JPHS 2020, 11; 117-126
© 2020 Royal Pharmaceutical
Society (RPSGB)
Received February 4, 2020
Accepted February 20, 2020
DOI 10.1111/jphs. 12349
ISSN 1759-8885

State pharmaceutical importation programmes: an analysis of the cost-effectiveness

Kristina M. L. Acri née Lybecker (i)
Department of Economics and Business, Colorado College, Colorado Springs, CO, USA

Abstract

Objectives This article examines the cost-effectiveness of the pharmaceutical importation programmes currently under consideration. On 18 December 2019, the Trump Administration laid out a plan to allow states, drug wholesalers and pharmacies to import some lower-cost prescription medications from Canada (https://www.washingtonpost.com/hea lth/2019/12/18/trump-administration-unveils-plan-allow-states-buy-cheaper-drugs-canada/). This comes on the heels of recently proposed state legislation in Colorado, Connecticut, Florida, Maine, Missouri, Oklahoma, Oregon, Utah, Vermont and West Virginia aimed at reducing spending on pharmaceuticals by importing them from Canada. Methods This study analyses 24 drugs from an online Canadian supplier, accounting for the cost savings, the cost of testing for safety and efficacy, the medical consequences of treatment failure and the cost of treating an adverse medical event. The analysis compares the presumed cost savings against the costs of 'testing into safety'. The analysis also compares the presumed cost savings against the costs of treating an adverse medical event, both at the level of the individual patient and for a 'Representative State'. Key findings For a 'Representative State', given an adverse medical event, the presumed savings from an online Canadian supplier are exhausted in the treatment of the associated adverse event: ranging from only one patient in the case of Nexium to 24318 adverse events for patients in the case of Advair. The analysis also shows the cost of testing for safety and efficacy (with 99.999% confidence level with 99.999% reliability) exceeds the presumed cost savings for all of the drugs considered. Conclusions While pharmaceutical importation plans are politically attractive, the numbers demonstrate that they fail to deliver cost savings when implemented safely. These schemes can be cheap, or they can be safe, but not both.

Keywords Canadian pharmacy; cost-effectiveness; drug prices; pharmaceutical importation

Introduction

Drug importation schemes are again being presented as a remedy to high US drug prices. Recently proposed legislation in Colorado, Connecticut, Florida, Maine, Missouri, Oklahoma, Oregon, Utah, Vermont and West Virginia aims to reduce spending on pharmaceuticals by importing some drugs from Canada. ${ }^{[1]}$ Advocates reason that American patients can lower their drug costs by importing cheaper drugs from countries with lower pharmaceutical prices. What escapes their attention is the need for, and cost of, testing to ensure that those imports are safe and effective. Fundamentally, it has not been established
tory compliance cannot be assured, and then test it into safety.

In reality, it is very expensive to test imported medication to the same level of expected safety as FDA-approved medicines made in FDA-monitored factories. Given this, the tremendous cost of testing must be taken into account when calculating the cost savings or dissavings associated with buying medicines from a source outside the highly regulated US supply chain. Beyond the costs of testing drugs into safety, it is essential to recognize that purchasing pharmaceuticals outside of the US supply chain may expose patients to the risks of counterfeit, fraudulent and substandard drugs which may be dangerous or toxic, resulting in serious patient harm. Accordingly, the cost of treating the resulting adverse medical events must also be addressed.

In order to examine the cost-effectiveness of pharmaceutical importation, this study analyses the cost savings, the cost of testing and the cost of treating an adverse medical
event. This entailed initially examining 40 drugs, documenting the prices, the cost savings that would presumably be generated by purchasing from an unregulated supplier (either a Canadian online supplier as presented in the text of this article or a brick-and-mortar Canadian pharmacy as presented in the Data S1), the potential medical consequences of treatment failure, and the expense of treating such adverse events. The results indicate that the true costs of pharmaceutical importation outweigh the anticipated cost savings. When all potential risks and costs are accounted for, moving outside of the secure US pharmaceutical supply chain fails to deliver any savings and is, in fact, indefensible.

Methods

This study began with a list of 40 drugs and, due to lack of information and availability, ultimately examines approximately two dozen drugs. The initial set of 40 drugs identified for inclusion were selected based on several criteria:

- The selection included drugs from a wide variety of therapeutic classes and treatments for a variety of diseases and medical conditions.
- The selection included drugs that are known to be widely counterfeited.
- The selection included drugs that consumers readily seek to purchase outside the legitimate supply chain.
- The selection included drugs mentioned in news and media reports that speak to consumers purchasing drugs abroad. Specifically, the Utah Tijuana Thirteen List, ${ }^{[2]}$ the list promoted by Senator Bernie Sanders, ${ }^{[3]}$ and the list promoted by the National Academy for State Health Policy. ${ }^{[4]}$
- The selection drew upon recommendations from experts.

