTO action in Wargus, we see that DMT and its
variants produce the largest models, with the smallest models being produced
by M5P and CART. This is consistent with our original hypothesis that the
DMT algorithm performs best when the stochasticity is best represented as a
mixture over discrete functions. GOTO is a temporally extended action that
follows a navigation policy set by Wargus itself, its reward function is represents
the distance between the current point and the destination point with noise
added in from detours caused by obstacles in the agent’s path.

To understand the Precision and Recall behavior of the algorithms, it is not
sufficient to plot learning curves of the average Precision and Recall. This is be-
cause the distribution of measured Precision and Recall scores is highly skewed,
with many perfect scores. Instead, we developed the Precision and Recall profiles
shown in Figure 4 as a way of visualizing the distribution of Precision and Recall
scores. For each domain, action, result variable, and training set, we computed
the Precision and Recall of the fitted TDBN with respect to the set of variables
included in the model compared to the variables included in the true DBN. For
each domain, we sorted all of the observed scores (either Precision or Recall,
depending on the graph) into ascending order and then for each value θ of the
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Fig. 3. RRSE and Model Size in nodes as a function of the number of trajectories in
the training set for one chosen action and variable in each domain. Top: RRSE and
Model Size for Market Supply for the Purchase action in TTP; Middle: RRSE and
Model Size for Truck Area for the Load action in Truck; Bottom: RRSE and Model
Size of the Reward node for a Goto action in Wargus.
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Fig. 4. Precision and Recall profiles for each domain when trained on 8 trajectories
and compared to the true DBN models. These curves aggregate over all variables,
actions, and training sets in each domain. Each plotted point specifies the fraction of
learned models with Precision (or Recall, respectively) less than the value specified on
the horizontal axis. Hence, the ideal curve would be a flat line at 0, corresponding to
the case where all learned models had Precision (or Recall) of 1.0.
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score we plotted the fraction of TDBNs where the score was < θ. The ideal
profile would be a flat line corresponding to the case where all learned TDBNs
had a perfect score of θ = 1.0, so none of them were less than θ. The higher
and more rapidly the profile rises, the worse the performance. In short, these
are cumulative distribution functions for Precision and Recall. Figure 4 shows
these profiles for cases where the training set contains 8 trajectories. We chose
this as the middle point on the learning curves (with respect to log sample size).
The TPP profile is based on a total of 2560 models, the Truck profile on 4800
models, and the Wargus profile on 2736 models.

For the TPP domain, DMT and DMT-S track each other very closely and
are consistently superior to all of the other algorithms. Only 10% of the trials
had Precision or Recall less than 1.0. M5P comes next with excellent Precision.
CART had the worst Precision and DMT-F was also quite bad. For Recall,
DMT-F is the worst, while CART matches M5P’s poor performance.

For the Truck domain, CART gives extremely bad Precision—more than half
of the runs had Precision of around 0.5 or less. All of the other methods do
much better with DMT being best with more than 95% of the runs achieving
Precision of 1.0. On Recall, all of the algorithms do fairly well with DMT and
DMT-F doing the best and the others somewhat worse.

Finally, for Wargus DMT-F has the best Precision for low values but the
second-worst Precision at high values. M5P is best at the high end. DMT and
DMT-S are in the middle of the pack, and CART is the worst. For Recall, DMT
is excellent with DMT-S very good and DMT-F respectable. M5P and CART
are quite a bit worse. The very high Recall and poor Precision of DMT suggests
that it is overfitting and creating large models that contain extra variables.
This suggests that there is room for improvement in the overfitting avoidance
mechanisms of DMT.

4 Concluding Remarks

This paper has presented a new algorithm, DMT, for learning regression tree
models of conditional probability distributions for DBNs. The algorithm is de-
signed to handle domains in which stochasticity is best modeled as stochastic
choice over a small number of deterministic functions. This stochasticity is rep-
resented as a finite mixture model over deterministic functions in each leaf of the
regression tree. These mixture models are learned via greedy set cover. Exper-
iments on three challenging domains provide evidence that this approach gives
excellent performance, both in terms of prediction accuracy but also, perhaps
more importantly, in terms of the ability to correctly identify the relevant par-
ents of each random variable. In two of the domains, DMT is clearly superior
to CART and M5P. In the third domain (Wargus), there are many cases where
DMT performs well, but there are also many cases where it gives worse predic-
tion accuracy and precision than CART or M5P. This suggests that DMT may
be overfitting in this domain.
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It is interesting to note that this problem could also be viewed as a multi-
label classification problem with overlapping classes. If each training point were
labeled with the set of functions that apply to it, then the optimal mixture of
classes for a set of examples represents the optimal discrete mixture of functions
for those examples. This leads to some complications when classes partially or
fully overlap, such as assigning probability mass of an example that is a member
of several classes. These issues can be addressed by the same approximations
used to increase efficiency that are described in this paper.

In future work, we plan to incorporate stronger methods for regularizing DMT
by controlling both the tree size and the size of the set covers in each leaf. We
would also like to extend this approach to allow stochasticity both in the mixture
of functions and in the individual functions themselves. In addition, we plan to
use the TDBNs learned by DMT as input to the MAXQ discovery algorithm
that we have developed (2007).
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Abstract. We consider the problem of detecting host-level attacks in network
traffic using unsupervised learning. We model the normal behavior of a host’s
traffic from its signature logs, and flag suspicious traces differing from this norm.
In particular, we use continuous time Bayesian networks learned from historic
non-attack data and flag future event sequences whose likelihood under this nor-
mal model is below a threshold. Our method differs from previous approaches in
explicitly modeling temporal dependencies in the network traffic. Our model is
therefore more sensitive to subtle variations in the sequences of network events.
We present two simple extensions that allow for instantaneous events that do not
result in state changes, and simultaneous transitions of two variables. Our ap-
proach does not require expensive labeling or prior exposure to the attack type.
We illustrate the power of our method in detecting attacks with comparisons to
other methods on real network traces.

Keywords: Unsupervised Machine Learning, CTBNs, Host Based IDS.

1 Introduction

Network attacks on computers have become a fact of life for network administrators.
Detecting the attacks quickly is important in limiting their scope and destruction. Hu-
mans cannot analyze each and every connection or packet to determine if it might be
part of an attack, so there is a need for an automated system for performing such checks.
In this paper, we look at the problem of detecting such attacks at the host level. Instead
of constructing a detector for the network as a whole, we construct a method that can
be employed at each computer separately to determine whether a particular host has
been compromised. While we lose global information, we gain speed, individual tun-
ing, and robustness. A network under attack may not be able to aggregate information
to a central detector.

We focus on an automatic approach to detection. While human intervention can im-
prove security, it comes at the cost of increased time and effort. We would like a method
that can adapt to the role and usage patterns of the host, while still detecting attacks au-
tomatically.

We approach this problem from the point-of-view of anomaly detection. Attacks
vary greatly and new types of attacks are invented frequently. Therefore, a supervised
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learning method that attempts to distinguish good from bad network traffic based on
historic labeled data is necessarily limited in its scope. Furthermore, the acquisition of
such labeled data is time-consuming and error-prone. By contrast, gathering normal or
good network traffic is relatively simple. It is often possible to designate times when
we can be reasonably certain that no attacks occurred and use all of the data during that
span. For an attack to be successful, it must differ in some way from normal network
traffic. Our goal is to detect such abnormalities.

Our approach differs from previous approaches in a number of key ways. It is adap-
tive and constructed at the host level. It does not treat the packets or connections as
i.i.d. sequences, but respects the ordering of the network traffic. Finally, it does not
model the traffic features as normal or exponential distributions. Many features of net-
work traffic are distinctly non-Gaussian and often multi-modal.

A network flow for a given host machine is a sequence of continuous and asyn-
chronous events. We employ a generative probabilistic model to describe such dynamic
processes evolving over continuous time. Furthermore, these events form a complex
structured system, where statistical dependencies relate network activities like pack-
ets and connections. We apply continuous time Bayesian networks (CTBNs) [1] to the
challenge of reasoning about these structured stochastic network processes. CTBNs
have been successful in other applications [2,3], but have not previously been used for
network traffic modeling.

In Section 2 we relate our method to prior work on this problem. In Section 3
we briefly describe continuous time Bayesian networks. In Section 4 we describe our
CTBN model and its use. In Section 5 we describe our experimental results.

2 Related Work

As a signature-based detection algorithm, we share many of the assumptions of [4].
In particular, we also assume that we do not have access to the internals of the ma-
chines on the networks (which rules out methods like [5] [6] [7] or [8]). However, we
differ in that our approach does not rely on preset values, require human intervention
and interpretation, nor assume that we have access to network-wide traffic information.
Network-wide data and human intervention have advantages, but they can also lead to
difficulties (data collation in the face of an attack and increased human effort), so we
chose to leave them out of our solution.

Many learning, or adaptive, methods have been proposed for network data. Some of
these (for example, [9] and [10]) approach the problem as a classification task which
requires labeled data. [11] profiles the statistical characteristics of anomalies by us-
ing random projection techniques (sketches) to reduce the data dimensionality and a
multi-resolution non-Gaussian marginal distribution to extract anomalies at different
aggregation levels. The goal of such papers is usually not to detect attacks but rather
to classify non-attacks by traffic type; if applied to attack detection, they would risk
missing new types of attacks. Furthermore, they frequently treat each network activity
separately, instead of considering their temporal context.

[12] has a nice summary of adaptive (or statistical) methods that look at anomaly
detection (instead of classification). They use an entropy-based method for the entire
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network traffic. Many of the other methods (such as [13]) use either statistical tests or
subspace methods that assume the features of the connections or packets are distributed
normally. [14] model the language features like n-grams and words from connection
payloads. [15] also uses unsupervised methods, but they concentrate on clustering traffic
across a whole network. Similarly, [16] build an anomaly detector based on Markov
models, but it is for the network traffic patterns as a whole and does not function at the
host level.

[10] is very similar in statistical flavor to our work. They also fit a distribution (in
their case, a histogram modeled as a Dirichlet distribution) to network data. However,
they model flow-level statistics, whereas we work at the level of individual connections.
Additionally, they are attempting network-wide clustering of flows instead of anomaly
detection. [17], like our approach, model traffic with graphical models, in particular,
Naive Bayes networks. But their goal is to categorize network traffic instead of de-
tecting attacks. [18] present a Bayesian approach to the detecting problem as an event
classification task while we only care about whether the host is under attack during an
interval. In addition, they also use system monitoring states to build their model, which
we do not employ.

[19] is very similar to our work. It is one of the few papers to attempt to find attacks
at the host level. They employ nearest neighbor, a Mahalanobis distance approach, and
a density-based local outliers method, each using 23 features of the connections. Al-
though their methods make the standard i.i.d. assumption about the data (and therefore
miss the temporal context of the connection) and use 23 features (compared to our few
features), we compare our results to theirs in Section 5, as the closest prior work. We
also compare our work with [20]. They present an adaptive detector whose threshold is
time-varying. It is similar to our work in that they also rely on model-based algorithms.
But besides the usage of network signature data, they look at host internal states like
CPU loads which are not available to us.

While there has been a great variety of previous work, our work is novel in that it
detects anomalies at the host level using only the timing features of network activities.
We do not consider each connection (or packet) in isolation, but rather in a complex
context. We capture the statistical dynamic dependencies between packets and connec-
tions to find sequences of network traffic that are anomalous as a group. CTBNs are
a natural modeling method for network traffic, although they have not been previously
used for this task.

3 Continuous Time Bayesian Networks

We begin by briefly reviewing the definition of Markov processes and continuous time
Bayesian networks (CTBNs).

3.1 Homogeneous Markov Process

A finite-state, continuous-time, homogeneous Markov process Xt is described by an
initial distribution P 0

X and, given a state space V al(X) = {x1, ..., xn}, an n × n matrix
of transition intensities:
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QX =

⎡
⎢⎢⎢⎣

−qx1 qx1x2 . . . qx1xn

qx2x1 −qx2 . . . qx2xn

...
...

. . .
...

qxnx1 qxnx2 . . . −qxn

⎤
⎥⎥⎥⎦ .

qxixj is the intensity (or rate) of transition from state xi to state xj and qxi =
∑

j �=i qxixj .
The transient behavior of Xt can be described by follows. Variable X stays in state x

for time exponentially distributed with parameter qx. The probability density function
f for Xt remaining at x is f(qx, t) = qx exp(−qxt) for t ≥ 0. The expected time of
transitioning is 1/qx. Upon transitioning, X shifts to state x′ with probability θxx′ =
qxx′/qx.

The distribution over the state of the process X at some future time t, Px(t), can be
computed directly from QX . If P 0

X is the distribution over X at time 0 (represented as
a vector), then, letting exp be the matrix exponential,

PX(t) = P 0
X exp(QX · t).

3.2 Continuous Time Bayesian Networks

[1] extended this framework to continuous time Bayesian networks, which model the
joint dynamics of several local variables by allowing the transition model of each local
variable X to be a Markov process whose parametrization depends on some subset of
other variables U as follows.

Definition 1. A conditional Markov process X is an inhomogeneous Markov process
whose intensity matrix varies as a function of the current values of a set of discrete
conditioning variables U . It is parametrized using a conditional intensity matrix (CIM)
— QX|U — a set of homogeneous intensity matrices QX|u, one for each instantiation
of values u to U .

Definition 2. A continuous time Bayesian network N over X consists of two com-
ponents: an initial distribution P 0

X , specified as a Bayesian network B over X, and a
continuous transition model, specified using a directed (possibly cyclic) graph G whose
nodes are X ∈ X; UX denotes the parents of X in G. Each variable X ∈ X is associ-
ated with a conditional intensity matrix, QX|UX

.

The dynamics of a CTBN are qualitatively defined by a graph. The instantaneous evo-
lution of a variable depends only on the current value of its parents in the graph. The
quantitative description of a variable’s dynamics are given by a set of intensity matrices,
one for each value of its parents.

[21] presented an algorithm based on expectation maximization (EM) to learn pa-
rameters of CTBNs from incomplete data. Incomplete data are sets of partially observed
trajectories D = {σ[1], ..., σ[w]} that describe the behavior of variables in the CTBNs.
A partially observed trajectory σ ∈ D can be specified as a sequence of subsystems
Si, each with an associated duration. The transitions inside the subsystems are wholly
unobserved. A simplest example of incomplete data is when a variable is hidden. In
this case, the observed subsystems are the set of states consistent with the observed
variables.
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Router
Host

49 00:00:01 smtp 2128 25 197.218.177.68 172.16.112.207 0 –
06 00:00:01 smtp 2242 25 172.16.114.148 194.7.248.153  0 –
13 00:00:01 smtp 2129 25 196.227.33.189 172.16.114.148 0 –
0:0:35 ecr/i:r73 - - 17.139.40.11 172.16.114.50 1 smurf
0:0:35 ecr/i:r72 - - 17.139.40.6  172.16.114.50 1 smurf
0:0:35 ecr/i:r71 - - 17.139.40.3  172.16.114.50 1 smurf
0:0:35 ecr/i:r71 - - 17.139.40.17 172.16.114.50 1 smurf
0:0:35 ecr/i:r70 - - 17.139.40.22 172.16.114.50 1 smurf
0:0:35 ecr/i:r66 - - 17.139.40.30 172.16.114.50 1 smurf
0:0:35 ecr/i:r67 - - 17.139.40.13 172.16.114.50 1 smurf
0:0:35 ecr/i:r72 - - 17.139.40.14 172.16.114.50 1 smurf
0:0:35 ecr/i:r68 - - 17.139.40.16 172.16.114.50 1 smurf

Machine Learning
For Network

Intrusion Detection
Learned Model of
Normal Behavior

Anomaly
Detection

!

normal

abnormal

Attack
Processing

Fig. 1. The architecture of the attack detection system. The model is learned from normal traces.
Anomaly detection compares the model to current network traffic. The output is the predicted
labels for each time window.

4 Approach

Figure 4 shows an overview of our host-based network attack detection system. In our
work, we only focus on a single computer (a host) on the network. We use unsupervised
learning to build a model of the normal behavior of this host-based on its TCP packet
header traces, without looking into its system behavioral states like resource usages and
file accesses. Those activities that differ from this norm are flagged as possible intrusion
attempts.

4.1 CTBN Model for Network Traffic

The sequence and timing of events are very important in network traffic flow. It matters
not just how many connections were initiated in the past minute, but also their timing:
if they were evenly spaced the trace is probably normal, but if they all came in a quick
burst it is more suspecious. Similarly, the sequence is important. If the connections were
made to sequentially increasing ports it is more likely to be a scanning virus, whereas
the same set of ports in random order is more likely to be normal traffic. These are
merely simple examples. We would like to detect more complex patterns.

While time-sliced models (like dynamic Bayesian networks [22]) can capture some
of these aspects, they require the specification of a time-slice width. This sampling rate
must be fast enough to catch these distinctions (essentially fast enough that only one
event happens between samples) and yet still long enough to make the algorithm effi-
cient. For network traffic, with long delays between bursts of activity, this is impractical.

As described in Section 3, CTBNs are well suited for describing such structured
stochastic processes with finitely many states that evolve over continuous time. By using
a CTBN to model the network traffic activities, we can capture the complex context of
network behaviors in a meaningful and hierarchical way.

A typical machine in the network may have diverse activities with various service
types (e.g. HTTP, mail server). Destination port numbers describe the type of service a
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PORT DESCRIPTION
80 World Wide Wed HTTP
139 NETBIOS Session Service
443 HTTP protocol over TLS/SSL
445 Microsoft-DS
1863 MSNP
2678 Gadget Gate 2 Way
1170 AT+C License Manager
110 Post Office Protocol - Version 3

PORT DESCRIPTION
80 World Wide Web HTTP
8080 HTTP Alternate
443 HTTP protocol over TLS/SSL
113 Authentication Service
5101 Talarian TCP
995 pop3 protocol over TLS/SSL
51730 unknown
59822 unknown

Fig. 2. Ranking of the most frequent ports on LBNL dataset (left) and WIDE dataset (right)

H U

P_o

P_i

C

Fig. 3. CTBN port level submodel; the whole model contains 9 of such submodels

particular network activity belongs to. Some worms usually propagate malicious traffic
towards certain well known ports to affect the quality of the services who own the
contact ports. By looking at traffic associated with different ports we are more sensitive
to subtle variations that do not appear if we aggregate trace information across ports.
Figure 2 shows the most popular ports ranked by their frequencies in the network traffic
on the datasets we use (described in more depth later). These services are, to some
extent, independent of each other. We therefore model each port’s traffic with its own
CTBN submodel.

Inside our port-level submodel, we have the fully observed node C — the number
of concurrent connections active on the host — and nodes packet-in Pi and packet-out
Po — the transmission of a packet to or from the host. Pi and Po have no intrinsic
state: the transmission of a packet is an essentially instantaneous event. Therefore they
have events (or “transitions”) without having state. We discuss this further in the next
subsection.

To allow complex duration distributions for the states of variables, we introduce
another two nodes H and U . U is a partially observed variable which we call the mode
whose state indicates whether the model can next send a packet, receive a packet, start
a new connection, or terminate a connection. It therefore has four states, and we limit
the conditional rates of the observed variables (C, Po, and Pi) to be zero if the current
mode differs from the variable’s activity type. Therefore, U is observed when an event
in C, Po and or Pi occurs, but is unobserved between events.