Of the 40 drugs initially selected for inclusion, the list included the thirteen drugs from the Utah Tijuana Thirteen List, the 10 drugs cited by Senator Bernie Sanders, and the ten drugs promoted for importation by the NASHP (Note that while the drug included on the NASHP list was Tracleer, no Canadian sources were found for this drug, so Letairis is listed instead. Letairis is a more popular drug in the same class as Tracleer.). In addition, the list reflects drug classes that are known to be widely counterfeited. Drawing on data from the Pharmaceutical Security Institute (PSI), ${ }^{[5]}$ the list includes drugs from each of the top five therapeutic categories vulnerable to counterfeiting. Finally, several drugs were included based on the recommendations of board members of the Partnership for Safe Medicines. The full list of drugs and the source of their inclusion are included in the Data S2. For each of these 40 drugs, an attempt was made to collect pricing data from both online Canadian suppliers and a brick-and-mortar Canadian pharmacy. The analysis of the online Canadian suppliers is presented here, while the analysis of the brick-and-mortar Canadian pharmacy is available in the Data S1. The presumed savings from an online Canadian supplier exceed those of the brick-and-mortar Canadian pharmacy, which will bias this analysis against a finding of the elimination of all cost savings.

Ultimately, there were 16 drugs for which some data were not available: Aubagio, Augmentin, Avonex, Celebrex, Cialis, Copaxone, Eliquis, Forteo, Humira, Letaris, Lyrica, Stelara, Stendra, Strattera, Synthroid, and Triumeq. The remaining 24 drugs were selected for extensive analysis: identification of the drug's indication, the US cost of the drug, the cost from a Canadian pharmacy (both online and brick-and-mortar), description of potential medical adverse events, calculation of cost of treating said adverse events, estimation of the cost of testing the quality, safety and efficacy of the drug. Details on the data collection methodology and sources used may be found in the Data S2.

Determination of sample size

While the pricing calculations for the USA and Canadian sourced drugs are quite straightforward, the costs of testing the quality, safety and efficacy of the drugs depend on the number of samples needed for testing. The necessary sample size is dependent on the desired confidence level and reliability one would like to have. (Please reference the Data S2 for a full discussion.) For example, in order to provide 90% confidence in the quality of the imported drugs, with 90% reliability, 22 samples must be tested. In order to increase this confidence level to 99.99%, with a 99.99% reliability, 92099 samples must be tested. In order to increase this confidence level to 99.999%, with a 99.999% reliability, 1151287 samples must be tested. Table 1, below, provides the required sample size for combinations of confidence levels (ranging from 0.9 to 0.99999) and reliability (ranging from 0.9 to 0.99999).

Accordingly, the number of samples needed multiplied by the expense of a particular test may then be used to estimate the cost of 'testing drugs into safety'. The testing cost information utilized in this study was provided by NMS Labs. ${ }^{[6]}$ Four tests are needed to establish quality, depending on the type of drug, the dosage and the method of administration. These are as follows: Assay, Content Uniformity, Dissolution Rate and Sterility. For the 24 drugs included in this study, the cost of testing a single sample depends on the tests required, and ranges from $\$ 2500$ to $\$ 4100$. Full details on test utilization and costs are included in the Data S2. Table 1 presents the highest (\$4100) and lowest (\$2500) costs of testing the requisite number of samples for each of the combinations of confidence level and reliability.

Results

Calculation of presumed cost savings

The presumed cost savings that will accrue to a patient who purchases their drugs from an online Canadian pharmacy are calculated as follows: Utilizing the average US price per unit and the lowest online Canadian price per unit, the average cost savings per unit were calculated for the 24 drugs for which extensive analysis is possible. For drugs taken for a chronic condition, this number was multiplied by the number of doses prescribed per month to calculate the presumed monthly savings, which was then multiplied by 12 to calculate the presumed annual savings. For drugs taken

Table 1 Sample size as a function of confidence and reliability

Confidence level (\% as decimal)	Reliability (\% as decimal)	Sample size required: Ln (1-Confidence)/Ln(Reliability)	Cost of testing sample at $\$ \mathbf{2 5 0 0}{ }^{1}$	Cost of testing sample at $\$ 4100^{2}$
0.9	0.9	22	\$55000.00	\$90 200.00
0.9	0.9	22	\$55 000.00	\$90 200.00
0.99	0.9	44	\$110 000.00	\$180 400.00
0.999	0.9	66	\$165 000.00	\$270 600.00
0.9999	0.9	87	\$217500.00	\$356 700.00
0.99999	0.9	109	\$272 500.00	\$446 900.00
0.9	0.99	229	\$572 500.00	\$938 900.00
0.99	0.99	458	\$1 145000.00	\$1877800.00
0.999	0.99	687	\$1717500.00	\$2 816700.00
0.9999	0.99	916	\$2 290000.00	\$3 755600.00
0.99999	0.99	1146	\$2 865000.00	\$4 698600.00
0.9	0.999	2301	\$5 752500.00	\$9 434100.00
0.99	0.999	4603	\$11507500.00	\$18 872300.00
0.999	0.999	6904	\$17 260000.00	\$28 306400.00
0.9999	0.999	9206	\$23 015000.00	\$37 744600.00
0.99999	0.999	11507	\$28 767500.00	\$47 178700.00
0.9	0.9999	23025	\$57562500.00	\$94 402500.00
0.99	0.9999	46049	\$115 122500.00	\$188 800900.00
0.999	0.9999	69074	\$172 685000.00	\$283 203400.00
0.9999	0.9999	92099	\$230 247500.00	\$377 605900.00
0.99999	0.9999	115123	\$2 878217500.00	\$4 720276700.00
0.9	0.99999	230257	\$575 642500.00	\$944 053700.00
0.99	0.99999	460515	\$1 151287500.00	\$1888 111500.00
0.999	0.99999	690772	\$1726 930000.00	\$2 832165200.00
0.9999	0.99999	921029	\$2 302572500.00	\$3 776218900.00
0.99999	0.99999	1151287	\$2 853217500.00	\$4 679276700.00

Source: Author's calculations.
${ }^{1}$ This calculation represents the minimal cost of testing per sample, according to the estimates provided by NMS Labs. ${ }^{[[6]]}$
${ }^{2}$ This calculation represents the maximum cost of testing per sample, according to the estimates provided by NMS Labs. ${ }^{[6]]}$
for an acute condition, the average per unit cost savings was multiplied by the number of doses needed for treatment to calculate the savings per episode per patient. These calculations are presented in Table 2, below. The costs, pricing and savings data presented here correspond to the information collected for online Canadian suppliers. The corresponding analysis for a brick-and-mortar Canadian pharmacy is presented in the Data S1.

Ratio of the expense of treating an adverse event to presumed cost savings per patient

Since cost savings is the primary motivation for pharmaceutical importation, it is essential to consider whether patients actually save money. This section compares the presumed cost savings that will accrue to a patient over time and compares it to the cost of treating an adverse medical event. Simply stated, if a patient receives a counterfeit version of the imported drug and suffers negative health consequences, will they save any money?

Again, utilizing the average US price per unit and the lowest online Canadian price per unit, the average cost savings per unit were calculated. These presumed cost savings were then compared with the expense of treating an adverse event. Data on the costs of treating adverse medical events were gathered from medical journals and institutional
sources and are fully described in the Data S2. Again, the parallel analysis for a brick-and-mortar Canadian pharmacy is presented in the Data S1.

In the case of an online Canadian supplier, the annual presumed savings fail to cover the treatment of an adverse event for 18 of the 24 drugs (75%). All calculations are presented in Table 2. The calculations indicate that the ratio of the presumed savings to the treatment cost ranges from <0.01 for Crestor to 5.65 for Enbrel (The ratio is calculated by dividing the online savings per year per patient by the cost of treating an adverse event per patient). That is, for Crestor, the presumed annual savings cover $<1 \%$ of the cost of treating an adverse medical event, such that patients would require almost 105 years of presumed cost savings to cover the treatment of an adverse medical event. ${ }^{1}$ For Enbrel, patients would require 65 days of presumed cost savings to cover the treatment of an adverse medical event. ${ }^{2}$ For Crestor, the cost of treating an adverse event is more than 10500% of the presumed cost savings. Of the 14 adverse medical events considered, the presumed cost savings exceed the cost of treatment for only three conditions (21%). These are as follows: multiple sclerosis (Gilenya, Tecfidera), psoriatic arthritis (Enbrel, Orencia, Otezla) and prostate cancer (Zytiga). In addition, for ten of the 24 drugs analysed, the annual presumed savings are $<5 \%$ the cost of treating an adverse medical event. On average, patients
Table 2 Presumed cost savings per patient relative to the cost of treating an adverse event from online Canadian supplier