H is a hidden variable that models the internal state and intrinsic features of the
host machine. For the experiments we show later, we let H be a binary process. While
the arrival times for events across an entire CTBN are distributed exponentially (as
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H U

P_o

P_i

C_dec

C_inc

Fig. 4. The equivalent CTBN port level submodel

the entire system is Markovian), once certain variables are unobserved (like H), the
marginal distribution over the remaining variables is no longer Markovian. These nodes
make up the structure shown in Figure 3. The results in this paper are for binary hidden
variables. We feel this model represents a good balance between descriptive power and
tractability.

4.2 Adding Toggle Variables to CTBNs

As mentioned above, the variables Po and Pi do not have state, but rather only events.
To describe such transitionless events, we set Po and Pi to be “toggle variables.” That is,
they have two indistinguishable states. As a binary variable, they have two parameters
for each parent instantiation (the rate of leaving state 0 and the rate of leaving state 1)
and we require these two parameters to be the same. A packet event, therefore, consists
of flipping the state of the corresponding packet variable.

The concurrent connection count variable, C, also poses a slight modeling problem
for CTBNs. As originally presented, CTBNs can only deal with finite-domain variables.
Although most of the operating systems do have a limit on the number of concurrent
connections, this number can potentially be extremely large. Our traffic examples do
exhibit a wide range of concurrent connection counts. We tried quantizing C into fixed
bins, but the results were fairly poor. We instead note that C can only increase or de-
crease by one at any given event (the beginning or ending time of a connection). Further-
more, we make the assumption that the arrival of a new connection and the termination
of an existing connection are both independent of the number of other connections. This
implies that the intensity with which some connection starts (stops) is same as any other
connections. C is thus a random walk constrained to the non-negative integers.

Let Qinc be the intensity for the arrival of a new connection, and Qdec be the intensity
for the termination of a new connection. Let Qchange = Qdec + Qinc. The resulting
intensity matrix has the form:

QC|m =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
0 Qdec −Qchange Qinc 0 · · ·
· · · 0 Qdec −Qchange Qinc 0 · · ·

· · · 0 Qdec −Qchange Qinc 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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H

P_o

P_i

C_dec

C_inc

Fig. 5. The extended CTBN port level submodel

Note that the only free parameters in the above matrix are Qinc and Qdec. Therefore,
this model is the same as one in which we replace C with two toggle variables Cinc and
Cdec. Cinc and Cdec operate like Po and Pi above: their exact state does not matter, it
is the transition between states that indicates an event of interest. The model structure
is shown in figure 4.

4.3 An Extended CTBN Model

CTBN models assume that no two variables change at exactly the same instant. How-
ever, we might like U and H to change at the same time. As they both represent abstract
concepts, there is no physical reason why they should not change simultaneously (they
represent different abstract attributes about the machine’s internal state).

The model in Figure 4 has 36 independent parameters.1 Allowing U and H to change
simultaneously requires introducing 24 new parameters: for each of the 8 states for U
and H there are 3 new transition possibilities.

Equivalently, we can use the CTBN model shown in Figure 5 where H now has
8 states. However, this diagram does not demonstrate all of the structure. The toggle
variables (Po, Pi, Cinc, and Cdec) are each allowed to change only for 2 of the states of
H (the two that corresponded to U from the previous model having the correct mode)
and they are required to have the same rate for both of these states.

We have also considered other extensions to the model. For instance, it might be nat-
ural to allow the packet rate to have a linear dependence on the number of connections.
However, in practice, this extension produced worse results. It seems that the rate is
more of a function of the network bandwidth and the currently transmitting application
can generate packets than the number of concurrent connections on a port.

4.4 Parameter Estimation

A CTBN is a homogeneous Markov process over the joint state space of its constituent
variables. Our partially observed trajectory (H is unobserved, U is partially observed)
specifies a sequence of subsystems of this process, each with an associated duration.

1 Each toggle has only 1 because it can only change for one setting of U . An intensity matrix
for U has 12 independent parameters for each of the two values of H and similarly H has 2
independent parameters for each of the four values of U .
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We use the expectation maximization (EM) algorithm to estimate the parameters [21].
In short, this algorithm estimates the posterior distribution over the hidden variables’
trajectories. The sufficient statistics (summaries of the data necessary for learning) de-
pend on the value of the hidden variables. EM calculates their expected value (using
the posterior distribution) and then treats these expected sufficient statistics (ESS) as
the true ones for selecting the parameters that maximize the likelihood of the data. This
repeats until convergence.

The ESS for any variable X in a CTBN are T̄X|U[x|u], the expected amount of time
X stays at state x given its parent instantiation u, and M̄X|U[x, x′|u], the expected
number of transitions from state x to x′ given X’s parent instantiation u.

For our new types of variables (toggle variables) Pi, Po, Cinc and Cdec, we need
to derive different sufficient statistics. They are quite similar so we just take Pi as an
example. Let UPi be its parent U ’s instantiation when event Pi can happen. The ESS we
need are M̄Pi |UPi : the expected number of times Pi changes conditioned on it parent
instantiation UPi . Since event Pi can only occur when U = Upi , the ESS M̄Pi |UPi is
just MPi , the total number of times Pi changes. We also need the total expected amount
of time that packet-in occurred while U = Upi .

In EM, we use the ESS as if they were the true sufficient statistics to maximize the
likelihood with respect to the parameters. For a “regular” CTBN variable X (such as
our hidden variable H and M ), the following equation performs the maximization.

QX |u(x, x′) =
M̄ [x, x′|u]

T̄ [x|u]

For our new toggle variable, i.e. Pi, the maximization is

QPi|u =
MPi

T [U = u]

The above sufficient statistics can be calculated using the exact inference algorithm
of [21].

4.5 Online Testing Using Forward Pass Likelihood Calculation

Once the CTBN model has been fit to historic data, we detect attacks by computing
the likelihood of a window of the data under the model. If the likelihood falls below a
threshold, we flag the window as anomalous. Otherwise, we mark it as normal.

In our experiments, we fix the window to be of a fixed time length, Tw. Therefore, if
the window of interest starts at time T , we wish to calculate p(Y (T, T +Tw) | Y (0, T ))
where Y (s, t) represents the joint trajectory of Cinc, Cdec, Pi, and Po from s to t. This
involves integrating out the trajectories of U and H and can be calculated in an on-line
fashion using the standard forward passing inference algorithm [1].

5 Experiment Results

To demonstrate the effectiveness of our methods, we compare our CTBN models to
three existing methods in the literature on two different real-world network traffic
datasets and with three different attack types.
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5.1 Data Sets

We verify our approaches on two publicly available real-traffic trace repositories: the
MAWI working group backbone traffic [23] and LBNL/ICSI internal enterprise
traffic [24].

The MAWI backbone traffic is part of the WIDE project which collects raw daily
packet header traces since 2001. It collects the network traffic through the inter-Pacific
tunnel between Japan and the USA. The dataset uses tcpdump and some IP anonymiz-
ing tools to record 15-minute traces everyday, and consists mostly of traffic from or to
some Japanese universities. In our experiment, we use the traces from January 1st to
4th of 2008, with 36,592,148 connections over a total time of one hour.

The LBNL traces are recorded from a medium-sized site, with emphasis on char-
acterizing internal enterprise traffic. Publicly released in some anonymized forms, the
LBNL data collects more than 100 hours network traces from thousands of internal
hosts. From what is publicly released, we take one hour traces from January 7th, 2005
(the latest date available), with 3,665,018 total connections.

5.2 Experiment Setup

For each of the datasets, we pick the ten most active hosts. To create a relatively abun-
dant dataset based on the original packet traces, we constructed a training-testing set
pair for each IP address. We use half of the traces as a training set to learn the CTBN
model for a given IP (host). The other traces we save for testing. Since all the traces
contain only normal traffic, we use trace-driven attack simulators to inject abnormal
activities into the test traces to form our testing set. The three types of attack simulators
are an IP Scanner, W32.Mydoom, and Slammer [25]. We select a point somewhere in
the first half of the test trace and insert worm traffic for a duration equal to α times the
length of the full testing trace. The shorter α is, the harder it is to detect the anomaly.

We also scaled back the rates of the worms. When running at full speed, a worm is
easy to detect for any method. When it slows down (and thus blends into the background
traffic better), it becomes more difficult to detect. We let β be the scaling rate (e.g. 0.1
indicates a worm running at one-tenth its normal speed).

For each algorithm (our CTBN algorithm and those below), we compute its score
on consecutive non-overlapping windows of Tw = 50 seconds in the testing set. If the
score exceeds a threshold, we declare the window a positive example of a threat. We
evaluate the algorithm by comparing to the true answer: a window is a positive example
if at least one worm connection exists in the window.

5.3 Other Methods

We compare against the nearest neighbor algorithms used in [19]. Not all of the features
in [19] are available. The features available in our datasets are shown in Figure 6.

Notice that these features are associated with each connection record. To apply the
nearest neighbor method to our window based testing framework, we first calculate the
nearest distance of each connection inside the window to the training set, and assign
the maximum among them as the score for the window.
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# packets flowing from source to destination
# packets flowing from destination to source
# connections by the same source in the last 5 seconds
# connections to the same destination in the last 5 seconds
# different services from the same source in the last 5 seconds
# different services to the same destination in the last 5 seconds
# connections by the same source in the last 100 connections
# connections to the same destination in the last 100 connections
# connections with the same port by the same source in the last 100 connections
# connections with the same port to the same destination in the last 100 connections

Fig. 6. Features for nearest neighbor approach of [19]
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Fig. 7. ROC curves of testing results on IP scanning attack. Top: MAWI. Bottom: LBNL.

We also compare with a connection counting method. As most worms aggregate
many connections in a short time, this method captures this particular anomaly well.
We score a window by the number of initiated connections in the window.

Finally, we employ the adaptive naive Bayes approach of [20], which shows promis-
ing results on similar problems. We also follow the feature selection presented in this
paper, while not all of them are available in our dataset. To train the Naive Bayes
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Fig. 8. ROC curves of testing results on Mydoom attack. Top: MAWI. Bottom: LBNL.

network parameters, we use five available features: the number of new connections
in the previous three windows and the entropy of the number of distinct destination IPs
and ports in the current window. All the features are discretized into six evenly spaced
bins. These features are not exactly the same as those from the nearest neighbor. Each
method was tuned by the authors to work as well as possible, so we try to follow each
of their methodologies as best as possible to give a fair comparison; this includes the
selection of features.

5.4 ROC Curves

Figure 7 compares the ROC curve for our method to those of the other methods for the
IP scanning attack. The curves show the overall performance on the 10 hosts we chose
for each dataset. α represents the fraction of time during which the attack is present and
β represents the speed of the attack. The curves demonstrate that as the attack becomes
more subtle (β is smaller), our method performs relatively better compared with other
methods. Figures 8 and 9 show the same curves but for the Mydoom and Slammer
attacks.
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Fig. 9. ROC curves of testing results on Slammer attack. Top: MAWI. Bottom: LBNL.

Each point on the curve corresponds to a different threshold of the algorithm. Be-
cause attacks are relatively rare, compared to normal traffic, we are most interested in
the region of the ROC curve with small false positive rates.

We note that our method out performs the other algorithms consistently for the
MAWI dataset. For the LBNL dataset, with the Mydoom and Slammer attacks, some
of the other methods have better performance, in particular a simple connection count-
ing method performs the best. We are uncertain of the exact reason, but suspect it may
be due to differences in the traffic type (in particular, the LBNL data comes from en-
terprise traffic). The addition of a hidden variable to our model allows us to model
non-exponential durations. However, the complexity of such a phase-type distribution
depends on the number of states in the hidden variable. If there are not enough states
to model the true duration distribution, the algorithm may end up with an exponential
model (at least for some events). Exponential models do not disfavor (in terms of likeli-
hood) many quick transitions, compared to heavier tailed distributions. This might lead
to worse performance in exactly the same situations where a connection-count method
would work well. We hope to add more hidden states in the future to overcome this
limitation.
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6 Conclusions

We developed a new method for detecting network intrusions in the host level. Rather
than treating packets and connections as i.i.d sequences, we model the network traffic by
a generative probabilistic model that respects the ordering of events. The only features
we used were packet and connection timings. We do not require labeled data, thus vastly
improving the automation of the detection.
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Abstract. This paper proposed StrAP (Streaming AP), extending
Affinity Propagation (AP) to data steaming. AP, a new clustering al-
gorithm, extracts the data items, or exemplars, that best represent the
dataset using a message passing method. Several steps are made to build
StrAP. The first one (Weighted AP) extends AP to weighted items with
no loss of generality. The second one (Hierarchical WAP) is concerned
with reducing the quadratic AP complexity, by applying AP on data
subsets and further applying Weighted AP on the exemplars extracted
from all subsets. Finally StrAP extends Hierarchical WAP to deal with
changes in the data distribution. Experiments on artificial datasets, on
the Intrusion Detection benchmark (KDD99) and on a real-world prob-
lem, clustering the stream of jobs submitted to the EGEE grid system,
provide a comparative validation of the approach.

1 Introduction

Data Streaming, one major task of Data Mining [1,2,3,4,5], aims to providing
a compact description of the data flows generated by e.g., telecommunications,
sensor networks, or Internet traffic. Data Streaming works under severe algo-
rithmic constraints due to the size and dynamics of the data flow, since the
underlying distribution of the data flow continuously evolves with the users, the
usage and the application context.

Data Streaming is interested in various goals, e.g., computing approximate
statistics [6,7], detecting novelties [1], or monitoring the top-K events [8] to name
a few. This paper more specifically focuses on the identification of the clusters
represented in the data stream, with the modelling of the jobs submitted to the
EGEE grid1 as motivating application.

The challenge is to achieve a good clustering behaviour, specifically enforcing
a low distortion (more on this in Section 2) with low computational complexity,
while swiftly adapting to the changes in the underlying distribution. An addi-
tional requirement is that a cluster should be represented by an actual data item
(here, a job), as opposed to an average item, for the application domain hardly
enables to consider artefacts. Under this requirement, clustering defines a combi-
natorial optimization problem, referred to as K-centers: i/ find the appropriate
1 The EGEE grid, established in the EU project Enabling Grid for e-Science in Eu-

rope, http://www.eu-egee.org/) involves 41,000 CPUs and 5 Petabytes storage; it
supports 20,000 concurrent jobs on a 24×7 basis.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 628–643, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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number K of clusters; ii/ retain the best K items, referred to as exemplars,
which constitute the best representatives of all items.

The proposed approach is based on a new clustering algorithm accommodat-
ing the above requirement, called Affinity Propagation (AP) [9,10]. AP (Section
2.1) defines an energy-based formulation of the K-centers combinatorial opti-
mization problem, which is solved using a message passing algorithm akin belief
propagation. The direct use of AP for Data Streaming however raises two difficul-
ties. Firstly, AP has been designed for batch clustering, and it must be adapted
to online clustering to handle data streams. Secondly, and most importantly, AP
suffers from its quadratic computational complexity in the number N of items.

The work presented in this paper extends AP to Data Streaming, and proposes
three contributions. The first one extends AP to deal with duplicated items with
no loss of performance (Weighted AP algorithm, WAP). The second one, called
Hierarchical WAP (Hi-WAP), aims at decreasing the computational complexity
to O(N1+α) (α > 0), taking inspiration from [11]: the idea is to partition the
dataset, run AP on each subset, and apply WAP to the collection of exemplars
constructed from each subset. The third one, StrAP, achieves online cluster-
ing, storing the outliers and occasionally updating the exemplars. Two update
criteria have been considered. The first one is based on the number of outliers;
when it reaches a predefined threshold, Hi-WAP is applied to the current ex-
emplars and the outliers. The second one is based on the so-called Page-Hinkley
change-point detection statistical test [12,13], observing the outlier rate. When
a change point is detected, Hi-WAP is likewise applied on the current exem-
plars and the outliers. The experimental validation on artificial datasets, on the
KDD99 benchmark dataset, and on the real-world dataset of the EGEE jobs,
demonstrates the relevance of the approach compared to K-centers and the Den-
Stream algorithm [4].

The paper is organized as follows. After presenting AP for the sake of com-
pleteness, Section 2 describes the first two extensions, Weighted and Hierarchical
AP. Section 3 gives an overview of StrAP. Section 4 describes the experimental
setting and the datasets used for the experimental validation of the approach.
Finally, Section 5 and 6 report on the experimental results, using K-centers and
DenStream as baselines. The approach is discussed w.r.t. related work and the
paper concludes with some perspectives for further research.

2 Affinity Propagation and Scalable Extensions

For the sake of self-containedness, this section first describes the AP algorithm,
referring the reader to [9,10] for a comprehensive introduction. Two AP exten-
sions are thereafter described, respectively handling the case of weighted items,
and the merge of partial solutions.

2.1 Affinity Propagation

Let E = {e1, . . . eN} be a set of items, and let d(i, j) denote the distance or
dissimilarity between items ei and ej . Letting K denote a positive integer, the
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K-center problem consists of finding K items in E , referred to as exemplars and
denoted ei1 , . . . , eiK , such that they minimize the sum, over all items ej , of the
minimal squared distance between ej and eik

, k = 1 . . .K.
The Affinity Propagation approach proposes an equivalent formalization of the

K-center problem, defined in terms of energy minimization. Let σ(i) associate
to each item ei the index of its nearest exemplar, then the goal is to find the
mapping σ maximizing the functional E[σ] defined as:

E[σ] =
N∑

i=1

S(ei, eσ(i)) −
N∑

i=1

χi[σ] (1)

where S(ei, ej) is set to −d(i, j)2 if i �= j, and is set to a small constant −s∗,
s∗ ≥ 0 called preference otherwise. The second term in the energy function
expresses that if ei is selected as an exemplar by some items, it has to be its own
exemplar2, with χi[σ] = ∞ if σ(σ(i)) �= σ(i) and 0 otherwise.

Aside from the consistency constraints, the energy function thus enforces a
tradeoff between the distortion, i.e. the sum over all items of the squared error
d(i, σ(i))2 committed by assimilating item ei to its nearest exemplar eσ(i), and
the cost of the model, that is s∗ × |σ| if |σ| denotes the number of exemplars
retained. Eq. (1) thus does not directly specify the number of exemplars to be
found, as opposed to K-centers. Instead, it specifies the penalty s∗ for allowing
an item to become an exemplar; note that for s∗ = 0, the best solution is the
trivial one, selecting every item as an exemplar.

The resolution of the optimization problem defined by Eq. (1) is achieved
by a message passing algorithm, considering two types of messages: availability
messages a(i, k) express the accumulated evidence for ek to be selected as the
best exemplar for ei; responsibility messages r(i, k) express the fact that ek is
suitable to be the exemplar of ei.

All availability and responsibility messages a(i, k) and r(i, k) are set to 0
initially. Their values are iteratively adjusted3 by setting:

r(i, k) = S(ei, ek) − maxk′,k′ �=k{a(i, k′) + S(ei, e
′
k)}

r(k, k) = S(ek, ek) − maxk′,k′ �=k{S(ek, e′k)}
a(i, k) = min {0, r(k, k) +

∑
i′,i′ �=i,k max{0, r(i′, k)}}

a(k, k) =
∑

i′,i′ �=k max{0, r(i′, k)}

The index of exemplar σ(ei) associated to ei is finally defined as:

σ(i) = argmax {r(i, k) + a(i, k), k = 1 . . .N} (2)

The algorithm is stopped after a maximal number of iterations or when the
exemplars did not change for a given number of iterations.
2 This constraint is relaxed by the soft-constraint AP (SCAP) [14], unveiling the hier-

archical cluster structure in the data set while AP is biased toward regularly shaped
clusters. The extension of the presented approach to SCAP is left for further study.