Drugs	Average US price per unit	Lowest online Canadian price per unit	US price less online Canadian price per unit	Online savings per patient: monthly ${ }^{1}$	Online savings per patient: yearly ${ }^{2}$	Online savings per patient: per episode ${ }^{3}$	Cost of treating adverse event per patient ${ }^{4}$	Number of years of savings needed to cover adverse event ${ }^{5}$	Per cent of adverse event treatment covered by annual savings ${ }^{6}$	Time needed to accrue cost savings to cover treatment of adverse event ${ }^{7}$
Abilify	\$30.01	\$1.48	\$28.53	\$855.88	\$10 270.54		\$64 729	6.30	0.16	6 years 4 months
Actos	\$20.08	\$0.82	\$19.25	\$577.61	\$6931.29		\$165 822	23.92	0.04	23 years 11 months
Advair	\$396.55	\$65.00	\$331.55	\$331.55	\$3978.57		\$11097	2.79	0.36	2 years 9 months
Albenza	\$210.21	\$1.13	\$209.09			\$50 450.40	\$55 085	1.09	0.92	1 year 1 month
Ampyra	\$44.95	\$12.23	\$32.72	\$1963.37	\$23 560.40		\$48893	2.08	0.48	2 years 10 months
Crestor	\$5.82	\$1.43	\$4.39	\$131.67	\$1580.07		\$165 822	104.95	0.01	105 years
Enbrel	\$1217.99	\$430.00	\$787.99	\$3151.98	\$37 823.70		\$6699	0.18	5.65	65 days
EpiPen	\$308.53	\$137.00	\$171.53			\$171.53	\$4719	27.51	0.04	27 years 6 months
Gilenya	\$261.73	\$107.14	\$154.58	\$4637.54	\$55 650.44		\$48893	0.88	1.14	10 months 17 days
Harvoni	\$1124.18	\$736.80	\$387.38			\$34 864.52	\$812500	23.30	0.04	23 years 3 months
Januvia	\$14.70	\$1.43	\$13.27	\$398.11	\$4777.35		\$29 023	6.08	0.16	6 years 1 month
Lipitor	\$14.25	\$1.17	\$13.08	\$392.41	\$4708.92		\$165 822	35.21	0.03	35 years 3 months
Nexium	\$5.60	\$1.00	\$4.60	\$137.96	\$1655.49		\$93966	56.76	0.02	56 years 9 months
Orencia	\$1080.41	\$404.00	\$676.41	\$2705.63	\$32 467.60		\$6699	0.21	4.85	2 months 16 days
Otezla	\$56.03	\$21.40	\$34.63	\$2077.83	\$24 933.99		\$6699	0.27	3.72	3 months 7 days
Premarin	\$5.05	\$0.77	\$4.28	\$128.38	\$1540.51		\$12409	8.06	0.12	8 years 1 month
Revatio	\$23.87	\$6.54	\$17.32	\$1558.97	\$18707.61		\$41617	2.22	0.45	2 years 3 months
Sovaldi	\$997.05	\$809.90	\$187.15			\$16843.18	\$812500	48.24	0.02	48 years 3 months
Tecfidera	\$126.10	\$37.41	\$88.69	\$5321.48	\$63 857.73		\$48893	0.77	1.31	9 months 7 days
Tresiba	\$192.19	\$37.80	\$154.39	\$154.39	\$1852.70		\$29 023	15.67	0.06	15 years 8 months
Truvada	\$56.12	\$4.17	\$51.95	\$1558.53	\$18702.39		\$447 758	23.94	0.04	23 years 11 months
Xarelto	\$14.21	\$1.73	\$12.49	\$374.65	\$4495.76		\$165 822	36.88	0.03	36 years 11 months
Zetia	\$11.42	\$2.02	\$9.39	\$281.85	\$3382.19		\$165 822	49.03	0.02	49 years 11 days
Zytiga	\$85.19	\$33.33	\$51.86	\$6223.75	\$74 685.00		\$23 243	0.31	3.21	3 months 22 days

[^0]would need to accumulate 24 years of the presumed cost savings to cover the cost of treatment for an adverse medical event. Admittedly, it is unknown and unknowable how often these adverse events happen, and therefore whether 24 years of cost savings are worth the risk.

It is essential to recognize the true danger posed to US patients from drugs that are obtained outside of the highly regulated US supply chain. That is, when an attempt to save money ends up leading to even greater expenses. In a relatable situation, at least a dozen US patients have travelled to Mexico for surgical procedures that were less expensive in Tijuana. These patients contracted a rare and potentially deadly strain of bacteria resistant to virtually all antibiotics. Treatment of the deadly superbug has resulted in medical expenses that far outstrip the initial savings. ${ }^{[7]}$ Also, consider two instances in which Canada Drugs, through its subsidiary River East Supplies, distributed counterfeit cancer drugs Avastin and Altuzan (the Turkish version of the drug) in the United States. According to the US FDA, testing of vials of the drugs recovered from these shipments revealed that neither contained any active ingredient. In April 2018, the Canadian firm admitted to widespread illegal sales of misbranded and counterfeit prescription drugs in the United States. ${ }^{[8]}$ Again, the cost savings are eliminated in the face of complete treatment failure.

Per patient takeaway

In the case of 75% of the drugs analysed, the annual presumed savings fail to cover the costs of an adverse medical event. For these drugs, patients would need to acquire the presumed cost savings over a period of up to 105 years (Crestor) to cover the costs of one adverse event. Not surprisingly, for the six drugs for which the savings exceed the cost of treating an adverse medical event, the expense of an adverse medical event is modest ($<\$ 50000$), compared with the average cost of treating an adverse medical event for the other 18 drugs (approximately $\$ 183000$). For the majority of drugs, the cost of treating an adverse event will significantly exceed $\$ 50000$ and may reach more than $\$ 800000$ in the case of Sovaldi.

Presumed cost savings for a 'representative state' relative to the cost of a potential adverse medical event

This study places the cost savings from Canadian importation into context with comparisons to two critical dimensions: the costs of potential adverse medical events and the costs of 'testing into safety'. Given that the majority of importation proposals are presented at the state level, it is worthwhile to consider the financial implications for a 'Representative State'. This study derives the results for a 'Representative State' by calculating the impact for $1 / 50$ th of the population of the United States. While recognizing that some states will be larger and others smaller, it is still illustrative to consider the implications. Each of the cost-versussavings calculations for a 'Representative State' described in here is presented in Table 3 and explained below.

Number of patients

The population of a 'Representative State' is assumed to be $1 / 50$ th of the population of the United States, approximately 6540000 people. The number of patients for each condition considered here is assumed to be the representative share ($1 / 50$ th) of the US patient population suffering from the named condition. For example, according to the National Multiple Sclerosis Society, approximately 1 million people in the United States suffer from MS. Dividing this number by 50 , the 'Representative State' will have approximately 20000 patients with MS (Column 4 in Table 3).

Covered patients

In order to estimate the number of 'covered patients' in a 'Representative State', it is assumed that 20% of the impacted patient population will enrol in the state programme. This fraction was utilized because approximately one in five individuals in the United States is currently covered by Medicaid (Column 5 in Table 3).

Total presumed cost savings

The total amount of presumed cost savings from purchases made from an online Canadian pharmacy is calculated by multiplying the number of covered patients by the presumed cost savings (either per patient/year or per patient/episode). Again, this number may be an overestimation which again biases the analysis against a finding of the elimination of all cost savings (Column 6 in Table 3).

Cost of treating an adverse medical event

Estimates of the cost of treating an adverse medical event were gleaned from medical journals and government sources. These are presented and detailed in the Data S2 (Column 7 in Table 3).

Number of adverse events covered by presumed savings

This number corresponds to the maximum number of adverse events that could be covered through the expenditure of the Representative State's cost savings. It is calculated by dividing the total presumed savings from an online Canadian pharmacy by the cost of treating an adverse event. These numbers range from a low of 0.59 adverse events in the case of Nexium to 24318 adverse events in the case of Advair. That is, the Representative State's cost savings would be exhausted before treating one adverse medical event in the case of Nexium, and after more than 24300 patients in the case of Advair (Column 8 in Table 3).

Adverse events would exhaust presumed savings

If the presumed cost savings were exhausted covering adverse events, it is important to also know the share of
Table 3 Presumed online cost savings for a 'representative state' relative to cost of an adverse medical event