3 Numerical oscillations are avoided by using a relaxation mechanism; empirically, the
actual value is set to the half sum of the old and new values [9].
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As could have been expected, Affinity Propagation is not to be seen as a
universally efficient data clustering approach. Firstly, linear and robust algo-
rithms such as K-means should be preferred to AP in domains where artefact
items can be constructed4. Secondly, and most importantly, AP suffers from a
quadratic computational complexity in the number N of items: on the one hand,
dissimilarities d(i, j) must be computed; on the other hand, the message pass-
ing algorithm converges with complexity O(N2logN), hindering its direct use
in large-scale applications. By convention, in the following notation Õ(P ) will
stand for O(P × polynom(log P )).

2.2 Weighted and Hierarchical WAP

Two extensions of AP, aiming at a lesser computational complexity, are presented
in this section.

Weighted AP. A preliminary step is to extend AP in order to deal with
multiply-defined items. Let dataset E ′ = {(ei, ni)} involve ni copies of item
ei, for i = 1 . . . L. Let us consider the dissimilarity matrix S′ defined as:

S′(ei, ej) =
{

−nid(i, j)2 if i �= j
s∗ + (ni − 1) × εi otherwise, εi ≥ 0

Proposition. The combinatorial optimization problem of finding σ : {1 . . . L}
minimizing

E′[σ] =
L∑

i=1

S′(ei, eσ(i)) −
L∑

i=1

χi[σ] (3)

is equivalent, for εi = 0, to the optimization problem defined by Eq. (1) for E
made of the union of ni copies of ei, for i = 1 . . . L.

Proof
In the optimization problem defined by Eq. (1), assume that ei actually represents
a set of ni identical copies; the penalty S(ei, ej) of selecting ej as exemplar of ei

thus is the cost of selecting ej as exemplar for each one of these copies. Therefore
S′(ei, ej) = ni × (−d(i, j)2).

Likewise, let ei be unfolded as a set of ni (almost) identical copies {ei1 , . . . ,
eini

}, and let us assume that one of them, say ei1 is selected as exemplar. One
thus pays the preference penalty s∗, plus the sum of the dissimilarities between
ei1 and the other copies in ei, modelled as (ni − 1)εi. Constant εi thus models
the average dissimilarity among the ni copies of ei.

Hierarchical WAP. Hierarchical WAP proceeds by launching AP on subsets
of the current dataset, and thereafter launching WAP on the dataset made of
all exemplars extracted from the subsets.

4 Selecting the best set of artefacts out of τ independent runs of K-means usually
enforce a high-quality distortion, with complexity τ × K × N .
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Formally, let dataset E be equally divided into
√

N subsets noted Ei, i =
1 . . .

√
N . Running AP on Ei outputs Ki exemplars noted {ei1,, . . . eiKi

}; let us
denote nij the number of items in Ei having eij as nearest exemplar.

Define E ′ = {(eij , nij ), i = 1 . . .
√

N, j = 1 . . .Ki}. Hi-WAP launches WAP
on E ′, and returns the produced exemplars.

Proposition. The complexity of Hi-WAP is Õ(N
3
2 ).

Proof. The construction of E ′ is in Õ(N
3
2 ), since AP is applied

√
N times on

datasets of size
√

N .
Letting K be an upper bound on the number of exemplars learned from every

subset Ei, WAP thus achieves the distributed clustering of the exemplars extracted
from all Ei with complexity Õ(N

1
2 ×K2). The total complexity then is Õ(NK2 +

N
3
2 ), where term N

3
2 is dominant since

√
N > K.

Iterating this hierarchical decomposition along the same lines as [11] leads
to decrease the complexity to Õ(N1+α); on-going research is concerned with
bounding the loss of distortion incurred by Hi-WAP. Experimentally, the dis-
tortion loss is found to be very moderate while the computational cost decreases
by one order of magnitude or more. Therefore, in the following we will use indif-
ferently AP or Hi-WAP, referred to as ∗

AP, depending on the pressure on the
computational resources and the size of the data.

3 Data Streaming with AP

This section describes the StrAP algorithm, extending AP to Data Streaming,
involving four main steps (Alg. 1):

1. The first bunch of data is used by ∗
AP to compute the first exemplars and

initialize the stream model.
2. As the stream flows in, each data item et is compared to the exemplars; if too
far from the nearest exemplar, et is put in the reservoir, otherwise the stream
model is updated accordingly (section 3.1).
3. The restart criterion is triggered if the number of outliers exceeds the reservoir
size, or upon a change point detection in the data distribution (section 3.2).
4. If it is triggered, the stream model is rebuilt from the current exemplars and
the reservoir, using ∗

AP again (section 3.3).
The stream model is available at any time. The performance of the process is

measured from the average distortion and the clustering accuracy (section 3.4).

3.1 AP-Based Model and Update

The model of the data stream used in StrAP is inspired from DbScan [15]
and DenStream [4]. It consists of 4-tuple (ei, ni, Σi, ti), where ei ranges over
the exemplars, ni is the number of items associated to exemplar ei, Σi is the
distortion of ei (sum of d(e, ei)2, where e ranges over all items associated to ei),
and ti is the last time stamp when an item was associated to ei.
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For each new item et, its nearest exemplar ei is computed; if d(et, ei) is less
than some threshold ε, heuristically set to the average distance between points
and exemplars in the initial model, et is affected to the i-th cluster and the
model is updated accordingly; otherwise, et is considered to be an outlier, and
put in the reservoir.

In order to avoid the number of exemplars to grow beyond control, one must
be able to forget the exemplars that have not been visited for some time. Accord-
ingly, a used-specified window length Δ is considered; when item et is associated
to exemplar ei, the model update is thus defined as:

ni := ni ×
(

Δ
Δ+(t−ti)

+ 1
ni+1

)
Σi := Σi × Δ

Δ+(t−ti)
+ ni

ni+1d(et, ei)2 ti := t

Simple calculations show that the above update rules enforce the model stability
if exemplar ei is selected on average by ni examples during the last Δ time steps.
The sensitivity analysis w.r.t. Δ is discussed in section 6.2.

3.2 Restart Criterion

A key difficulty in Data Streaming is to tell an acceptable ratio of outliers from
a change in the generative process underlying the data stream, referred to as
drift. In case of drift, the stream model must be updated. In some domains, e.g.,
continuous spaces, smooth updates can be achieved by gradually moving the
centers of the clusters. When artefacts cannot be considered, the centers of the
clusters must be redefined. In such domains, the data streaming process thus
needs a restart criterion, in order to decide whether to launch the selection of
new exemplars.

Two restart criteria have been considered. The first one is most simply based
on the number of outliers in the reservoir; when it exceeds the reservoir size, the
restart criterion is triggered. The second criterion is based on the distribution of
the data items5. Let us consider the sequence of items et; define pt as c/(1 + ot)
where ot is the fraction of non-outliers and c is 1 (resp. 2) if et is an outlier (or
not). If a drift occurs in the data distribution, then sequence pt should display
some change; the restart criterion is triggered upon detecting such a change.

Among the many change point detection tests, the so-called Page-Hinkley test
(PH) [12,13] has been selected as it minimizes the expected detection time for a
prescribed false alarm rate. Formally, the PH test is controlled after a detection
threshold λ and tolerance δ, as follows:

p̄t = 1
t

∑t
�=1 p� mt =

∑t
�=1 (p� − p̄� + δ)

Mt = max{m�, 
 = 1...t} PHt = (Mt − mt) > λ

Parameter δ is set to 10−2 in all experiments. The sensitivity analysis w.r.t. λ is
presented in section 6.1.

5 In case the number of outliers exceeds reservoir size, the new outlier replaces the
oldest one in reservoir; a counter keeping track of the removed outliers is incremented.
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3.3 Model Rebuild

Upon triggering of the restart criterion, Weighted AP is launched on E =
{(ei, ni)} ∪ {(e′j , 1)}, where (ei, ni) denotes an exemplar of the current stream
model together with the associated size ni, and e′j is an outlier item in the
reservoir. Penalties are defined after section 2.2, as follows:

S(ei, ei) = s∗ + Σi S(e′j, e
′
j) = s∗

S(ei, ej) = −ni d(ei, ej)2 S(ei, e
′
j) = −ni d(ei, e

′
j)

2

S(e′j, ei) = −d(ei, e
′
j)

2

After the new exemplars have been selected by WAP from E , the stream model
is defined as follows. Formally, let f denote a new exemplar and let e1, . . . em

(respectively e′1, . . . , e
′
m′) be the previous exemplars (resp. reservoir items) as-

sociated to f . With no difficulty, the number n of items associated to f is set
to n1 + . . . + nm + m′. The associated distortion Σ is estimated as follows. Let
e be an item associated to e1. Indeed e is no longer available; but assuming an
Euclidean space, e can be modelled as a random item e1 + Xv, where v is a
random vector in the unit ball, and X is a scalar random variable with normal
distribution. It comes:

||f − e||2 = ||f − e1||2 + ||e1 − e||2 − 2〈f − e1, Xv〉
= d(f, e1)2 + d(e1, e)2 − 2X〈f − e1, v〉

Therefore, taking the expectation, IE[d(f, e)2] = d(f, e1)2 + 1
n1

Σ1. Accordingly,

Σ =
m∑

i=1

(
nid(f, ei)2 + Σi

)
+

m′∑

i=1

d(f, e′i)
2

Finally, t is set to the maximal time stamp associated to ei and e′j , for ei and e′j
ranging among the exemplars and outliers associated to f .

Algorithm 1. StrAP Algorithm
Datastream e1, . . . et, . . .; fit threshold ε
Init

∗
AP(e1, . . . , eT ) → StrAP Model section 3.1

Reservoir = {}
for t > T do

Compute ei = nearest exemplar to et section 3.1
if d(et, ei) < ε then

Update StrAP model section 3.1
else

Reservoir ← et

end if
section 3.2if Restart criterion then

Rebuild StrAP model section 3.3
Reservoir = {}

end if
end for
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3.4 Evaluation Criterion

Distortion. The performance of StrAP is first measured after the overall
distortion D, measured as follows. When a new item et is associated to exemplar
ei, D is incremented by d(et, ei)2. The distortion due to outliers is estimated a
posteriori; after every restart, the average square distance d̄2 of the reservoir
items to the new exemplars is computed, and D is incremented by d̄2 times
the number of items put in the reservoir since the previous restart (taking into
account the outliers removed from reservoir when using PH restart criterion,
section 3.2).

Accuracy of Clustering. In the case where the items are labeled, the cluster-
ing quality is also commonly assessed after the purity of the clusters. An item
associated to an exemplar is correctly classified (respectively, misclassified) if its
class is same (resp. different) as the exemplar class. The accuracy, the error rate
and the percentage of outliers, sum up to 100%.

4 Goal of the Experiments and Setting

The algorithms presented in sections 2.2 and 3 raise two main questions.
The first question is whether Hi-WAP, designed for reducing the compu-

tational effort of AP, does so at the expense of a significant increase of the
distortion. The tradeoff between the computational cost and the distortion will
be assessed by experimentally comparing Hi-WAP with (batch) AP, on the one
hand, and with other hierarchical variants (involving K-centers and AP, as op-
posed to WAP) on the other hand (Section 5). The experiments firstly involve
benchmark datasets, kindly provided by E. Keogh [16]. As the focus essentially
concerns the scalability of Hi-WAP, only the largest two datasets (Faces and
Swedish leaves, respectively including 2250 and 1125 examples) have been con-
sidered. Secondly, a real-world dataset describing the 237,087 jobs submitted
to the EGEE grid system, has been considered. Each job is described by five
attributes:

1. the duration of waiting time in a queue;
2. the duration of execution;
3. the number of jobs waiting in the queue when the current job arrived;
4. the number of jobs being executed after transiting from this queue;
5. the identifier of queue by which the job was transited.

Note that the behavior might be significantly different from one queue to another.
The expert is willing to extract representative actual jobs (as opposed to virtual
ones, e.g. executed on queue 1 with weight .3 and on queue 2 with weight .7),
which is the main applicative motivation for using AP. The dissimilarity of two
jobs xi and xj is the sum of the Euclidean distance between the numerical
description of xi and xj , plus a weight wq if xi and xj are not executed on the
same queue. Further, the EGEE dataset involves circa 30% duplicated items
(different jobs with same description).
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The second question regards the performance of StrAP algorithm. As a clus-
tering algorithm, it is meant to enforce a low distortion and high purity; as a
streaming algorithm, it is required to efficiently adapt to the changing distribu-
tion of data stream. StrAP performances are assessed comparatively to those of
DenStream [4] (Section 6), using an artificial stream generator, and the Intrusion
Detection benchmark data set referred to as KDD Cup 1999 [17,18].

The stream generator is parameterized from the dimension D of the data
items, and the number M of target exemplars. Each target exemplar ei is uni-
formly selected in [−1, 1]D and its probability pi(t) evolves along time propor-
tionally to wi × sin(ωit + ϕi), where weight wi, frequency ωi and phase ϕi are
uniformly selected respectively in [1, 100], [0, 2π], and [−π/2, π/2]. At time step
t, exemplar ei is selected with probability pi(t), and item et is set to ei plus
gaussian noise.

The Intrusion Detection dataset we used includes 494,021 network connection
records (71MB). Records are distributed among 23 classes, the normal class
and the specific kinds of attack, such as buffer overflow, ftp write, guess passwd,
neptune. Out of the 41 attributes, only the numeric 34 ones have been used after
[4], and cast such as they have same range of variation6.

All reported computational times have been measured on Intel 2.66GHz Dual-
Core PC with 2 GB memory.

5 Experimental Validation of Hi-WAP

This section reports on the performances of Hi-WAP, specifically the tradeoff
between the computational effort and the distortion, on benchmark datasets and
the real-world EGEE dataset.

5.1 Experimental Setting

On each dataset E of size N , the experiments were conducted as follows:

– E is partitioned into
√

N subsets of equal size noted Ei.
– Hi-WAP (respectively Hi-AP):

1. On Ei, the preference s∗i is set to the median of the pair similarities in
the subset. WAP (respectively AP) is launched and produces a set of
exemplars.

2. WAP (respectively AP) is launched on the union of the exemplar set,
varying preference s∗ from the minimum to the median distance of the
exemplar pairs.

– Hierarchical K-centers:
1. In parallel, K-centers is launched 120 times on each Ei, where K is set to

the average number of exemplars extracted from the Ei. The best set of
exemplars (w.r.t. distortion) is retained; let C denote the union of these
best sets of exemplars.

6 Attribute duration is changed from seconds into minutes; src bytes and dst bytes
are converted from byte to KB; log is used on count, srv count, dst host count,
dst host srv count.
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2. For each K, varying in the interval defined by the number of clusters
obtained by Hi-WAP, 20 independent runs of K-centers are launched
on C, and the best set of exemplars is returned. The number of indepen-
dent runs is such that Hierarchical K-centers and Hi-WAP have same
computational cost for a fair comparison.

– The two approaches are graphically compared, reporting the distortion vs
the number of clusters obtained by respectively Hierarchical K-Centers, Hi-

WAPand Hi-AP.

5.2 Experimentation on Benchmark Dataset

As mentioned in Section 4, the benchmark datasets involve the largest two
datasets from E. Keogh [16]. Table 1 displays the distortion obtained by K-
centers and AP in non hierarchical and hierarchical settings. The number K of
clusters is set to the number of classes (Table 1.(a)) or defined by AP (Table
1.(b); s∗ is set to the median distance). N and D respectively stand for the
number of items and the number of dimensions of the dataset.

After Table 1.(a), the loss of distortion incurred by Hi-WAP compared with
AP is about 3.3% in the face dataset, and 5.7% in the Swedish leaf case; the
distortion is about the same as for (non hierarchical) K-centers. The computa-
tional time is not relevant here due to the extra-cost of setting s∗ in order to
enforce the desired number of clusters.

After Table 1.(b), AP significantly improves on K-centers (left part) in terms
of distortion, by 14% in the face dataset and 27% in the Swedish leaf dataset;
Hi-WAP similarly improves on hierarchical K-centers (right part), by 7% in the
face dataset and 2% in the Swedish leaf dataset. Hierarchical variants improve
over batch one by at least one order of magnitude in terms of computational

Table 1. Experimental results: Comparative Distortion of K-centers, AP, Hierarchical
K-centers, Hi-AP and Hi-WAP. All results reported for K-centers variants are the
best ones obtained with same computational effort as for AP variants.

(a). The number K of clusters is set to the number of classes.
Data K N D Non Hierarchical Hierarchical

KC AP KC Hi-AP Hi-WAP

Face (all) 14 2250 131 189370 183265 198658 190496 189383
Swedish Leaf 15 1125 128 20220 19079 20731 20248 20181

(b). K is fixed after AP or Hi-WAP, for s∗ set to the median distance.
Data N D Non Hierarchical Hierarchical

K(AP) KC AP K(Hi-WAP) KC Hi-AP Hi-WAP

Face 2250 131 168 100420 88282 39 172359 164175 160415
(all) (128 sec) (3 sec)

Swedish 1125 128 100 12682 9965 23 21525 20992 21077
Leaf (21 sec) (1.4 sec)
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cost; the distortions cannot be directly compared as the number of clusters is
different.

5.3 Experimentation on the EGEE Dataset

The real-world dataset describing the jobs submitted to the EGEE grid (section
4) is used to compare the distortion incurred by hierarchical clusterings, K-
centers, Hi-AP and Hi-WAP, after the same procedure as in section 5.1; AP
cannot be used on this dataset as it does not scale up. The number K of clusters
for K-centers is set to 15; 120 independent K-centers runs are launched, and
the best distortion is reported, for a fair comparison (same computational cost
and overall number of clusters). The first phase (clustering all

√
N datasets)

amounts to 10 minutes for K-centers and Hi-WAP, and 26 minutes for Hi-AP

due to the duplications in the dataset). Note that the computational cost of this
first phase can trivially be decreased by parallelization.

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

5

D
is

to
rt

io
n

N. of clusters: K

Distortion of hierarchical K−centers
Distortion of HI−AP
Distortion of HI−WAP

Fig. 1. Distortion of hierarchical K-centers, Hi-AP and Hi-WAP on the EGEE job
dataset

The various distortions obtained when varying the number K of clusters and
the preference s∗ are reported in Fig. 1, showing that Hi-WAP improves on
both Hi-AP and K-centers; the distortion is decreased by a factor 2 compared
to K-centers and the computational cost (not shown) is decreased by a factor 3
compared to Hi-AP.

6 Experimental Validation of StrAP

This section reports on the experimental validation of StrAP on a synthetic
dataset and on the Intrusion Detection dataset (KDD99), described in Section
4. Results obtained on the EGEE dataset are omitted due to lack of space.

The initialization of the stream model (Section 3) considers the first 800 (syn-
thetic data) or 1000 (KDD99) items.
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6.1 Synthetic Data Stream

The dynamics of the synthetic data stream is depicted on Fig. 2; the only clus-
ters represented at the beginning are clusters 2, 7, and 9. Representatives of
cluster 0 appear shortly after the initialization; they are first considered to be
outliers (legend ∗); using the Page-Hinkley restart criterion (λ=5, δ=0.01), the
first restart indicated by a vertical line occurs soon after. The same pattern is
observed when the first representatives of clusters 3, 5 and 8 appear; they are
first considered to be outliers, and they respectively trigger the second, third
and fourth restarts thereafter. The small number of the “true” clusters makes it
unnecessary to use a windowing mechanism (section 3.1).
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Fig. 2. Performance of StrAP on the synthetic data stream

Table 2 displays the performances of StrAP with respect to the percentage
of outliers, the error rate7, and the distortion, depending on the restart criterion
used, and the parameters thereof.

Table 2. Experimental results of StrAP on the synthetic data stream

Restart Outlier (%) Error N. of restart N. of clusters Distortion Runtime
5 0.13 0 4 16 4369521

PH, 10 0.17 0 4 16 4369410 19 sec
δ=0.01, λ= 20 0.62 0 4 20 4159085
Maximum 50 0.20 0 4 16 4334710

size of 100 0.41 0 4 19 4116768 20 sec
reservoir 300 1.34 0 4 25 3896671

All clusters are pure. Interestingly, when the restart criterion becomes less
sensitive (increasing parameter λ or reservoir size MaxSizeR), the outlier rate

7 The classes of the items in the synthetic dataset correspond to the original exemplars
respectively used to generate the items.
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increases together with the number of clusters, while the number of restarts re-
mains constant. A tentative interpretation is that, the less sensitive the restart,
the more outliers and the more diverse the reservoir becomes; this diversity
results in a higher number of clusters, decreasing the distortion. The computa-
tional time is circa 20 seconds for 100,000 items. Similar results are obtained for
various number of dimensions (D = 30 in Table 2).

6.2 Intrusion Detection Dataset

The 494,021-transaction Intrusion Detection dataset is handled as a stream after
[4]. StrAP performances are measured and compared with those of Denstream,
in terms of error rate, outlier rate, and computational time. The sensitivity of
results w.r.t. window length parameter Δ (section 3.1) is reported on Fig. 3.
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Fig. 3. Performance of StrAP on KDD99 dataset: comparing restart criterion PH
(λ = 20) and Reservoir size (MaxSizeR = 300), depending on window length Δ

Fig. 3 (a) shows that StrAP clustered the Intrusion Detection data stream
with very low error rate (less than 1% for Δ > 15000; the error peak observed
for Δ = 20, 000 with the Page-Hinkley criterion is being investigated).

Fig. 3.(b) shows that the PH criterion improves on the Reservoir size, with
a lower percentage of outliers and a smaller computational time, though the
difference is not significant. The runtime is circa 7 minutes. It is worth noting
that StrAP only needs 1% of the data (initial subset plus the outliers) in order
to produce an accurate model (less than 1% error rate).

The online performance ofStrAP is displayed in Fig. 4, reporting the error rate
along time for Δ = 15000 and MaxSizeR = 300; restarts are indicated with stars.

Fig. 5 presents a comparative assessment of StrAP and DenStream [4], using
the same purity measure:

Purity = 100 × (
K∑

i=1

|Cd
i |

|Ci|
)/K

where K is the number of clusters, |Ci| is the size of cluster i and |Cd
i | is the

number of majority class items in cluster i. The clustering purity of DenStream
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Fig. 5. Comparative performances of StrAP and DenStream on the Intrusion Detec-
tion dataset

on the Intrusion Detection dataset was evaluated during four time windows of
length 1000 when some attacks happened. For a fair comparison, the clustering
purity of StrAP was computed during the same time windows, considering the
same 23 classes.

Fig. 5 respectively reports the results obtained for StrAP with one of the best
settings (Δ = 15000 and MaxSizeR = 300), an average setting (Δ = 5000 and
MaxSizeR = 300), and the results of DenStream found in [4]. In both StrAP

settings, similar number of clusters are obtained (respectively circa 45, 32, 55
and 8 in the four windows).

On the Intrusion dataset, StrAP thus consistently improves on DenStream;
as a counterpart, the computational time is higher by one or two orders of
magnitude ( 7 minutes against 7 seconds for DenStream), noting that StrAP is
written in Matlab.

6.3 Discussion

While many data streaming algorithms actually focus on the extraction of sta-
tistical information from data streams [6,7,8], ranging from the approximation of
frequent patterns [19] to the construction of decision trees [20], the most related
work is that of [4], similarly addressing unsupervised learning and clustering
from data streams. The DenStream algorithm upgrades the DbScan clustering
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algorithm [15] to dynamic environments; it mainly differs from StrAP regard-
ing the creation and update of clusters. Actually, DenStream does not construct
the final clusters unless requested to do so by the user; upon such a request, the
(most recent) items will be labeled after the clusters. While this “lazy” cluster-
ing and labeling behavior is more computationally efficient, it is suggested that
it is not well-suited to e.g., monitoring applications, when the goal is to identify
behavioral drifts as soon as they appear.

Another relevant work, presented by Cormode et al. [21], aims at the structure
of clusters in the stream. Interestingly, an extension of AP referred to as Soft-
Constraint AP (SCAP) has been proposed by [14]; SCAP is concerned with
identifying the relations between the exemplars. Further research will investigate
the extension of SCAP to data streaming, to address the structured cluster
extraction from data streams. Further work will also consider the detection of
anomalies (see e.g. [22]), considering outliers (or small clusters) as candidate
anomalies, and using StrAP as a pre-filter for anomaly detection.

7 Conclusion

The main contribution of this paper is to extend the Affinity Propagation al-
gorithm proposed by Frey and Dueck [9] along two perspectives. The first one
concerns the computational scalability; the ability to deal with large datasets is
indeed becoming a crucial requirement in Machine Learning and Data Mining.
The second one, concerned with online clustering, aimed at dealing with evolving
data distributions, and seamlessly updating the data model.

These extensions, encapsulated in the StrAP algorithm, have been empiri-
cally validated in the data streaming context, on two large sized datasets includ-
ing the Intrusion Detection dataset used as KDD99 benchmark problem, and
compared to the state-of-the art DenStream algorithm. While the accuracy of
the data model constructed by StrAP was found comparatively satisfactory,
the computational time is higher than for DenStream.

A first priority for further study is to provide theoretical guarantees for the
Hi-WAP algorithm; while it has been shown that the divisive schema can be
used to cut down the computational complexity and bring it down to a super-
linear one, it is most desirable to provide theoretical guarantees on the loss of
distortion incurred along the divisive process. The second priority regards a main
limitation of AP, namely the fact that the number of clusters is only indirectly
controlled from the preference parameter s∗. A strategy for adjusting this param-
eter, either globally after the desired number of clusters, or locally (depending
on the estimated density of the dataset), would alleviate this limitation.
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Abstract. Linear discriminant analysis (LDA) is commonly used for dimension-
ality reduction. In real-world applications where labeled data are scarce, LDA
does not work very well. However, unlabeled data are often available in large
quantities. We propose a novel semi-supervised discriminant analysis algorithm
called SSDACCCP . We utilize unlabeled data to maximize an optimality criterion
of LDA and use the constrained concave-convex procedure to solve the optimiza-
tion problem. The optimization procedure leads to estimation of the class labels
for the unlabeled data. We propose a novel confidence measure for selecting those
unlabeled data points with high confidence. The selected unlabeled data can then
be used to augment the original labeled data set for performing LDA. We also
propose a variant of SSDACCCP , called M-SSDACCCP , which adopts the man-
ifold assumption to utilize the unlabeled data. Extensive experiments on many
benchmark data sets demonstrate the effectiveness of our proposed methods.

1 Introduction

Linear discriminant analysis (LDA) [1, 2] is a commonly used method for dimension-
ality reduction. It seeks a linear projection that simultaneously maximizes the between-
class dissimilarity and minimizes the within-class dissimilarity to increase class
separability, typically for classification applications. Despite its simplicity, the effec-
tiveness and computational efficiency of LDA make it a popular choice for many
applications. Nevertheless, LDA does have its limitations. One of these arises in sit-
uations when the sample size is much smaller than the dimensionality of the feature
space, leading to the so-called small sample size (SSS) problem [3] due to severe under-
sampling of the underlying data distribution. As a result, the within-class scatter matrix
that characterizes the within-class variability is not of full rank and hence it is not in-
vertible. A number of methods have been proposed to overcome this problem, e.g.,
PseudoLDA [4], PCA+LDA [5], LDA/QR [6], NullLDA [3], and DualLDA [7]. Pseu-
doLDA overcomes the singularity problem by substituting the inverse of the within-
class scatter matrix with its pseudo-inverse. PCA+LDA first applies PCA [8] to project
the data into a lower-dimensional space so that the within-class scatter matrix computed
there is nonsingular, and then applies LDA in the lower-dimensional space. LDA/QR is
also a two-stage method which can be divided into two steps: first project the data to
the range space of the between-class scatter matrix and then apply LDA in this space.
NullLDA first projects the data to the null space of the within-class scatter matrix

∗ This research has been supported by General Research Fund 621407 from the Research Grants
Council of the Hong Kong Special Administrative Region, China.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 644–659, 2008.
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and then maximizes the between-class scatter in this space. It is similar to the Dis-
criminative Common Vectors method [9]. DualLDA, which combines the ideas from
PCA+LDA and NullLDA, maximizes the between-class scatter matrix in the range
space and the null space of the within-class scatter matrix separately and then inte-
grates the two parts together to get the final transformation. There is also another ap-
proach to address the SSS problem, with 2DLDA [10] being the representative of this
approach. The major difference between 2DLDA and the algorithms above lies in their
data representation. Specifically, 2DLDA operates on data represented as (2D) matri-
ces, instead of (1D) vectors, so that the dimensionality of the data representation can
be kept small as a way to alleviate the SSS problem. Another limitation of LDA is that
it only gives a linear projection of the data points. Fortunately, the kernel approach can
be applied easily via the so-called kernel trick to extend LDA to its kernel version,
called kernel discriminant analysis (KDA), that can project the data points nonlinearly,
e.g., [11]. Besides addressing these two limitations of LDA, some interesting recent
works also address other issues, e.g., to study the relationships between two variants
of LDA [12], to reformulate multi-class LDA as a multivariate linear regression prob-
lem [13], and to learn the optimal kernel matrix for KDA using semi-definite program-
ming (SDP) [14, 15].

In many real-world applications, it is impractical to expect the availability of large
quantities of labeled data because labeling data requires laborious human effort. On
the other hand, unlabeled data are available in large quantities at very low cost. Over
the past decade or so, one form of semi-supervised learning, which attempts to utilize
unlabeled data to aid classification or regression tasks under situations with limited
labeled data, has emerged as a hot and promising research topic within the machine
learning community. A good survey of semi-supervised learning methods can be found
in [16]. Some early semi-supervised learnng methods include Co-Training [17] and
transductive SVM (TSVM) [18, 19]. Recently, graph-based semi-supervised learning
methods [20, 21, 22] have attracted the interests of many researchers. Unlike earlier
methods, these methods model the geometric relationships between all data points in
the form of a graph and then propagate the label information from the labeled data
points through the graph to the unlabeled data points.

The objective of this paper is to alleviate the SSS problem of LDA by exploiting
unlabeled data. We propose a novel semi-supervised discriminant analysis algorithm
called SSDACCCP . Although there already exists another semi-supervised LDA al-
gorithm, called SDA [23], which exploits the local neighborhood information of data
points in performing dimensionality reduction, our SSDACCCP algorithm works in a
very different way. Specifically, we utilize unlabeled data to maximize an optimality
criterion of LDA and formulate the problem as a constrained optimization problem
that can be solved using the constrained concave-convex procedure (CCCP) [24, 25].
This procedure essentially estimates the class labels of the unlabeled data points. For
those unlabeled data points whose labels are estimated with sufficiently high confidence
based on some novel confidence measure proposed by us, we select them to expand the
original labeled data set and then perform LDA again. Besides SSDACCCP , we also
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propose a variant of SSDACCCP , called M-SSDACCCP , which adopts the manifold
assumption [20] to utilize the unlabeled data. Note that M-SSDACCCP shares the spirit
of both TSVM and graph-based semi-supervised learning methods.

The remainder of this paper is organized as follows. We first briefly review the tradi-
tional LDA algorithm in Section 2. We then present our SSDACCCP and M-SSDACCCP

algorithms in Section 3. Section 4 reports experimental results based on some com-
monly used data sets. Performance comparison with some representative methods are
reported there to demonstrate the effectiveness of our methods. Finally, some conclud-
ing remarks are offered in the last section.

2 Background

We are given a training set of n data points, D = {x1, . . . , xn}, where xi ∈ R
N , i =

1, . . . , n. Let D be partitioned into C ≥ 2 disjoint classes Πi, i = 1, . . . , C, where
class Πi contains ni examples. The between-class scatter matrix Sb and the within-
class scatter matrix Sw are defined as

Sb =
C∑

k=1

nk(m̄k − m̄)(m̄k − m̄)T

Sw =
C∑

k=1

∑

xi∈Πk

(xi − m̄k)(xi − m̄k)T ,

where m̄ = (
∑n

i=1 xi)/n is the sample mean of the whole data set D and m̄k =
(
∑

xi∈Πk
xi)/nk is the class mean of Πk. LDA seeks to find a projection matrix W ∗

that maximizes the trace function of Sb and Sw:

W ∗ = arg max
W

trace((WT SwW )−1WT SbW ), (1)

which has an analytically tractable solution. According to [26], the optimal solution
W ∗ for the problem (1) can be computed from the eigenvectors of S−1

w Sb, where S−1
w

denotes the matrix inverse of Sw. Since W ∗ computed this way is computationally
simple yet effective for many applications, the optimality criterion in (1) is often used
for many applications. Because the rank of Sb is at most C − 1, W contains C − 1
columns in most situations.

3 Semi-supervised Discriminant Analysis Via CCCP

In this section, we first present a theoretical result on the optimal solution for LDA.
We then show how to utilize unlabeled data to solve the optimization problem, lead-
ing to the SSDACCCP algorithm. Next, we incorporate the manifold assumption into
SSDACCCP to give M-SSDACCCP . Finally we give some discussions about our
methods.
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3.1 Optimal Solution for LDA

In our work, we use the following optimality criterion:

W ∗ = argmax
W

trace((WT StW )−1WT SbW ), (2)

where St is the total scatter matrix with St = Sb + Sw. It is easy to prove that the
optimal solution to the problem (2) is equivalent to that to the problem (1).

We assume that St is of full rank, or else we can apply principal component analysis
(PCA) [8] first to eliminate the null space of St without affecting the performance of
LDA since the null space makes no contribution to the discrimination ability of LDA
[27].

The following theorem on the optimal solution to the problem (2) is relevant here.

Theorem 1. For W ∈ R
N×(C−1),

max
W

trace((WT StW )−1WT SbW ) = trace(S−1
t Sb).

The proof of this theorem can be found in [26].

3.2 SSDACCCP : Exploiting Unlabeled Data to Maximize the Optimality
Criterion

Suppose we have l labeled data points x1, . . . , xl ∈ R
N with class labels from C classes

Πi, i = 1, . . . , C, and m unlabeled data points xl+1, . . . , xl+m ∈ R
N with unknown

class labels. So we have totally n = l + m examples available for training. Usually
l � m. When l is too small compared with the input dimensionality, LDA generally
does not perform very well. To remedy this problem, we want to incorporate unlabeled
data to improve its performance.

Inspired by TSVM [18, 19], which utilizes unlabeled data to maximize the mar-
gin, we use unlabeled data here to maximize the optimality criterion of LDA. Since
the optimal criterion value is trace(S−1

t Sb) (from Theorem 1), we utilize unlabeled
data to maximize trace(S−1

t Sb) via estimating the class labels of the unlabeled data
points.

We first calculate St as St =
∑n

i=1(xi − m̄)(xi − m̄)T , where m̄ = (
∑n

i=1 xi)/n is
the sample mean of all the data points. We define the class indicator matrix A ∈ R

n×C ,
where the (i, j)th element Aij is given by

Aij =
{

1 if xi ∈ Πj

0 otherwise
(3)

If D = (x1, . . . , xl, xl+1, . . . , xn) is the data matrix and Ak is a vector for the
kth column of A, then the class mean can be expressed as m̄k = DAk/nk, where
nk = AT

k 1n is the number of data points that belong to the kth class and 1n is an
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n-dimensional column vector of ones. Similarly, we can also express the sample mean
as m̄ = D1n/n. Then Sb can be calculated as

Sb =
C∑

k=1

nk(m̄k − m̄)(m̄k − m̄)T

=
C∑

k=1

nkD

(
Ak

nk
− 1n

n

) (
AT

k

nk
− 1T

n

n

)
DT

= D

[
C∑

k=1

nk

(
Ak

nk
− 1n

n

) (
AT

k

nk
− 1T

n

n

)]
DT .

So trace(S−1
t Sb) can be calculated as

trace(S−1
t Sb) = trace

(
S−1

t D

[
C∑

k=1

nk

(
Ak

nk
− 1n

n

) (
AT

k

nk
− 1T

n

n

)]
DT

)

= trace

([
C∑

k=1

nk

(
Ak

nk
− 1n

n

) (
AT

k

nk
− 1T

n

n

)]
DT S−1

t D

)

= trace

(
C∑

k=1

nk

(
AT

k

nk
− 1T

n

n

)
S

(
Ak

nk
− 1n

n

))

=
C∑

k=1

1
nk

(
AT

k − nk

n
1T

n

)
S

(
Ak − nk

n
1n

)
,

where S = DT S−1
t D is a positive semi-definite matrix.

Since those entries in A for the unlabeled data points are unknown, we maximize
trace(S−1

t Sb) with respect to A. By defining some new variables for the sake of nota-
tional simplicity, we formulate the optimization problem as:

max
A,Bk,tk

C∑

k=1

BT
k SBk

tk

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak − tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ∈ {0, 1}, i = l+1, . . . , n, j = 1, . . . , C

C∑

j=1

Aij = 1, i = l+1, . . . , n. (4)

Unfortunately this is an integer programming problem which is known to be NP-hard
and often has no efficient solution. We seek to make this integer programming problem
tractable by relaxing the constraint Aij ∈ {0, 1} in (4) to Aij ≥ 0, giving rise to a
modified formulation of the optimization problem:
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max
A,Bk,tk

C∑

k=1

BT
k SBk

tk

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak − tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . , C

C∑

j=1

Aij = 1, i = l+1, . . . , n. (5)

With such relaxation, the matrix entries of A for the unlabeled data points may be
interpreted as posterior class probabilities. However, even though the constraints in the
optimization problem (5) are linear, the problem seeks to maximize a convex func-
tion which, unfortunately, does not correspond to a convex optimization problem [28].
If we re-express the optimization problem in (5) as minimizing a concave function,
we can adopt the constrained concave-convex procedure (CCCP) [24, 25] to solve
this non-convex optimization problem. For our case, the convex part of the objective
function degenerates to the special case of a constant function which always returns
zero.

CCCP is an iterative algorithm. In each iteration, the concave part of the objective
function for the optimization problem is replaced by its first-order Taylor series approx-
imation at the point which corresponds to the result obtained in the previous iteration.
Specifically, in the (p+1)th iteration, we solve the following optimization problem:

max
A,Bk,tk

C∑

k=1

(
2(B(p)

k )T S

t
(p)
k

Bk − (B(p)
k )T SB

(p)
k

(t(p)
k )2

tk

)

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak − tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . , C

C∑

j=1

Aij = 1, i = l+1, . . . , n, (6)

where B
(p)
k , t

(p)
k , k = 1, . . . , C were obtained in the pth iteration. The objective func-

tion in (6) is just the first-order Taylor series approximation of that in (5) by ignoring
some constant terms.
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Since the optimization problem (6) is a linear programming (LP) problem, it can be
solved efficiently and hence can handle large-scale applications. Because the optimal
solution of an LP problem falls on the boundary of its feasible set (or called constraint
set), the matrix entries of the optimal Aij computed in each iteration must be in {0, 1},
which automatically satisfies the constraints in (4).