Drugs	Savings per patient/ year	$\begin{aligned} & \hline \text { Savings } \\ & \text { per } \\ & \text { patient// } \\ & \text { episode } \end{aligned}$		Covered patients	$\begin{gathered} \text { Total presumed } \\ \text { savings from } \\ \text { online } \\ \text { pharmacy }{ }^{3} \end{gathered}$	Cost of treating an event per patient	Number of adverse events covered by presumed savings	Adverse events would exhaust presumed savings after covering this share of covered patients ${ }^{6}$	Cost of treating an adverse event in $\mathbf{1 0 0 \%}$ of covered patients	Gains or losses from treating adverse events in 100% of covered patients beyond presumed cost saving ${ }^{8}$	Gains or Losses from treating adverse events in 10% of covered patients beyond presumed cost savings ${ }^{9}$
Abilify	\$10 270.54		29192	5838	\$59 963520.74	\$64 729	926.38	15.87\%	\$377 913793.60	(\$317 950 272.86)	\$22 172141.38
Actos	\$6931.29		606000	121200	\$840 072348.00	\$165 822	5066.11	4.18\%	\$20 097626400.00	(\$19 257554052.00)	(\$1 169690 292.00)
Advair	\$3978.57		392400	78480	\$312 238173.60	\$11 097	28137.17	35.85\%	\$870 892560.00	(\$558 654 386.40)	\$225 148917.60
Albenza		\$50 450.40	41	8	\$413 693.28	\$55 085	7.51	91.59\%	\$451 697.00	(\$38 003.72)	\$368 523.58
Ampyra	\$23 560.40		20000	4000	\$94 241600.00	\$48893	1927.51	48.19\%	\$195 572000.00	(\$101 330400.00)	\$74 684400.00
Crestor	\$1580.07		860000	172000	\$271 772040.00	\$165 822	1638.94	0.95\%	\$28 521384000.00	(\$28 249611 960.00)	(\$2580 366 360.00)
Enbrel	\$37 823.70		3490	698	\$26 400942.60	\$6699	3941.03	564.62\%	\$4 675902.00	\$21 725040.60	\$25 933352.40
EpiPen		\$171.53	131200	26240	\$4 500947.20	\$4719	953.79	3.63\%	\$123 826560.00	(\$119 325 612.80)	(\$7 881 708.80)
Gilenya	\$55 650.44		20000	4000	\$222 601760.00	\$48893	4552.83	113.82\%	\$195 572000.00	\$27 029760.00	\$203 044560.00
Harvoni		\$34864.52	48000	9600	\$334 699392.00	\$812 500	411.94	4.29\%	\$7 800000000.00	(\$7465 300 608.00)	(\$445 300 608.00)
Januvia	\$4777.35		606000	121200	\$579 014820.00	\$29 023	19950.21	16.46\%	\$3 517587600.00	(\$2938 572780.00)	\$227 256060.00
Lipitor	\$4708.92		860000	172000	\$809 934240.00	\$165 822	4884.36	2.84\%	\$28 521384000.00	(\$27 711449760.00)	(\$2 042204 160.00)
Nexium	\$1655.49		300	60	\$99 329.40	\$93966	1.06	1.76\%	\$5 637960.00	(\$5 538 630.60)	(\$464 466.60)
Orencia	\$32 467.60		3490	698	\$22 662384.80	\$6699	3382.95	484.66\%	\$4 675902.00	\$17986 482.80	\$22 194794.60
Otezla	\$24 933.99		3490	698	\$17 403925.02	\$6699	2597.99	372.20\%	\$4 675902.00	\$12 728023.02	\$16 936334.82
Premarin	\$1540.51		204000	40800	\$62 852808.00	\$12409	5065.10	12.41\%	\$506 287200.00	(\$443 434392.00)	\$12224 088.00
Revatio	\$18707.61		4000	800	\$14 966088.00	\$41 617	359.61	44.95\%	\$33 293600.00	(\$18 327 512.00)	\$11 636728.00
Sovaldi		\$16843.18	48000	9600	\$161 694528.00	\$812 500	199.01	2.07\%	\$7 800000000.00	(\$7 638305472.00)	(\$618 305 472.00)
Tecfidera	\$63 857.73		20000	4000	\$255 430920.00	\$48893	5224.28	130.61\%	\$195 572000.00	\$59 858920.00	\$235 873720.00
Tresiba	\$1852.70		606000	121200	\$224 547240.00	\$29 023	7736.87	6.38\%	\$3 517587600.00	(\$3 293040 360.00)	(\$127 211 520.00)
Truvada	\$18702.39		22000	4400	\$82 290516.00	\$447 758	183.78	4.18\%	\$1 970135200.00	(\$1887844 684.00)	(\$114 723 004.00)
Xarelto	\$4495.76		860000	172000	\$773 270720.00	\$165 822	4663.26	2.71\%	\$28 521384000.00	(\$27 748113 280.00)	(\$2 078867 680.00)
Zetia	\$3382.19		860000	172000	\$581 736680.00	\$165 822	3508.20	2.04\%	\$28 521384000.00	(\$27 939647 320.00)	(\$2 270401720.00)
Zytiga	\$74 685.00		3671	734	\$54 833727.00	\$23 243	2359.15	321.32\%	\$17065 010.60	\$37 768716.40	\$53 127225.94

Source: Author's calculations.

 individuals in the United States.
${ }^{3}$ This number comes from multiplying the number of covered patients by the savings (either per patient/year or per patient/episode).

 sumed savings from an online pharmacy would be exhausted by the treatment of 5066 adverse events.
 total presumed cost savings ($\$ 840072348$) would be exhausted after treating 4.18% of all covered patients (5066 patients) [5066/840 072 $348=0.0418$]. ered patients * $\$ 165822=$ more than $\$ 20$ billion dollars.

 $\$ 840072348.00-\$ 20097626400.00=-\$ 19257554052.00$. (A loss of more than $\$ 19$ billion dollars.)

 $(\$ 20097626400.00)]=-\$ 1169690292.00$. (A loss of more than $\$ 1.16$ billion dollars.)
Table 4 Presumed online cost savings for a 'representative state' relative to the cost of testing

Drugs	Savings per patient/ year ${ }^{1}$	Savings per patient/ episode ${ }^{1}$	Number of patients ${ }^{1}$	Covered patients ${ }^{1}$	Total presumed savings from online pharmacy ${ }^{1}$	Cost of quality testing (per sample) ${ }^{2}$	Number of samples that could be tested, exhausting the presumed savings ${ }^{3}$	Gain or loss from online presumed savings less cost of testing with 90% confidence and 90% reliability (22 samples) ${ }^{4}$	Gain or loss from online presumed savings less cost of testing with $\mathbf{9 9 . 9 9 \%}$ confidence and 99.99\% reliability (92099 samples) ${ }^{5}$	Gain or loss from online presumed savings less cost of testing with $\mathbf{9 9 . 9 9 9 \%}$ confidence and 99.999% reliability (1 151287 samples)
Abilify	\$9004.23		29192	5838	\$59 963520.74	\$4000	14991	\$59 875520.74	(\$308 432479.26)	(\$4 545184479.26)
Actos	\$5722.84		606000	121200	\$840 072348.00	\$2500	336029	\$840 017348.00	\$609 824848.00	(\$2 038145152.00)
Advair	\$3438.61		392400	78480	\$312 238173.60	\$4100	76156	\$312 147973.60	(\$65 367 726.40)	(\$4 408038 526.40)
Albenza		\$50 021.87	41	8	\$413 693.28	\$2500	165	\$358 693.28	(\$229 833 806.72)	(\$2 877803806.72)
Ampyra	\$23 367.67		20000	4000	\$94 241600.00	\$2500	37697	\$94 186600.00	(\$136 005 900.00)	(\$2783 975 900.00)
Crestor	\$1494.40		860000	172000	\$271 772040.00	\$2500	108709	\$271 717040.00	\$41524540.00	(\$2 606445460.00)
Enbrel	\$34 379.70		3490	698	\$26 400942.60	\$2800	9429	\$26 339342.60	(\$231 476 257.40)	(\$3 197 202 657.40)
EpiPen		\$168.54	131200	26240	\$4 500947.20	\$2800	1607	\$4 439347.20	(\$253 376 252.80)	(\$3 219102 652.80)
Gilenya	\$58 222.00		20000	4000	\$222 601760.00	\$2500	89041	\$222 546760.00	(\$7 645740.00)	(\$2655 615 740.00)
Harvoni		\$17604.88	48000	9600	\$334 699392.00	\$2500	133880	\$334 644392.00	\$104 451892.00	(\$2 543518 108.00)
Januvia	\$3731.76		606000	121200	\$579 014820.00	\$2500	231606	\$578 959820.00	\$348767 320.00	(\$2 299202 680.00)
Lipitor	\$4808.96		860000	172000	\$809 934240.00	\$2500	323974	\$809 879240.00	\$579 686740.00	(\$2 068283 260.00)
Nexium	\$922.76		300	60	\$99 329.40	\$3000	33	\$33 329.40	(\$276 197 670.60)	(\$3 453761 670.60)
Orencia	\$18 260.08		3490	698	\$22 662384.80	\$2800	8094	\$22 600784.80	(\$235 214 815.20)	(\$3 200941 215.20)
Otezla	\$22 343.41		3490	698	\$17 403925.02	\$2500	6962	\$17 348925.02	(\$212 843 574.98)	(\$2860 813 574.98)
Premarin	\$1540.55		204000	40800	\$62 852808.00	\$2600	24174	\$62 795608.00	(\$176 604592.00)	(\$2 930493 392.00)
Revatio	\$16 055.72		4000	800	\$14 966088.00	\$3600	4157	\$14886888.00	(\$316 590312.00)	(\$4 129667 112.00)
Sovaldi		\$28 662.91	48000	9600	\$161 694528.00	\$2500	64678	\$161 639528.00	(\$68 552 972.00)	(\$2716 522 972.00)
Tecfidera	\$65 233.44		20000	4000	\$255 430920.00	\$2500	102172	\$255 375920.00	\$25 183420.00	(\$2 622786580.00)
Tresiba	\$1826.32		606000	121200	\$224 547240.00	\$2800	80195	\$224 485640.00	(\$33 329 960.00)	(\$2 999056 360.00)
Truvada	\$7854.39		22000	4400	\$82 290516.00	\$2500	32916	\$82 235516.00	(\$147 956 984.00)	(\$2 795926 984.00)
Xarelto	\$3797.23		860000	172000	\$773 270720.00	\$2500	309308	\$773 215720.00	\$543 023220.00	(\$2 104946780.00)
Zetia	\$3230.80		860000	172000	\$581736 680.00	\$2500	232695	\$581 681680.00	\$351 489180.00	(\$2 296480 820.00)
Zytiga	\$72 093.12		3671	734	\$54 833727.00	\$2500	21933	\$54778727.00	(\$175 413 773.00)	(\$2 823383 773.00)