As the optimization problem is non-convex, the final solution that CCCP obtains
generally depends on its initial value. For the labeled data points, the corresponding en-
tries in Aij are held fixed based on their class labels. For the unlabeled data points,
we initialize the corresponding entries in Aij with equal prior probabilities for all
classes:

A
(0)
ij =

{
1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l, j = 1, . . . , C

A
(0)
ij =

1
C

, i = l+1, . . . , n, j = 1, . . . , C. (7)

The initial values for B
(0)
k and t

(0)
k can be computed based on the equality constraints

in (6) which establish the relationships between A, Bk and tk.

3.3 M-SSDACCCP : Incorporating the Manifold Assumption

The manifold assumption [20] is adopted by many graph-based semi-supervised learn-
ing methods. Under this assumption, nearby points are more likely to have the same
class label for classification problems and similar low-dimensional representations for
dimensionality reduction problems. We adopt this assumption to extend SSDACCCP to
M-SSDACCCP .

Given the data set D = {x1, . . . , xn}, we first construct a K-nearest neighbor graph
G = (V, E), with the vertex set V = {1, . . . , n} corresponding to the labeled and un-
labeled data points and the edge set E ⊆ V ×V representing the relationships between
data points. Each edge is assigned a weight wij which reflects the similarity between
points xi and xj :

wij =

{
exp

(
− ‖xi−xj‖2

σiσj

)
if xi ∈ NK(xj) or xj ∈ NK(xi)

0 otherwise

where NK(xi) denotes the neighborhood set of K-nearest neighbors of xi, σi the dis-
tance between xi and its Kth nearest neighbor, and σj the distance between xj and
its Kth nearest neighbor. This way of constructing the nearest neighbor graph is called
local scaling [29], which is different from that in SDA [23]. In SDA, a constant value
of 1 is set for all neighbors. This is unsatisfactory especially when some neighbors are
relatively far away.

By incorporating the manifold assumption into our problem, we expect nearby points
to be more likely to have the same class label and hence the two corresponding rows
in A are more likely to be the same. We thus modify the optimization problem (5) by
adding one more term to the objective function:
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max
A,Bk,tk

C∑

k=1

BT
k SBk

tk
− λ

n∑

i=1

n∑

j=i+1

wij‖A(i) − A(j)‖1

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak − tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . , C

C∑

j=1

Aij = 1, i = l+1, . . . , n, (8)

where λ > 0 is a regularization parameter, A(i) denotes the ith row of A, and ‖x‖1 is
the L1-norm of vector x.

Since the objective function of the optimization problem (8) is the difference of two
convex functions, we can also adopt CCCP to solve it. Similar to SSDACCCP , in each
iteration of CCCP, we also need to solve an LP problem:

max
A,Bk,tk

C∑

k=1

(
2(B(p)

k )T S

t
(p)
k

Bk − (B(p)
k )T SB

(p)
k

(t(p)
k )2

tk

)
− λ

n∑

i=1

n∑

j=i+1

wij‖A(i) − A(j)‖1

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak − tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . , C

C∑

j=1

Aij = 1, i = l+1, . . . , n. (9)

One reason for choosing the L1-norm in the problem (8) is to keep the problem (9) as
an LP problem which has an efficient and effective solution.

3.4 Augmenting the Labeled Data Set with Unlabeled Data

For both SSDACCCP and M-SSDACCCP , CCCP estimates the class labels of all the
unlabeled data points by solving the corresponding optimization problems with respect
to A. One might then use all these unlabeled data points with estimated class labels to
expand the labeled data set and then apply LDA again. However, it should be noted that
not all the class labels can be estimated accurately. Thus, including those points with
noisy class labels may impair the performance of LDA. Here we propose an effective
method for selecting only those unlabeled data points whose labels are estimated with
sufficiently high confidence.
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Since all matrix entries in Aij obtained by CCCP are either 0 or 1, they cannot serve
as posterior class probabilities for defining a measure to characterize the label estima-
tion confidence. Here we propose an alternative scheme. We first use all the unlabeled
data points with their estimated labels and the original labeled data set to perform LDA.
Then, in the embedding space, we consider the neighborhood of each unlabeled data
point by taking into account unlabeled data points only. If an unlabeled point has a suf-
ficiently large proportion (determined by some threshold θ, usually chosen to be larger
than 0.5) of neighboring unlabeled points with the same estimated class label as its own,
we consider this unlabeled point to have an estimated class label with high confidence
and hence select it to augment the labeled data set for performing LDA again.

3.5 Discussions

In order to gain some insight into our method, we investigate the dual form of the op-

timization problem (6). We denote R
(p)
k = 2(B(p)

k )T S

t
(p)
k

and q
(p)
k = (B(p)

k )T SB
(p)
k

(t(p)
k )2

, for k =

1, . . . , C. We plug the first two equality constraints of the optimization problem (6) into
its objective funciton and get the following Lagrangian:

L(A, α, β) =
C∑

k=1

[(
q
(p)
k +

R
(p)
k 1n

n

)
1T

n − R
(p)
k

]
Ak −

C∑

k=1

l∑

i=1

αki(Aik − δ
c(i)
k )

−
C∑

k=1

n∑

i=l+1

αkiAik −
n∑

i=l+1

βi(
C∑

k=1

Aik − 1),

where c(i) is the class label of labeled data point i and δ
c(i)
k is the delta function whose

value is 1 if c(i) = k and 0 otherwise.
So the dual form of the optimization problem (6) is

max
α,β

C∑

k=1

l∑

i=1

αkiδ
c(i)
k +

n∑

i=l+1

βi

s.t. αki = q
(p)
k − R

(p)
ki +

R
(p)
k 1n

n
, i = 1, . . . , l, k = 1, . . . , C

αki + βi = q
(p)
k − R

(p)
ki +

R
(p)
k 1n

n
, i = l+1, . . . , n, k = 1, . . . , C

αki ≥ 0, i = l+1, . . . , n, k = 1, . . . , C (10)

where R
(p)
ki is the ith element of vector R

(p)
k .

The Karush-Kuhn-Tucker (KKT) condition [28] for the optimization problem (10) is

αkiAik = 0, i = l+1, . . . , n, k = 1, . . . , C. (11)

From the first constraint of the optimization problem (10), we can see that each
αki has a constant value for i = 1, . . . , l, k = 1, . . . , C. So we can simplify the
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optimization problem (10) by eliminating the first summation term in the objective func-
tion and the first constraint as

max
α,β

n∑

i=l+1

βi

s.t. αki + βi = q
(p)
k − R

(p)
ki +

R
(p)
k 1n

n
, i = l+1, . . . , n, k = 1, . . . , C

αki ≥ 0, i = l+1, . . . , n, k = 1, . . . , C, (12)

which can be further simplified as

max
β

n∑

i=l+1

βi

s.t. βi ≤ q
(p)
k − R

(p)
ki +

R
(p)
k 1n

n
, i = l+1, . . . , n, k = 1, . . . , C. (13)

So the optimal solution of βi can be obtained as βi = mink{q
(p)
k − R

(p)
ki + R

(p)
k 1n

n } for
i = l + 1, . . . , n.

For each unlabeled data point, if we assume Aik� > 0, then from the KKT condition

(11) we can get αk�i = 0 and also βi = q
(p)
k� − R

(p)
k�i + R

(p)
k� 1n

n according to the first
constraint of the optimization problem (12). So

q
(p)
k� − R

(p)
k�i +

R
(p)
k� 1n

n
= min

k

{
q
(p)
k − R

(p)
ki +

R
(p)
k 1n

n

}

and

k� = arg min
k

{
q
(p)
k − R

(p)
ki +

R
(p)
k 1n

n

}
.

So q
(p)
k − R

(p)
ki + R

(p)
k 1n

n can be seen as the negative confidence that the ith data point
belongs to the kth class and hence we can classify each data point to the class corre-
sponding to the minimal negative confidence. If there is a unique minimum, then we can
get Aik� = 1 and Aik′ = 0 for k′ �= k�; otherwise, we can first find the set of unlabeled
data points for which there exist unique minimum and Aik can be easily determined,
and then we can solve a smaller LP problem (6) by plugging in the known elements
Aij . From our experiments, the latter situation seldom occurs and this can speed up the
optimization problem (6), which even does not need to solve a LP problem.

[30] proposed a novel clustering method called DisKmeans which also maximize the
optimality criterion of LDA to do clustering. However, its purpose is very different. In
our work, M-SSDACCCP and SSDACCCP utilize unlabeled data to alleviate the SSS
problem of LDA and we formulate the learning problem under the semi-supervised
setting. On the other hand, DisKmeans aims at clustering high-dimensional data which
is an unsupervised learning problem.

The computation cost of SSDACCCP and M-SSDACCCP includes performing LDA
twice and solving the optimization problem using CCCP. The complexity of LDA
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Table 1. Algorithm for SSDACCCP or M-SSDACCCP

Input: labeled data xi (i = 1, . . . , l), unlabeled data xi (i = l+1, . . . , n), K, θ, ε

Initialize A(0) using Eq. (7);
Initialize B

(0)
k and t

(0)
k based on A(0) for k = 1, . . . , C;

Construct the K-nearest neighbor graph;
p = 0;
Repeat

p = p + 1;
Solve the optimization problem (6) or (9);
Update A(p), B

(p)
k and t

(p)
k using the result of the optimization problem for k = 1, . . . , C;

Until‖A(p) − A(p−1)‖F ≤ ε
Select the unlabeled data points with high confidence based on the threshold θ;
Add the selected unlabeled data points with their estimated labels into the labeled data set
and perform LDA on the augmented labeled data set to get the transformation W .
Output: the transformation W

is O(N3). The LP problem inside each iteration of CCCP can be solved efficiently.
From our experimental results, CCCP converges very fast in less than 10 iterations. So
SSDACCCP and M-SSDACCCP are efficient under most situations.

Finally, we summary this section by presenting the SSDACCCP (or M-SSDACCCP)
algorithm in Table 1.

4 Experiments

In this section, we first study SSDACCCP and M-SSDACCCP empirically and com-
pare their performance with several other dimensionality reduction methods, including
PCA, LDA [5] and SDA. Note that PCA is unsupervised, LDA is supervised, and SDA
is semi-supervised in nature. After dimensionality reduction has been performed, we
apply a simple nearest-neighbor classifier to perform classification in the embedding
space. We also compare SSDACCCP and M-SSDACCCP with two state-of-the-art in-
ductive semi-supervised learning methods, LapSVM and LapRLS [20].

4.1 Experimental Setup

We use MATLAB to implement all the algorithms and the CVX toolbox1 for solving the
optimization problems. We use the source code offered by Belkin et al. for LapSVM
and LapRLS.2 We evaluate these algorithms on 11 benchmark data sets, including 8
UCI data sets [31], a brain-computer interface dataset BCI3 and two image data sets:
COIL3 and PIE [32]. See Table 2 for more details.

1 http://www.stanford.edu/∼boyd/cvx/
2 http://manifold.cs.uchicago.edu/manifold regularization/
manifold.html

3 http://www.kyb.tuebingen.mpg.de/ssl-book/
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Table 2. Summary of data sets used and data partitioning for each data set

Data set #Dim (N ) #Inst (n) #Class (C) #Labeled (q) #Unlabeled (r)

diabetes 8 768 2 5 100
heart-statlog 13 270 2 5 100
ionosphere 34 351 2 5 50
hayes-roth 4 160 3 3 20
iris 4 150 3 3 20
mfeat-pixel 240 2000 10 5 50
pendigits 16 10992 10 5 95
vehicle 18 864 4 5 100
BCI 117 400 2 5 50
COIL 241 1500 6 5 100
PIE 1024 1470 30 2 20

For each data set, we randomly select q data points from each class as labeled data
and r points from each class as unlabeled data. The remaining data form the test set.
Table 2 shows the data partitioning for each data set. For each partitioning, we perform
20 random splits and report the mean and standard derivation over the 20 trials. For
M-SSDACCCP , we choose the number of nearest neighbors K for constructing the
K-nearest neighbor graph to be the same as that for SDA, LapSVM, and LapRLS.

4.2 Experimental Results

We first compare our methods with dimensionality reduction methods and the experimen-
tal results are listed in Table 3. There are two rows for each data set: the upper one being
the classification error on the unlabeled training data and the lower one being that on the
test data. For each data set, the lowest classification error is shown in boldface. From the
results, we can see that the performance of SSDACCCP or M-SSDACCCP is better than
other methods in most situations. For DIABETES, HEART-STATLOG, PENDIGITS, VEHI-
CLE and PIE, the improvement is very significant. Moreover, for the data sets such as
DIABETES and HEART-STATLOG which may not contain manifold structure, the perfor-
mance of SSDACCCP is better than M-SSDACCCP . For MFEAT-PIXEL, PIE and others
which may contain manifold structure, the performance of M-SSDACCCP is better than
SSDACCCP . Thus for data sets such as images which may have manifold structure, we
recommend to use M-SSDACCCP . Otherwise SSDACCCP is preferred. Compared with
SDA, SSDACCCP and M-SSDACCCP are more stable. Specifically, the performance of
SSDACCCP or M-SSDACCCP is comparable to or better than that of LDA in most situ-
ations. For SDA, however, the performance degradation can sometimes be very severe,
especially for MFEAT-PIXEL and PIE.

We also investigate the selection method described in Section 3.4. We record the
mean accuracy of label estimation for the unlabeled data over 20 trials before and after
applying the selection method. The results in Table 4 show that the estimation accuracy
after applying the selection method is almost always higher, sometimes very signifi-
cantly. This confirms that our selection method for unlabeled data is very effective.
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Table 3. Average classification errors for each method on each data set. Each number inside
brackets shows the corresponding standard derivation. The upper row for each data set is the
classification error on the unlabeled training data and the lower row is that on the test data.

Data set PCA LDA SDA SSDACCCP M-SSDACCCP

diabetes 0.4335(0.0775) 0.4438(0.0878) 0.4022(0.0638) 0.3898(0.0674) 0.4360(0.0605)
0.4253(0.1154) 0.4311(0.0997) 0.3763(0.0864) 0.3276(0.0643) 0.4125(0.1074)

heart-statlog 0.4288(0.0689) 0.3978(0.0582) 0.3680(0.0564) 0.3293(0.0976) 0.3818(0.0662)
0.3975(0.0669) 0.3767(0.1055) 0.3783(0.1076) 0.3133(0.1174) 0.3258(0.1493)

ionosphere 0.2895(0.1032) 0.2850(0.0876) 0.2695(0.1056) 0.2860(0.1015) 0.2830(0.1029)
0.2189(0.0632) 0.2365(0.0972) 0.2241(0.0863) 0.2351(0.1032) 0.2399(0.1278)

hayes-roth 0.5175(0.0571) 0.4942(0.0531) 0.5058(0.0661) 0.4867(0.0569) 0.4758(0.0586)
0.5115(0.0605) 0.5165(0.0690) 0.5077(0.0752) 0.5121(0.0770) 0.5060(0.0627)

iris 0.0917(0.0417) 0.0933(0.0613) 0.0825(0.0506) 0.0708(0.0445) 0.0667(0.0493)
0.0907(0.0333) 0.0833(0.0586) 0.0809(0.0395) 0.0611(0.0370) 0.0611(0.0454)

mfeat-pixel 0.1450(0.0232) 0.1501(0.0290) 0.2783(0.0435) 0.1501(0.0289) 0.1367(0.0210)
0.1429(0.0228) 0.1486(0.0264) 0.3428(0.0298) 0.1485(0.0264) 0.1329(0.0213)

pendigits 0.1724(0.0305) 0.2238(0.0364) 0.2547(0.0447) 0.1785(0.0266) 0.1617(0.0242)
0.1761(0.0276) 0.2192(0.0332) 0.2544(0.0382) 0.1779(0.0190) 0.1650(0.0225)

vehicle 0.5739(0.0375) 0.5741(0.0365) 0.5400(0.0402) 0.4396(0.0734) 0.4838(0.0901)
0.5808(0.0453) 0.5879(0.0429) 0.5462(0.0312) 0.4329(0.0672) 0.4739(0.0791)

BCI 0.4835(0.0460) 0.4830(0.0557) 0.4960(0.0476) 0.4750(0.0432) 0.4975(0.0484)
0.5000(0.0324) 0.4803(0.0249) 0.4812(0.0326) 0.4732(0.0331) 0.4741(0.0346)

COIL 0.4443(0.0418) 0.5247(0.0371) 0.5419(0.0607) 0.5236(0.0374) 0.5193(0.0401)
0.4391(0.0364) 0.5194(0.0421) 0.5461(0.04821) 0.5178(0.0434) 0.5096(0.0398)

PIE 0.6156(0.0275) 0.5055(0.1624) 0.7629(0.0377) 0.4674(0.1757) 0.2381(0.0552)
0.6207(0.0251) 0.5126(0.1512) 0.8277(0.0208) 0.4777(0.1696) 0.2424(0.0592)

Table 4. Accuracy of label estimation for the unlabeled data before and after applying the selec-
tion method

SSDACCCP (%) M-SSDACCCP (%)
Data set Before After Before After

diabetes 64.03 66.67 54.10 51.20
heart-statlog 72.27 72.62 55.25 66.70
ionosphere 69.05 87.51 74.10 82.07
hayes-roth 46.75 52.73 42.00 42.64
iris 75.42 93.39 91.42 95.06
mfeat-pixel 32.49 100.0 94.21 98.91
pendigits 75.31 86.08 88.92 94.02
vehicle 56.30 69.88 44.80 52.26
BCI 50.75 65.42 49.00 49.15
COIL 33.57 96.07 42.64 60.03
PIE 30.48 85.00 52.64 70.41
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Table 5. Average classification errors for each method on each data set. Each number inside
brackets shows the corresponding standard derivation. The upper row for each data set is the
classification error on the unlabeled training data and the lower row is that on the test data.

Data set LapSVM LapRLS SSDACCCP M-SSDACCCP

diabetes 0.4763(0.0586) 0.4523(0.0650) 0.3620(0.0680) 0.4015(0.0893)
0.5643(0.0684) 0.5009(0.0775) 0.3488(0.0514) 0.4234(0.1107)

heart-statlog 0.3478(0.1059) 0.3348(0.1070) 0.3108(0.0901) 0.3758(0.0914)
0.3517(0.1458) 0.3375(0.1366) 0.3091(0.0989) 0.3442(0.1226)

ionosphere 0.3525(0.0539) 0.3260(0.0527) 0.3340(0.0902) 0.3185(0.0719)
0.2245(0.0697) 0.2266(0.0732) 0.2705(0.0969) 0.2905(0.0933)

hayes-roth 0.6633(0.0149) 0.6608(0.0261) 0.4833(0.0824) 0.5225(0.0466)
0.5550(0.0737) 0.5500(0.0516) 0.4901(0.0705) 0.5104(0.0711)

iris 0.3175(0.1390) 0.2708(0.1474) 0.0650(0.0516) 0.0525(0.0437)
0.3049(0.1426) 0.2741(0.1473) 0.0772(0.0508) 0.0593(0.0379)

mfeat-pixel 0.1488(0.0236) 0.1359(0.0257) 0.1578(0.0268) 0.1420(0.0249)
0.2252(0.0187) 0.2075(0.0181) 0.1555(0.0263) 0.1427(0.0183)

pendigits 0.2571(0.0379) 0.2368(0.0312) 0.1856(0.0226) 0.1697(0.0245)
0.2539(0.0334) 0.2377(0.0283) 0.1866(0.0244) 0.1735(0.0217)

vehicle 0.4713(0.0449) 0.4921(0.0460) 0.4219(0.0623) 0.4645(0.0770)
0.4758(0.0477) 0.5007(0.0452) 0.4181(0.0600) 0.4641(0.0777)

BCI 0.4805(0.0551) 0.4695(0.0612) 0.4515(0.0543) 0.4665(0.0479)
0.4631(0.0456) 0.4562(0.0390) 0.4752(0.0362) 0.4864(0.0372)

COIL 0.5414(0.0496) 0.5855(0.0617) 0.5028(0.0576) 0.5030(0.0488)
0.5421(0.0497) 0.5864(0.0598) 0.5057(0.0533) 0.5062(0.0423)

PIE 0.2561(0.0311) 0.3405(0.0227) 0.4096(0.1600) 0.2497(0.0313)
0.2671(0.0235) 0.3523(0.0151) 0.4160(0.1575) 0.2556(0.0235)

Next we compare our methods with some representative semi-supervised learning
methods. The experimental settings are the same as those in the first experiment. There
are many popular semi-supervised learning methods, such as Co-Training [17], TSVM
[18, 19], methods in [21, 22], LapSVM and LapRLS [20]. Co-Training requires two
independent and sufficient views for the data, but data used in our experiment can not
satisfy this requirement. TSVM has high computation cost and hence cannot be used for
large-scale problems. Thus it is not included in our experiment. The methods in [21,22]
can only work under the transductive setting, in which the test data, in addition to the
training data, must be available during model training and the learned model cannot be
applied to unseen test data easily. So these methods can not satisfy our experimental set-
tings and are excluded in our experiments. LapSVM and LapRLS, which also adopt the
manifold assumption, have efficient solutions and can work under the inductive setting.
So we have included them in our experiment for performance comparison. The standard
LapSVM and LapRLS algorithms are for two-class problems. For multi-class problems,
we adopt the one vs. rest strategy as in [20] for LapSVM and LapRLS. Since the meth-
ods used here are all linear methods, we use a linear kernel for LapSVM and LapRLS.
The experimental results are shown in Table 5. From the experimental results, we can
see that the performance of SSDACCCP and M-SSDACCCP is comparable to or even
better than that of LapSVM and LapRLS. Moreover, One advantage of SSDACCCP
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and M-SSDACCCP is that their formulation and optimization procedure are the same
for two-class and multi-class problems. However, this is not the case for LapSVM and
LapRLS which require training the models multiple times for multi-class problems.

5 Conclusion

In this paper, we have presented a new approach for semi-supervised discriminant anal-
ysis. By making use of both labeled and unlabeled data in learning a transformation for
dimensionality reduction, this approach overcomes a serious limitation of LDA under
situations where labeled data are limited. In our future work, we will investigate kernel
extensions to our proposed methods in dealing with nonlinearity. Moreover, we will
also apply the ideas here to some other dimensionality reduction methods.
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1 Introduction

Classifier performance evaluation typically gives rise to a multitude of results
that are difficult to interpret. On the one hand, a variety of different performance
metrics can be applied, each adding a little bit more information about the
classifiers than the others; and on the other hand, evaluation must be conducted
on multiple domains to get a clear view of the classifier’s general behaviour.

Caruana et al. [1] studied the issue of selecting appropriate metrics through a
visualization method. In their work, the evaluation metrics are categorized into
three groups and the relationship between the three groups is visualized. They
propose a new metric, SAR, that combines the properties of the three groups.

Japkowicz et al. [2] studied the issue of aggregating the results obtained by
different classifiers on several domains. They too use a visualization approach to
implement a component-wise aggregation method that allows for a more precise
combination of results than the usual averaging or win/loss/tie approaches.

In this demo, we present a visualization tool based on the combination of the
above two techniques that allows the study of different classifiers with respect
to both a variety of metrics and domains. We, thus, take the view that classi-
fier evaluation should be done on an exploratory basis and provide a technique
for doing so. This work is part of a research line that focuses on general is-
sues regarding visualization and its potential benefits to the classifier evaluation
process. Our aim is to adapt existing methods to suit our purpose and in this
context, this paper extends a work based on MCST (Minimum Cost Spanning
Tree) projection [2].

In particular, we assume that classifier evaluation requires two stages. In the
first stage, the researcher should compute the results obtained by the various
classifiers with respect to several representative metrics on several domains, in
order to make the comparison as general as possible. This, of course, will create
a considerable amount of data, which, in turn will need to be analyzed, in a
second stage, in order to draw valid and useful conclusions about the algorithms

� Supported by the Natural Science and Engineering Council of Canada and the Spa-
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under study. We can say that this second stage is a data mining process in and of
itself. The tool we are proposing is a visual data mining system for enabling this
analysis. It is demonstrated on a study of 15 domains over three representative
metrics as per Caruana et al. [1]. In particular, we demonstrate how our tool
may allow us to combine information in a way that is more informative than the
SAR metric [1].

2 Typical Study

Nine classifiers were evaluated by 10-fold cross-validation in the WEKA envi-
ronment [3] with parameters set as default. Tables 1, 2 and 3 show the Error
rate, RMSE and AUC, respectively for the 15 UCI domains assessed here (Sonar,
Heart-v, Heart-c, Breast-y, Voting, Breast-w, Credits-g, Heart-s, Sick, Hepatitis,
Credits-a, Horse-colic, Heart-h, Labor and Krkp).

Table 1. Error rate for different classifiers on several domains

ERROR RATE

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15
Ideal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ib1 0.1342 0.2957 0.2378 0.2757 0.0986 0.0486 0.2800 0.2481 0.0381 0.1937 0.1884 0.1873 0.2317 0.1733 0.0372
Ib10 0.2402 0.2160 0.1753 0.2699 0.1077 0.0357 0.2600 0.1851 0.0384 0.1737 0.1405 0.1686 0.1660 0.0833 0.0494
NB 0.3211 0.2360 0.1652 0.2830 0.1284 0.0400 0.2460 0.1629 0.0739 0.1554 0.2231 0.2200 0.1629 0.1000 0.1210
C4.5 0.2883 0.2663 0.2248 0.2445 0.0917 0.0544 0.2950 0.2333 0.0119 0.1620 0.1391 0.1470 0.1893 0.2633 0.0056
Bagging 0.2545 0.2513 0.2080 0.2656 0.0895 0.0415 0.2600 0.2000 0.0127 0.1683 0.1463 0.1442 0.2105 0.1533 0.0056
Boosting 0.2219 0.2965 0.1786 0.3035 0.1010 0.0429 0.3040 0.1963 0.0082 0.1420 0.1579 0.1659 0.2142 0.1000 0.0050
RF 0.1926 0.2460 0.1850 0.3144 0.0965 0.0372 0.2730 0.2185 0.0188 0.2008 0.1492 0.1524 0.2177 0.1200 0.0122
SVM 0.2404 0.2463 0.1588 0.3036 0.0827 0.0300 0.2490 0.1592 0.0615 0.1483 0.1507 0.1740 0.1726 0.1033 0.0456
JRip 0.2692 0.2660 0.1854 0.2905 0.0986 0.0457 0.2830 0.2111 0.0177 0.2200 0.1420 0.1306 0.2104 0.2300 0.0081

Table 2. RMSE for different classifiers on several domains

RMSE

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15
Ideal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ib1 0.3512 0.5342 0.3045 0.5042 0.2956 0.1860 0.5278 0.4848 0.1936 0.4252 0.4295 0.4261 0.2950 0.3197 0.1936
Ib10 0.3931 0.4277 0.2179 0.4305 0.2649 0.1519 0.4193 0.3700 0.1699 0.3406 0.3298 0.3587 0.2192 0.3213 0.2458
NB 0.5263 0.4164 0.2256 0.4480 0.3310 0.1945 0.4186 0.3542 0.2285 0.3409 0.4346 0.4179 0.2238 0.1997 0.3018
C4.5 0.5172 0.4531 0.2689 0.4311 0.2760 0.2105 0.4790 0.4526 0.1035 0.3565 0.3290 0.3521 0.2461 0.4209 0.0638
Bagging 0.3926 0.4177 0.2359 0.4335 0.2564 0.1769 0.4201 0.3768 0.0902 0.3388 0.3186 0.3440 0.2290 0.3412 0.0634
Boosting 0.4366 0.4700 0.2497 0.5105 0.2875 0.1864 0.5054 0.4294 0.0757 0.3507 0.3671 0.3690 0.2579 0.2281 0.0603
RF 0.3530 0.4166 0.2295 0.4686 0.2607 0.1615 0.4223 0.3912 0.1156 0.3512 0.3323 0.3376 0.2405 0.2962 0.1116
SVM 0.4837 0.4942 0.2872 0.5470 0.2667 0.1520 0.4979 0.3934 0.2479 0.3606 0.3837 0.4105 0.2885 0.2249 0.2110
JRip 0.4647 0.4360 0.2385 0.4475 0.2828 0.1932 0.44637 0.40846 0.1189 0.4075 0.3419 0.336 0.2574 0.3776 0.0782

Typical questions we would like to answer after the classifier performance anal-
ysis is performed are related to similarities/dissimilarities between classifiers: (a)
Which classifiers perform similarly so that they can be considered equivalent?
(b) Which classifiers could be worth combining? (c) Does the relative perfor-
mance of the classifiers change as a function of data dimensionality? (d) Does it
change for different domain complexities?

A first attempt at answering these questions could be to analyze directly the
data gathered in the three tables. However, it does not seem straightforward given
the quantity of results recorded (and there could be worse instances of this).



662 R. Alaiz-Rodŕıguez, N. Japkowicz, and P. Tischer

Table 3. AUC* (1-AUC) for different classifiers on several domains

AUC* (1-AUC)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15
Ideal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ib1 0.1361 0.4635 0.2403 0.3687 0.0622 0.0256 0.3400 0.2500 0.1912 0.3362 0.1917 0.2035 0.2512 0.1750 0.0105
Ib10 0.1373 0.4102 0.0920 0.3201 0.0325 0.0759 0.2553 0.1244 0.0672 0.1890 0.0911 0.1366 0.1138 0.0500 0.0094
NB 0.2000 0.2826 0.0955 0.2845 0.0483 0.0120 0.2122 0.0994 0.0747 0.1408 0.1040 0.1501 0.1009 0.0125 0.0479
C4.5 0.2653 0.3983 0.2032 0.3719 0.0629 0.0515 0.3534 0.2450 0.0505 0.3034 0.1064 0.1507 0.2341 0.2666 0.0012
Bagging 0.1478 0.2869 0.1296 0.3518 0.0362 0.0105 0.2469 0.1291 0.0050 0.1769 0.0771 0.1237 0.1178 0.1583 0.0007
Boosting 0.0938 0.3055 0.1187 0.3569 0.0370 0.0176 0.2770 0.1166 0.0123 0.2003 0.0945 0.1118 0.1389 0.0625 0.0007
RF 0.0889 0.2914 0.1215 0.3537 0.0376 0.0137 0.2499 0.1386 0.0072 0.1599 0.0886 0.1023 0.1444 0.0916 0.0012
SVM 0.2418 0.4335 0.1639 0.4072 0.0869 0.0316 0.3292 0.1633 0.5001 0.2487 0.1434 0.1912 0.2033 0.1250 0.0457
JRip 0.2631 0.4366 0.1591 0.3877 0.0839 0.0368 0.3871 0.2041 0.0579 0.3960 0.1285 0.1562 0.2427 0.2416 0.0055

As an alternative, metrics like SAR try to summarize all the gathered infor-
mation with a point estimation. Thus, SAR carries out the projection SAR∗ =
(1 − SAR) = RMSE + Error + AUC∗ where AUC∗ = (1 − AUC). The closer
to zero the SAR values (and all its components) are, the better the classifier per-
forms. Table 4 shows the classifiers’ performance values and ranking according to
the SAR metric. We consider, however, that combining metrics uniformly may be
dangerous. Instead we argue that we should select the information that is relevant
to our purpose and concentrate on it to conduct the performance analysis.

Table 4. Classifier Ranking according to SAR

Ideal RF Bagging Ib10 Boosting NB JRip C4.5 SVM Ib1
0 .1958 .1965 .2001 .2037 .2126 .2362 .2365 .2420 .2530

Visual data mining allows to easily discover data patterns, a task that may
be difficult by simply looking at the results organized in tables and inaccurate
when summarized by a SAR-like measure. In this work, we demonstrate the
use of MDS (MultiDimensional Scaling) to visualize the classifiers in a graph,
so that interpoint distances in the high dimensional (metric/domain) space are
preserved as much as possible in the 2D space. The technique we propose to
conduct the classifier performance analysis has been implemented under Matlab.
Performance data, however, can be loaded in standard file formats.

Let us now study what information may be extracted from a graphic where the
information provided in Tables 1, 2 and 3 is not simply averaged (over domains
and over different metrics) but is projected using MDS. The distance between
two points is calculated as the Euclidean distance and the stress criterion (see
below) is normalized by the sum of squares of the interpoint distances.

Before starting to explore the graphical representation, it is interesting to
assess the stress criterion. It is important to know how much of the original
data structure is preserved after projecting the data to two dimensions. We can
also get an idea of the information gained when moving from a one dimensional
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Fig. 1. Shepard plot for the metric MDS projection: (a) from 45 to 2 dimensions. (b)
from 45 to 1 dimension.
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Fig. 2. metric MDS projection from 45 dimensions to 2 dimensions based on the RMSE,
AUC* and Error rate gathered over 15 domains

representation to a two dimensional one. In our example the stress becomes 0.08
for two dimensions (not much loss of information), but it increases to 0.22 when
considering only one dimension. This is supported by the Shepard plot in Fig. 1
that shows the reproduced distances in the new projected space (y axis) versus
the dissimilarities in the original space (x axis). It can be seen that a projection
to 2D leads to a narrow scatter around the ideal fit, while the scatter with a
projection to 1D becomes larger and indicates a higher loss of information.

Now we focus on the whole information (Error rate, RMSE and AUC*) re-
flected in Fig. 2. In this particular case, we analyze nine classifiers described in
the original high dimensional space by 45 dimensions (3 metrics X 15 domains)
and then, projected to a 2-dimensional space. The ideal classifier is also intro-
duced, to allow us to compare classifiers by their projected distance to the ideal
classifier as well as to their relative position with respect to the other classi-
fiers. Note that this second type of information is lost when a one-dimensional
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projection is used. Indeed, scalar performance measures, can only aim to convey
one kind of information, usually the distance to ideal.1

There are cases where the projection may show no additional information. For
instance, from Fig. 2 we can draw the conclusion that C4.5 and JRip perform
similarly (which we can also see from Table 4). However, looking at the SAR
metric in Table 4, we may also reach the conclusion that the C4.5 and SVM
performance are very similar. In this case, though, Fig. 2 suggests that they
behave differently. While their difference from the ideal classifier seems to be
approximately equal, the distance to one another show that they behave very
differently. This is confirmed by Tables 1, 2 and 3.

Fig. 1 also suggests that our tool may also be useful for model selection. Note,
for example, the difference that appears, in Fig. 1, between 1-Nearest Neighbor
(Ib1) and 10-Nearest Neighbor (Ib10).

3 Additional Functionality

We would like to point out that our technique is a general framework that can
incorporate all other approaches. For example, we can use statistical approaches
to discard some information and retain only the most relevant. This relevant
information can then be visualized. Moreover, our system allows us to study a
number of other questions that cannot normally be answered with traditional
evaluation tools. These include questions for which data is analyzed either from
a classifier point of view or from a domain point of view.

In the first case, we consider each classifier as an object described by the
metrics recorded in the domains assessed (domain dimensions are reduced during
the MDS projection as shown in Fig. 2).

In the second case, we can regard each domain as an object with attributes
which are a measure of how several classifiers have performed on that domain.
Note that the attributes are classifier performance measures and the classifier
dimensions are the ones reduced. For example, let us assume that we concentrate
on the posterior probability capabilities measured by the RMSE metric. Fig. 3
shows the similarities/dissimilarities among domains in terms of the difficulty for
the classifiers to estimate posterior probabilities. The ideal domain D0, for which
the estimation is perfect, is included for reference purposes. It is now feasible to
identify groups of domains (e.g., {D3, D13, D5} or {D2, D7, D4}) for which the
task of estimating posterior probabilities has similar complexity and conduct a
further analysis within them.

Some questions our technique allows to address include the following:

– Classifier-Centric Questions:
• Can the classifiers be organized into equivalence classes that perform

similarly on a variety of domains?

1 This is not the only type of information that gets lost, by the way, since, once in
two dimensions, a lot more flexibility is possible, especially if we consider colours,
motion pictures, and potentially more.
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Fig. 3. metric MDS projection from 15 dimensions to 2 dimensions based on RMSE
metric gathered for nine classifiers

• In what way are the classifiers similar or different from one another?
• Which classifiers would it be beneficial to combine? Which combinations

would not improve the results?
– Domain-Centric Questions:

• Can domains be organized into equivalence classes within which various
classes of classifiers behave predictably?

• What domain characteristics influence the behaviour of different domains
(e.g., domain complexity, dimensionality, etc.)?
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Abstract. Subspace clustering mines the clusters present in locally rel-
evant subsets of the attributes. In the literature, several approaches have
been suggested along with different measures for quality assessment.

Pleiades provides the means for easy comparison and evaluation of
different subspace clustering approaches, along with several quality mea-
sures specific for subspace clustering as well as extensibility to further
application areas and algorithms. It extends the popular WEKA mining
tools, allowing for contrasting results with existing algorithms and data
sets.

1 Pleiades

In high dimensional data, clustering is hindered through many irrelevant dimen-
sions (cf. “curse of dimensionality” [1]). Subspace clustering identifies locally
relevant subspace projections for individual clusters [2]. As these are recent pro-
posals, subspace clustering algorithms and respective quality measures are not
available in existing data mining tools. To allow researchers and students alike
to explore the strengths and weaknesses of different approaches, our Pleiades
system provides the means for their comparison and analysis as well as easy
extensibility.
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Fig. 1. Data processing in P leiades
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Figure 1 gives an overview over Pleiades: High-dimensional data is imported
using the WEKA input format, possibly using pre-processing tools already avail-
able in WEKA and those we specifically added for subspace clustering [3]. The
subspace clustering algorithms described in the next section are all part of the
Pleiades system, and new algorithms can be added using our new subspace
clustering interface. The result is presented to the user, and can be subjected to
post-processing (e.g. filtering). Pleiades offers several evaluation techniques, as
described in the next section, to measure the quality of the subspace clustering.
Further measures can be plugged into our new evaluation interface.

2 Pleiades Features

Our Pleiades system is a tool that integrates subspace clustering algorithms
along with measures designated for the assessment of subspace clustering quality.

2.1 Subspace Clustering Algorithms

While subspace clustering is a rather young area that has been researched for
only one decade, several distinct paradigms can be observed in the literature.
Our Pleiades system includes representatives of these paradigms to provide an
overview over the techniques available. We provide implementations of the most
recent approaches from different paradigms:

Grid-based subspace clustering discretizes the data space for efficient
detection of dense grid cells in a bottom-up fashion. It was introduced in the
CLIQUE approach which exploits monotonicity on the density of grid cells for
pruning [4]. SCHISM [5] extends CLIQUE using a variable threshold adapted
to the dimensionality of the subspace as well as efficient heuristics for pruning.

Density-based subspace clustering defines clusters as dense areas sepa-
rated by sparsely populated areas. In SUBCLU, a density monotonicity property
is used to prune subspaces in a bottom-up fashion [6]. PreDeCon extends this
paradigm by introducing the concept of subspace preference weights to deter-
mine axis parallel projections [7]. In DUSC, dimensionality bias is removed by
normalizing the density with respect to the dimensionality of the subspace [8].

Projected clustering methods identify disjoint clusters in subspace pro-
jections. PROCLUS extends the k-medoid algorithm by iteratively refining a
full-space k-medoid clustering in a top-down manner [9]. P3C combines one-
dimensional cluster cores to higher-dimensional clusters bottom-up [10].

2.2 Evaluation Techniques

Quality of clustering or classification is usually measured in terms of accuracy, i.e.
the ratio of correctly classified or clustered objects. For clustering, the “ground
truth”, i.e. the true clustering structure of the data, is usually not known. In
fact, it is the very goal of clustering to detect this structure. As a consequence,
clustering algorithms are often evaluated manually, ideally with the help of do-
main experts. However, domain experts are not always available, and they might
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not agree on the quality of the result. Their assessment of the clustering result
is necessarily only based on the result itself, it cannot be compared to the “opti-
mum” which is not known. Moreover, manual evaluation does not scale to large
datasets or clustering result outcomes.

For more realistic evaluation of clustering algorithms, large scale analysis is
therefore typically based on pre-labelled data, e.g. from classification applications
[10,11]. The underlying assumption is that the clustering structure typically
reflects the class label assignment. At least for relative comparisons of clustering
algorithms, this provides measures of the quality of the clustering result.

Our Pleiades system provides the measures proposed in recent subspace clus-
tering publications. In Figure 2 we present the evaluation output with various
measures for comparing subspace clustering results.

Quality can be determined as entropy and coverage. Corresponding roughly
to the measures of precision and recall, entropy accounts for purity of the cluster-
ing (e.g. in [5]), while coverage measures the size of the clustering, i.e. the per-
centage of objects in any subspace cluster. Pleiades provides both coverage and
entropy (for readability, inverse entropy as a percentage) [8].

The F1-value is commonly used in evaluation of classifiers and recently also
for subspace or projected clustering as well [10]. It is computed as the harmonic
mean of recall (“are all clusters detected?”) and precision (“are the clusters ac-
curately detected?”). The F1-value of the whole clustering is simply the average
of all F1-values.

Accuracy of classifiers (e.g. C4.5 decision tree) built on the detected patterns
compared with the accuracy of the same classifier on the original data is another

Fig. 2. Evaluation screen
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quality measure [11]. It indicates to which extend the subspace clustering suc-
cessfully generalizes the underlying data distribution.

2.3 Applicability and Extensibility

Our Pleiades system provides the means for researches and students of data
mining to use and compare different subspace clustering techniques all in one
system. Different evaluation measures allow in-depth analysis of the algorithm
properties. The interconnection to the WEKA data mining system allows further
comparison with existing full space clustering techniques, as well as pre- and
post-processing tools [3]. We provide additional tools for pre- and post-processing
for subspace clustering. Figure 3 gives an example of our novel visual assistance
for parameter setting in Pleiades.

Fig. 3. Parametrization screen

Pleiades incorporates two open interfaces, which enable extensibility to fur-
ther subspace clustering algorithms and new evaluation measurements. In Figure
4 we show the main classes of the Pleiades system which extends the WEKA
framework by a new subspace clustering panel.

Subspace clustering shows major differences compared to traditional cluster-
ing; e.g. an object can be part of several subspace clusters in different projections.
We therefore do not extend the clustering panel, but provide a separate subspace
clustering panel.

Recent subspace clustering algorithms described in Section 2.1 are imple-
mented based on our Pleiades system. The abstraction of subspace clustering
properties in Pleiades allows to easily add new algorithms through our new
subspace clustering interface.

Furthermore, Pleiades offers several evaluation techniques (cf. Section 2.2) to
measure the quality of the subspace clustering. By using these evaluation mea-
sures one can easily compare different subspace clustering techniques. Further
measures can be added by our new evaluation interface, which allows to define
new quality criteria for subspace clustering.
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3 Pleiades Demonstrator

The demo will illustrate the above subspace clustering and evaluation techniques
for several data sets. It will allow conference attendees to explore the diverse
paradigms and measures implemented in the Pleiades system, thus raising re-
search interest in the area. Open interfaces will facilitate extension with further
subspace clustering algorithms and evaluation measures by other researchers.
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1 Introduction

In many machine learning tasks, there is an increasing need for defining similarity
measures between objects. In the case of structured data, such as strings or trees,
one natural candidate is the well-known edit distance (ED) [5,6]. It is based on
edit operations (insertion, deletion and substitution) required for changing an
input data (e.g. a misspelled word) into an output one (e.g. its correction). In
general, an a priori fixed cost is associated to each edit operation. Without
any specific knowledge, these costs are usually set to 1. However, in many real
world applications, such a strategy clearly appears insufficient. To overcome this
drawback and to capture background knowledge, supervised learning has been
used during the last few years for learning the parameters of edit distances
[1,2,3,4,7,8,9], often by maximizing the likelihood of a learning set. The learned
models usually take the form of state machines such as stochastic transducers
or probabilistic automata.

Since 2004, three laboratories (the LaHC from France, the DLSI from Spain,
both members of the RedEx PASCAL, and the LIF from France) have joined
their efforts to propose new stochastic models of string and tree EDs in order to
outperform not only the standard ED algorithms [5,6] but also the first genera-
tive learning methods proposed in [1,2]. This joint work has lead to publications
in the previous conferences ECML’06 [7] and ECML’07 [4], and in Pattern Recog-
nition [3,8]. This research has also received funding from the RedEx PASCAL
in the form of a pump-priming project in 2007. Since no software platform was
available, a part of this financial help has been used to implement these new
innovative prototypes in the platform SEDiL [10].

The rest of this paper is organized as follows: in Section 2, we present a brief
survey of ED learning methods. Then, Section 3 is devoted to the presentation
of our platform SEDiL and its innovative aspects.

2 Related Work

2.1 Standard ED

The standard ED between two strings (or trees) is the minimal cost to transform
by edit operations an input data into an output one. To each operation (inser-
tion, deletion and substitution) is assigned a so-called edit cost. Let us suppose
that strings or trees are defined over a finite alphabet Σ and that the empty
symbol is denoted by λ �∈ Σ.

Definition 1. An edit script e = e1 · · · en is a sequence of edit operations ei =
(ai, bi) ∈ (Σ ∪ {λ})× (Σ ∪ {λ}) allowing the transformation of an input data X
into an output one Y . The cost of an edit script π(e) is the sum of the costs of
the edit operations involved in the script:

π(e) =
n∑

i=1

c(ei).



674 L. Boyer et al.

Let S(X, Y ) be the set of all the scripts that enable the emission of Y given X,
the edit distance between X and Y is defined by:

d(X, Y ) = mine∈S(X,Y )π(e).

In order to improve the efficiency of the ED to solve machine learning tasks,
learning algorithms have been developed to capture background knowledge from
examples in order to learn relevant edit costs.

2.2 ED Learning by Memoryless State Machines

When there is no reason that the cost of a given edit operation changes accord-
ing to the context where the operation occurs, memoryless models (see [1,3] in
the case of strings and [4] for trees) are very efficient from an accuracy and algo-
rithmic point of view. In practice, many applications satisfy this hypothesis. For
instance, the correction of typing errors made with a computer keyboard, the
recognition of handwritten digits represented with Freeman codes [3] are some
examples of problems that can be solved by these memoryless state machines.
In such a context, these models learn - by likelihood maximization - one ma-
trix of edit costs not only useful for computing edit similarities between strings
or trees, but also to model knowledge of the domain. Actually, by mining the
learned matrix it enables us to answer questions such that “What are the letters
of a keyboard at the origin of the main typing errors?” or “What are the possible
graphical distortions of a given handwritten character?”. To give an illustration
of the output of these models, let us suppose that strings are built from an al-
phabet Σ = {a, b}. Memoryless models return a probability δ for each possible
edit operation in the form of a 3 × 3 matrix as shown in Fig.1.

δ λ a b

λ − 0.3 0.1
a 0.05 0.0 0.2
b 0.05 0.1 0.2

Fig. 1. Matrix δ of edit probabilities

On this toy example, δ(a, b) = 0.2 means that the letter a has a probability of
0.2 to be changed into a b. From these edit probabilities, it is then possible, using
dynamic programming, to compute in a quadratic complexity the probability
p(X, Y ) to change an input X into an output Y . Note here that, all the possible
ways for transforming X into Y are taken into account, in opposition to the
standard ED which considers, in general, only the minimal cost. Ristad and
Yianilos [1] showed that one can obtain a so-called stochastic ED ds by computing

ds(X, Y ) = − log p(X, Y ).
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2.3 ED Learning by Non-memoryless State Machines

In specific applications, the edit operation has an impact more or less important
in the data transformation according to its location. For instance, in molecular
biology, it is common knowledge that the probability to change a symbol into
another one depends on its membership of a transcription factor binding site. To
deal with such situations, non-memoryless approaches have been proposed [2,9]
in the form of probabilistic state machines that are able to take into account
the string context1. So, the output of the model is not a 2-dimensional matrix
anymore, but rather a 3-dimensional matrix where the third dimension represents
the state where the operation occurs.

Fig. 2. Screen-shots of SEDiL. On the left, an example of learning from strings; On
the right, an illustration of the classification step.

3 Presentation of the Platform SEDiL

The platform SEDiL groups together the state of the art ED learning algo-
rithms. It is an open source software written in Java and can be used on a local
machine using Java Web Start technology or directly from our web with an ap-
plet [10]. Some screen-shots of the application are presented on Figures 2 and 3.
SEDiL enables us to perform two kinds of tasks: learning and classification.

3.1 Edit Parameters Learning and Classification

All the algorithms we implemented are based on an adaptation of the
Expectation-Maximization algorithm to the context of EDs. From a learning
sample of labeled pairs of strings or trees, the system automatically generates
learning pairs either randomly (by choosing an output data in the same class)
or by associating to each example its nearest neighbor from instances of the
1 Note that so far, no approach has been proposed for trees.
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Fig. 3. Screen-shots of SEDiL. On the left, an help panel of SEDiL; On the right, an
example of learning from tree-structured data.

same class. Note that the user can also directly provide labeled training pairs
(e.g. misspelled/corrected words). The result of the learning step takes the form
of a matrix of edit probabilities (as shown in Fig.1) that represents either a
generative (joint distribution) or a discriminative model (conditional).

Since an ED is useful for computing neighborhoods, we implemented a clas-
sification interface allowing the use of a k-nearest neighbor algorithm with the
learned edit similarities. Therefore, all the methods we have implemented can
be compared (included the standard ED) in a classification task.

3.2 Contribution of SEDiL for the ML and DM Communities

What makes our piece of software unique and special?
As far as we know, there does not exist any available software platform to au-
tomatically learn the parameters of similarity measures based on the notion of
ED. By implementing SEDiL, we filled this gap.

What are the innovative aspects or in what way/area does it represent
the state of the art?
The two main historical references in ED learning are [1,2]. We implemented not
only this state of the art but also all the recent new approaches we published
during the past 4 years. In its current version, SEDiL provides five learning
methods which are based on the following scientific papers:

– The learning of an edit pair-Hidden Markov Model (Durbin et al. 1998 [2]).
– The learning of a joint stochastic string ED (Ristad & Yianilos [1]).
– The learning of a conditional stochastic string ED (Oncina & Sebban [3]).
– The learning of a stochastic tree ED with deletion and insertion operations

on subtrees (Bernard et al. 2006 [7,8]).
– The learning of a stochastic tree ED with deletion and insertion operations

on nodes (Boyer et al. 2007 [4]).
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For whom is it most interesting/useful?
SEDiL has already been used in various situations not only by academic but
also by industrial structures. In the context of the ANR BINGO Project
(http://users.info.unicaen.fr/∼bruno/bingo), SEDiL has been used to
search regularities in sequences of promoters in molecular biology. It is used at
the moment in music recognition by the laboratory DLSI of the University of
Alicante. Moreover, it has been recently exploited in a handwritten recognition
task by the company A2IA (http://www.a2ia.com/). More generally, SEDiL is
devoted to researchers who aim to compute distances between structured data.

4 Conclusion

SEDiL is the first platform providing several ED learning algorithms. It is de-
voted to improvements. We plan to implement a new edit model in the form of
constrained state machines able to take into account background knowledge and
a conditional random field approach recently presented in [9].
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Abstract. Patterns upon the data of many real applications are affected by 
changes in these data. We employ PATTERN-MINER tool to detect changes of 
clusterings extracted from dynamic data and thus, to provide insight on the 
dataset and to support strategic decisions. PATTERN-MINER, is an integrated en-
vironment for pattern (data mining model) management and mining that deals 
with the whole lifecycle of patterns, from their generation (using data mining 
techniques) to their storage and querying, putting also emphasis on the com-
parison between patterns and meta-mining operations over the extracted pat-
terns. In the current version, PATTERN-MINER integrates also an algorithm and 
technique for monitoring patterns (currently clusters) over time.  

Keywords: Pattern management, Pattern-base, pattern comparison, pattern 
monitoring.  

1   Introduction  

Clustering techniques are used to find interesting groups of similar objects in large data-
sets. As the data in most databases are changing dynamically, clusters upon these data 
are affected. A lot of research has been devoted in adapting the clusters to the changed 
dataset. On the other hand research has expanded and it is devoted in tracing of the 
cluster changes themselves, trying thus to reveal knowledge about the undelying dataset 
to support strategic decisions. For example, if a business analyst who studies customer 
profiles, could understand how such profiles change over time he/she could act towards 
a long-term proactive portfolio design instead of reactive portfolio adaptation. 

We demonstrate Pattern-Miner, an integrated environment that deals with pattern 
modeling, storage and retrieval issues using state-of-the-art approaches in contrast to 
existing tools that deal with specific aspects of the pattern management problem, mostly 
storage. Pattern-Miner offers an environment that provides the capability not only to 
generate and manage the different types of patterns in a unified way, but also to apply 
more advanced operations over patterns, such as comparison, meta-mining and cluster 
monitoring without facing interoperability or incompatibility issues as if using different 
applications for each task. Pattern-Miner follows a modular architecture and integrates 
the different Data Mining components offering transparency to the end user. A previous 
version of Pattern-Miner has been demonstrated at KDD2008 conference. In the current 
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version, a major addition has been made. A module for monitoring patterns over time. 
At first we are dealing with cluster monitoring as it has wide application to many scien-
tific or commercial fields. 

In order to better understand the theoretical background of PATTERN-MINER we 
briefly present some basic notions on patterns, following the PBMS approach [5]. A 
pattern is a compact and rich in semantics representation of raw data. Patterns are 
stored in a pattern base for further analysis. The pattern base model consists of three 
layers: pattern types, patterns, and pattern classes. A pattern type is a description of 
the pattern structure, e.g. decision trees, association rules, etc. A pattern type is a 
quintuple  pt = (n, ss, ds, ms, f), where n is the name of the pattern type, ss (structure 
schema) describes the structure of the pattern type (e.g. the head and the body of an 
association rule), ds (source schema) describes the dataset from which patterns are 
extracted, ms (measure schema) defines the quality of the source data representation 
achieved by patterns (e.g. the support and the confidence in case of an association rule 
pattern) and f is the formula that describes the relationship between the source data 
space and the pattern space. A pattern is an instance of the corresponding pattern type 
and a class is a collection of semantically related patterns of the same type.  

2   Extended Pattern-Miner Architecture  

Figure 1 depicts the PATTERN-MINER architecture, including the pattern-monitoring 
module. PATTERN-MINER engine lies in the core of the system arranging the communica-
tion between the different peripheral components providing also the end user interface. 

In this section, we provide an overview of the funcionality of each module of PAT-

TERN-MINER and we focus on the Pattern monitoring module  that consists the most 
recent and advanced module. 

Pattern extraction and representation: The Data Mining engine component is re-
sponsible for the extraction of patterns. We employ for this task WEKA, since it is an 
open source tool and offers a variety of algorithms for different Data Mining tasks 
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as well as preprocessing capabilities over raw data. The output of the Data Mining 
process is represented with respect to the PBMS approach, described above. Several 
schemes have been proposed in the literature for the representation of patterns. The 
most popular choice is PMML [3], an XML-based standard that allows the definition 
of Data Mining and statistical models using a vendor-independent method. Different 
models are described through different XML schemes. In PATTERN-MINER, we adopt 
PMML for pattern representation and, thus, we convert the output of the Data Mining 
engine component into PMML format. 

Pattern storage and querying: Since patterns are represented as XML documents 
(through PMML), a native XML database system is used for their storage in the Pat-
tern Base. In particular, we employ the open source Berkeley DBXML, which com-
prises an extension of the Berkeley DB with the addition of an XML parser, XML 
indexes and the XQuery data query language. PATTERN-MINER provides a basic envi-
ronment for querying the pattern base, through the XQuery language. Regarding the 
supported query types, the user can retrieve the whole pattern or some component of 
the pattern (measure and/ or structure), as well as to impose constraints over these 
components. The results are displayed in his/her screen and can be stored in the file 
system for future analysis. 

Pattern comparison: One of the most important operations on patterns is that of 
pattern comparison with applications like querying (e.g. k-nearest neighbor queries) 
and change detection upon dynamic data [4]. Recognizing this fact, we distinguish the 
comparison process from the querying process and we implement it separately 
through the Pattern comparison module. The comparison is carried out on the basis of 
PANDA [1], a generic and flexible framework for the comparison of patterns defined 
over raw data and over other patterns as well. Comparison utilizes both structure and 
measure components of patterns. The user defines the patterns as well as the way that 
they should be compared, i.e. how the different components of PANDA are instanti-
ated. The output is a dissimilarity score accompanied with a justification, a report 
actually of how the component patterns have been matched.  

Meta-mining: Due to the large amount of extracted patterns, several approaches have 
lately emerged that apply Data Mining techniques over patterns instead of raw data, in 
order to extract more compact information. The Meta-mining module takes as input a 
set of different clustering results extracted from the same dataset (through different 
clustering algorithms or different parameters) or from different datasets (through from 
the same generative distribution) and applies Data Mining techniques over them, in 
order to extract meta-patterns. So far, the meta-mining component focuses on meta-
clustering [2], i.e. grouping of clustering results into groups of similar clusterings. 
The user has full control of the clustering process by choosing the similarity function 
and the clustering algorithm. The extracted meta-patterns can be stored in the pattern 
base for further exploitation. 

Pattern Monitoring: While PATTERN-MINER is a tool for managing all types of pat-
terns, at the current moment we have implemented a Cluster Monitoring technique that 
is based on the theory and algorithm described in [4]. In this approach, the transitions of 
clusters extracted upon an accumulating dataset are traced and modeled. Clustering 
occurs at specific timepoints and a “data ageing” function can be used to  
assigns lower weights to all or some of the past records. The set of features used for 
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clustering may also change during the period of observation, thus allowing for the inclu-
sion of new features and the removal of obsolete ones. PATTERN-MINER assumes  
re-clustering rather than cluster adaptation at each timepoint, so that both changes in 
existing clusters and new clusters can be monitored. Transitions can be detected even 
when the underlying feature space changes, i.e. when cluster adaptation is not possible. 
Terms like cluster match, cluster overlap, cluster transition and lifetime of a cluster are 
core notions of cluster monitoring. This module exploits the clusterings that are stored 
in the pattern-base and employs the query and comparison capabilities of the system. 

3  Demo Description 

PATTERN-MINER is a tool that can be used in a lot of different areas, scientific or 
commercial. To point out the major advantages of the integrated environment of PAT-

TERN-MINER we demonstrate a simple senario of a supermarket and its manager as the 
end-user. The supermarket has a database and everyday transactions are stored in it. 
The manager is interested in finding useful patterns in the data, like associations in the 
purchase of the products and clusters of customers with specific profiles and buying 
habits. Except from these simple patterns, the manager is interested in comparing 
clusters of customers or products discovered from the same dataset. Moreover, the 
manager wishes to monitor clusters of customer profiles over time, so he/she can 
capture any changes in buying preferences or habits. Are there any new clusters that 
describe a different customer profile? Some clusters may have been disappeared or 
shrinked while others could have been merged or expanded. PATTERN-MINER can be 
used to answer these questions supporting the manager on important decisions about 
strategies, campaigns, supplies etc. In the following paragraphs we describe the steps 
that the manager as the end-user would follow, to process the data from the dataset of 
the supermarket in order to extract and manage interesting patterns. 

Pattern extraction and storage: The manager defines the data source (supermarket 
database), the Data Mining algorithm and its parameters. He/she would choose the 
apriori algorithm to find for example associations between products. To find clusters 
over the customer demographics to create profiles, the K-Means or the EM clustering 
algorithm would be appropriate. The extraction takes place in WEKA and the results 
are converted into PMML format before being stored in a user-specified container in 
the XML pattern base as well as, in a file on the hard disk. 

Pattern query: The user defines, in the “Query pattetrn base” tab, the pattern set to 
be queried and the query in the Xquery language. PATTERN-MINER engine creates the 
connection to the pattern base, executes the query and returns the results to the user 
and also saves them to a file. A sample query is shown in Figure 2, described in both 
natural language and Xquery. 

Pattern comparison: This module allows the user to define the patterns to be com-
pared, e.g. sets of rules extracted from different months or clusters describing cus-
tomer profiles. Then, the user chooses the appropriate comparison function from the 
candidate functions implemented for each pattern type. The results are returned to the 
user, who can detect any changes in the sales-patterns and decide whether these 
changes were expected (based on company’s strategy) or not (indicating some suspi-
cious or non-predictable behavior). 
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Query (natural language):   

Retrieve the clusters from the super_market dataset that have been extracted using 
EM algorithm. 
Query (XQuery): 
declare namespace a="http://www.dmg.org/PMML-3_2"; 
collec-
tion("Clustering.dbxml")[dbxml:metadata("dbxml:dataFileName")="C:\Patter
nMiner\data_files\super_market_data.ARFF"]/a:PMML/a:ClusteringModel[@alg
orithmName="weka.clusterers.EM"] 

Fig. 2. A sample query for the Clustering pattern-model 

Meta-mining: The user defines the pattern sets to be used as input to the Meta-
mining module (e.g. sets of rules extracted at each month of 2007), selects the cluster-
ing algorithm/ parameters, as well as the similarity measure between sets of rules. The 
input sets are clustered into groups of similar sets of rules (e.g. March and April are 
placed in the same group, since they depict similar buying behavior), which can be 
also stored in the pattern base for future use. The manager can exploit these results in 
order to decide similar strategies for months belonging to the same cluster.  

 

Fig. 3. Cluster Monitoring screenshot 

 
Cluster Monitoring: User defines the dataset 
from which the clusters have been extracted. A 
list of all the clusterings that have been carried 
out over the spesific dataset is available to the 
user, sorted by the extraction time. The super-
maket manager wants to observe the customer 
profiles over time. Choosing the apropriate data-
set (supermarket.arff), Pattern-Miner returns all 
the different clusterings that have been created 
from that dataset, along with the clustering algo-
rithm and the extraction time. The manager 

Fig. 4. Graphical reprepsentation of 
cluster monitoring output 
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chooses two or more clusterings and runs the cluster monitring process. This process 
results in a matrix showing the clusters of the first clustering and their changes over 
time (new clusters, clusters that no longer exists, shrinked or expanded clusters etc). 
Currently the output is in text format, representing the graph depicted in Figure 4. 

4  Conclusions and Outlook 

Advanced operations over patterns, like comparison, meta-mining and cluster moni-
toring while important for users of a variety of fields, are not supported from data 
mining or database systems. PATTERN-MINER is an integrated environment for pattern 
management that supports the whole lifecycle of patterns and also offers sophisticated 
comparison, meta-mining and cluster monitoring operations over patterns. It follows a 
modular architecture that employs state-of-the-art approaches at each component. Its 
advantage lies in the fact that all the operations related to the management of patterns 
(as data mining results) are integrated into one system in transparent to the user way. 
It is open source and easily expandable while, because of the use of PMML files, the 
exhange of data and results with other systems is a simple issue. 

Several improvements though, can be carried out: First, existing components can 
be enhanced, e.g. querying could be improved through appropriate indices and new 
query types could be supported. Also, the Meta-mining and cluster monitoring mod-
ules can be extended so as to support more pattern types, like decision trees. Second, 
new components can be added, e.g. some visualization module for better interpreta-
tion of the results. Except for the scenario we described, other potential applications 
include cluster-based image retrieval, pattern validation, comparison of patterns ex-
tracted from different sites in a distributed environment setting, etc. 
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Abstract. We propose a novel approach of knowledge discovery method by 
adopting dashboard concept and incorporating elements of data clustering, visu-
alization and knowledge codification. The dashboard was designed to help the 
higher institution to explore the insight of student performance by analyzing sig-
nificant patterns and tacit knowledge of the experts in order to improve decision 
making process. The system has been developed using system development life 
cycle (SDLC) methodology and coded in web-based and open source environ-
ment. The dashboard architecture and software are presented in this paper. 

Keywords: Knowledge Management, Digita Dashboard, Data Mining, Knowl-
edge Discovery, Data Visualization, Knowledge Visualization. 

1   Introduction 

Major application of knowledge discovery identified for higher education institutions 
is student performance [1]. It is critical for the higher educationist to identify and ana-
lyze the relationships among different entities such as students, subjects, lecturers, 
environment and organizations to ensure the effectiveness of their important proc-
esses. Presently, Higher Education Institutions are just utilizing normal report with 
minimum knowledge exploration to analyze information regarding the performance of 
the institution such as student performance.  

The objective of this project is to design and develop a University Dashboard sys-
tem to improve the knowledge exploration by combining various techniques; MaxD 
K-means data clustering technique, graph-based visualization technique, knowledge 
management elements and dashboard concept. With the new approach of knowledge 
exploration, it shall helps the Board of Examiner or Senate Members to further ex-
plore the findings from the processing of information through the combination of 
clustering process and visualizing technique in identifying problems and actions to be 
taken in order to improve student performance. 

2   A Novel Digital Dashboard for Higher Education Institution 

2.1   Novelty of the Dashboard 

The new digital dashboard for higher education is able to increase the utilization and 
effectiveness of the generated knowledge to facilitate the decision making process. It 
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incorporates Knowledge Codification Technique, Data Clustering (Data Mining), 
Forecasting Technique, Graph-based Visualization technique and Digital Dashboard 
concept.  The new university dashboard has various advantages and uniqueness com-
pared to the current dashboard as shown in Table 1. 

Table 1. Comparison of Features and Uniqueness between new University Dashboard and cur-
rent Dashboard 

 

2.2   Applicability 

Student Performance is one of the benchmark scale which reflect the Institution per-
formance level. To really explore and improve the student performance, knowledge 
exploration is deemed crucial, thus the need for new KMS is highly demanded. Pres-
ently, Higher Education Institutions are just utilizing normal student report with 
minimum knowledge exploration to analyze student performance. With the new 
KMS, it shall helps the Board of Examiner or Senate Members to further explore the 
findings from the processing of information through the combination of knowledge 
processing and visualizing technique to identify problems and actions to be taken in 
order to improve student performance.  
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2.3   System Architecture 

Fig. 1 shows the system architecture of the dashboard where the process starts from 
the data capturing from University Database, followed by data clustering process, 
visualizing process, forecasting process and finally viewing the final results through 
the dashboard view. Parameter-less K-Means clustering engine was used for data 
clustering process [2], Multi-layers graph-based technique was used to visualize the 
generated clusters [3] and fuzzy pattern matching algorithm was used to forecast fu-
ture performance.  At the same time, input from Key Performance Indicator (KPI) 
System will generate the dashboard for the targeted KPI as a comparison to the cur-
rent status. For the above processing, interaction with the domain experts shall im-
prove the intelligence of the system. 

 

Fig. 1. System Architecture of University Dashboard 

2.4   Snapshots of a Knowledge-Based Digital Dashboard 

Fig.2 shows the Max-D K-means Clustering engine [2] used to cluster the student 
performance data and Fig. 3 shows the forecasting engine which forecast the future 
academic performance of using Fuzzy Pattern Matching Algorithm. The output of 
these processing is visualized through the digital dashboard [3] as shown in Fig.3(a) 
and Fig.3(b) which illustrate the use of dashboard concept with various knowledge 
exploration techniques; clustering, visualization and knowledge codification [4]. At a 
glance, the management of the institution can have a feel of their institutions in terms 
of student performance. In first segment of the dashboard, it shows the current status 
of the overall performance, followed by the forecast performance and pervious per-
formance. As such, it allows the management to visualize and appreciate the actual 
performance compared to the previous and future performance. Furthermore, the 
dashboard shows the student clusters generated from clustering process of the student 
performance database in the form of graph. Each cluster can be drilled down using 
multi-layers graph-based technique to visualize the behavior of the students. The clus-
ters allow the management to visualize the group of student in a particular category 
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and further actions can be taken immediately. The dashboard is also comprises of 
expert opinion which is part of tacit knowledge and related publications for the sub-
ject matter as part of explicit knowledge. This segment illustrates the use of knowl-
edge codification technique in the dashboard.  Finally, the drill-down features of the 
dashboard is illustrated through the detail graphs whereby it shows the breakdown of 
the student performance by various dimensions such as faculty, gender, race etc. The 
detail information of each graph shall be displayed in the next layer of the dashboard, 
which becomes the sub-dashboard for the purpose of different group of users.  

 

Fig. 2. Max-D Clustering Engine 

 

Fig. 3. Fuzzy Pattern Forecasting Engine 
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Fig. 3. (a). A Web-based Dashboard System For Higher Education 

 

Fig. 3. (b). A Web-based Dashboard System For Higher Education 

2.5   About the Product 

The software products have been developed using Oracle system and open source 
platform. The backend engines which are K-means clustering and forecasting engines 
were developed using Oracle forms 6i and Oracle 10g database, whereas the front-end 
of the digital dashboard was developed using Php programming language and 
MySQL database which is open source platform. The data required are student’s Cu-
mulative Grade Point Average (CGPA), student personal background, lecturer’s 
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comments and related publications. The system is can be installed in any type of serv-
ers which is connected to the internet. The software can be executed by using any 
browser. 

3   Conclusion 

We propose a holistic design of Knowledge-based Dashboard system which shall im-
prove the understanding of the information through clustering process and enhance 
the visual impact of the system. By designing the system as a dashboard and embed-
ded with various data retrieval techniques; clustering, visualization and knowledge 
codification, it shall improve the understanding, visualization and personalization 
level of the data.  
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Abstract. In this demonstration, we will present the concepts and an
implementation of an inductive database – as proposed by Imielinski and
Mannila – in the relational model. The goal is to support all steps of the
knowledge discovery process on the basis of queries to a database sys-
tem. The query language SiQL (structured inductive query language), an
SQL extension, offers query primitives for feature selection, discretiza-
tion, pattern mining, clustering, instance-based learning and rule in-
duction. A prototype system processing such queries was implemented
as part of the SINDBAD (structured inductive database development)
project. To support the analysis of multi-relational data, we incorporated
multi-relational distance measures based on set distances and recursive
descent. The inclusion of rule-based classification models made it nec-
essary to extend the data model and software architecture significantly.
The prototype is applied to three different data sets: gene expression
analysis, gene regulation prediction and structure-activity relationships
(SARs) of small molecules.

1 Introduction

Inductive databases are databases handling data, patterns and models, and sup-
porting the complete knowledge discovery process on the basis of inductive query
languages. Many of the recent proposals for inductive databases and constraint-
based data mining are restricted to single pattern domains (such as itemsets
or molecular fragments) or single tasks, such as pattern discovery or decision
tree induction. Although the closure property is fulfilled by many of those ap-
proaches, the possibilities of combining various techniques in multi-step and
compositional data mining are rather limited. In the demonstration, we present
a prototype system, SINDBAD (structured inductive database development),
supporting the most basic preprocessing and data mining operations such that
they can be combined more or less arbitrarily. One explicit goal of the project
is to support the complete knowledge discovery process, from pre-processing to
post-processing, on the basis of database queries. The research extends ideas
discussed at the Dagstuhl perspectives workshop “Data Mining: The Next Gen-
eration” [1], where a system of types and signatures of data manipulation and
mining operators was proposed to support compositionality in the knowledge
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discovery process. One of the main ideas was to use the simplest possible sig-
nature (mapping tables onto tables) as a starting point for the exploration of
more complex scenarios. The relational model was chosen, as it possesses several
desirable properties, from closure to convenient handling of collections of tuples.
Moreover, it is possible to take advantage of mature and optimized database
technology. Finally, systems supporting (variants of) SQL are well-known and
established, making it easier to get users acquainted with new querying facilities.

2 SiQL and SINDBAD: Query Language and
Demonstration Overview

SiQL (structured inductive database query language), the query language of
the SINDBAD system, is a straightforward extension of SQL. Instead of just
adding complicated data mining operators to SQL, we focused on incorporating
small, but extensible and adjustable operators that can be combined to build
more complex functions. The query language supports the knowledge discovery
process by offering features for the successive transformation of data. As each
pre-processing and data mining operator returns a table, the queries can be
nested arbitrarily, and the kind of compositionality needed in multi-step data
mining can be achieved easily. The mining operators were designed in analogy to
relational algebra and SQL: For instance, we made heavy use of the extend-add-
as operator and devised a feature-select clause in analogy to the select clause.

From each category of preprocessing/mining algorithms, we implemented the
most fundamental representatives. For discretization, we included equal fre-
quency and equal width, for feature selection a filter approach based on informa-
tion gain or variance, for pattern mining, the computation of frequent itemsets
using APriori, for clustering k-Medoids, and for classification k-nearest neighbor
and rule induction (pFOIL, a propositional variant of FOIL [12]). External tools
can be integrated via wrappers.

We adopted the extend [4] operator to add the results of various data min-
ing operations as new attributes to a given relation. It computes a function for
each tuple and adds the result as the value of a new attribute. In SINDBAD,
the extend operator adds the results of clustering, instance- or rule-based pre-
dictions, and sampling to a table. For clustering/classification, the cluster/class
membership is indicated by an additional attribute. In sampling, the sample
membership determined by a random number generator is given in the new at-
tribute. In this way, we can split datasets, for instance, into a training set and a
test set. For clustering and instance-based learning (k-nearest neighbor), other
methods for handling tuples and distances are provided as well.

One of the central concepts of SINDBAD is that of distances between objects.
This is not restricted to tuples of a single relation. Using relational distance
measures, it is possible to apply clustering and instance-based learning to multi-
relational data [13]. Most relational distance measures are based on recursive
descent and set distances, i.e., distances between sets of points. In the simplest
case, the computation of a distance between two sets of tuples A and B boils
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down to computing the minimum distance between two elements of each set
(single linkage), dSL(A, B) = mina∈A,b∈B d(a, b).

One of the most recent additions is the inclusion of full-fledged predictive
models in the form of rule sets. For simplicity, we chose pFOIL, a propositional
variant of the traditional FOIL algorithm [12]. The addition of models required
significant extensions of the data model of the system. Models can be composed
of component models. The evaluations of component models (e.g. class predic-
tions) can be aggregated via combining functions. Combining functions can be
defined in terms of logical or arithmetic operators. In this way, rule sets, weighted
rule sets, trees, linear classifiers, and ensembles can be handled conveniently. For
details of the query language and the implementation, we have to refer to more
comprehensive publications [9,14].

In the demonstration, we will highlight some of the main features of SINDBAD
in three real-world applications. In the first application, we test it on the gene
expression data from Golub et al. [6], which contains the expression levels of
genes from two different types of leukemia. In the second application (see tables
1,2 and 3), the task is to predict gene regulation dependent on the presence of
binding sites and the state of regulators [5]. The third application is to predict
anti-HIV activity for more than 40,000 small molecules [10].

Table 1. Relational schema of gene regulation data. The relation gene is the main table
and connects genes with experimental setups and expression levels. The fun cat relation
gives the functional category membership of a gene according to the FunCat database.
The third relation, has tfbs indicates occurrence of transcription factor binding sites in
respective genes whereas in the regulators table experimental conditions and activated
regulators are given. The last table p p interaction gives the gene product interaction
data.

gene(gene_id, fun_cat(gene_id,
cond_id, fun_cat_id)
level)

has_tfbs(gene_id, regulators(cond_id,
yaac3_01, ybl005w,
yacc1_01, ycl067c,
yacs1_07, ydl214c,
yacs2_01, ydr277c,
...) ...)

p_p_interaction(gene1_id,
gene2_id)

3 Related Work and Conclusion

In the demonstration, we present a new and comprehensive approach to induc-
tive databases in the relational model. The main contribution is a new induc-
tive query language in the form of a SQL extension, including pre-processing
and data mining operators. The approach is similar to the ones by Meo et
al. [11], Imielinski and Virmani [8], and Han et al. [7] in extending SQL for
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Table 2. k-Medoids for gene regulation prediction. The resulting table shows in column
2 the gene identifiers, in column 3 the experimental conditions, followed by the change
of expression level and the cluster membership in column 3 and 4.

(30)> configure kmedoids_k = 5;
(31)> ...
(32)> extend gene add k medoid membership of gene;
(33)> show table gene;
row|gene_id|cond_id |level|cluster|
1 |YAL003W|2.5mM DTT 120 m dtt-1 |-1 |2 |
2 |YAL005C|2.5mM DTT 180 m dtt-1 |-1 |3 |
3 |YAL005C|1.5 mM diamide (20 m) |+1 |5 |
4 |YAL005C|1.5 mM diamide (60 m) |+1 |1 |
5 |YAL005C|aa starv 0.5 h |-1 |2 |
...|... |... |... |... |

Table 3. k-nearest neighbor for gene regulation prediction. This resulting table, column
2 and 3 are the same as in Table 2 followed by the predicted class label in column 4.

(40)> configure KNearestNeighbour_K = 10;
(41)> extend gene_test add knn prediction

> of level from gene_train;
(42)> show table gene_test;
row|gene_id|cond_id |class|
1 |YBL064C|aa starv 1 h |+1 |
2 |YDL170W|YPD 3 d ypd-2 |-1 |
3 |YER126C|Heat shock 40 minutes hs -1 |-1 |
4 |YJL109C|dtt 240 min dtt-2 |+1 |
5 |YKL180W|Nitrogen Depletion 1 d |+1 |
...|... |... |... |

data mining. Another approach of Blockeel et al. [2] focuses on the automatic
generation of mining views, in which the relevant parts are materialized on de-
mand when a model is queried. The focus of the work is on the storage model
and evaluation logic of data mining results. However, SINDBAD differs from
related work [3] in – among other things – the support of pre-processing fea-
tures. Also, it is a real prototype, useful for exploring concepts and requirements
on such systems. Since it is at the moment far from clear what the require-
ments of a full-fledged inductive database will be, it is our belief that we can
only find this out by building such prototype systems. Regarding implementa-
tions, the most similar work seems to be MS SQL Server [15]. In contrast to
MS SQL Server, SINDBAD focuses on the successive transformation of data.
Moreover, the approach presented here seems to be less rigid, especially with re-
spect to feature selection, discretization, and pattern mining. Oracle uses a sim-
ilar approach to provide data mining functionality in the Oracle Database (see
http://www.oracle.com/technology/documentation/datamining.html). In
future work, we are planning to investigate a more elaborate system of signatures
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and types. Type signatures would be useful to define admissible inputs and out-
puts of data manipulation and mining operations. Signatures of operators would
enable first steps towards the optimization of inductive queries.
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