Source: Author's calculations.
${ }^{1}$ These numbers are identical to those presented in Exhibit 3.
${ }^{2}$ These numbers correlate to the estimates provided by NMS Labs. Details may be found in the Data S2.
${ }^{3}$ This number is calculated by dividing the total presumed savings by the cost of testing. That is, column 6 divided by column 7 .
${ }^{4}$ This number is calculated by subtracting the cost of testing 22 samples from the total presumed savings from an online pharmacy. That is, column 6 minus (22 times column 7)
${ }^{5}$ This number is calculated by subtracting the cost of testing 92099 samples from the total presumed savings from an online pharmacy. That is, column 6 minus (92099 times column 7). ${ }^{6}$ This number is calculated by subtracting the cost of testing 1151287 samples from the total presumed savings from an online pharmacy. That is, column 6 minus (1151287 times column 7).
patients enrolled in the plan taking a particular drug. This share is calculated by dividing the number of adverse events covered by presumed savings by the number of covered patients. In the case of an online Canadian supplier, this number ranges from 0.95\% (Crestor) to 564\% (Enbrel). Accordingly, if an adverse medical event affected $<1 \%$ (only 0.95%) of all patients taking Crestor, the entire presumed cost savings would be wiped out. Alternatively, one can think of this as the share of counterfeit drugs that would wipe out all cost savings from an importation programme (Column 9 in Table 3).

Cost of treating an adverse event in 100% of covered patients

The cost of treating an adverse medical event in 100% of covered patients taking a particular drug is calculated by multiplying the cost of treating an adverse event by the total number of covered patients. (That is, the enrolled population, 20% of the patients suffering from this condition in the Representative State.) ${ }^{3}$ This number ranges from approximately $\$ 452000$ (Albenza) to more than $\$ 28.5$ billion dollars (Lipitor; Column 10 in Table 3). Alternatively, one can think of this as the cost of treating all covered patients in the case of counterfeits that adversely affect all covered patients taking the drug.

Gains or losses from treating adverse events in 100\% of covered patients less presumed cost savings

The extent to which the expense of treating an adverse event in 100% of covered patients exceeds the presumed cost savings - the overage - is calculated. For 19 of the 24 drugs (all but five cases, for three conditions), the expense of treatment far exceeds the presumed cost savings. The presumed savings are dwarfed by the potential cost of treating adverse medical events. These estimates range from savings of approximately $\$ 60$ million (Tecfidera) to losses of $\$ 28$ billion (Lipitor; Column 10 in Table 3).

Gains or losses from treating adverse events in 10\% of covered patients beyond presumed cost savings

It is highly unlikely that 100% of covered patients will experience an adverse medical event, the worst-case scenario. Assuming more modest circumstances that only 10% of drugs result in an adverse event, eleven (46%) of the 24 drugs will result in a situation in which the presumed savings are eliminated by the cost of treating an adverse event (These are the eleven drugs for which a loss is calculated in column 12 in Table 3.). Alternatively, one can think of this as the cost of treating patients in the case of counterfeits that adversely affect only 10% covered patients taking the drug.

Online suppliers

In the case of online Canadian suppliers, for this selection of 24 drugs, the cost savings will be completely eliminated
if a mere 9.5% of imported drugs are counterfeit, and result in an adverse medical event (the average of Column 9 in Table 3). The parallel analysis for a brick-and-mortar pharmacy (found in the Data S1) indicates that counterfeiting at the rate of a mere 8.1% of imported drugs would completely eliminate the total presumed cost savings.

Presumed cost savings for a 'representative state' relative to the cost of 'testing into safety'

This study places the cost savings from Canadian importation into context with comparisons to two critical dimensions: first, the costs of potential adverse medical events examined above, and second, the costs of 'testing into safety'. For the second, the cost of testing the authenticity and quality of the imported medicine is based on the estimated cost provided by NMS Labs. Table 4 includes the total cost of testing a single sample to ensure the quality of each drug based on the different tests necessary for each drug. Additional details on testing costs may be found in the Data S2. Table 4 utilizes the calculations for several levels of authenticity and the testing cost information to determine the savings or dissavings available to a 'Representative State' for the 24 drugs included in the analysis, presenting calculations for several levels of confidence and reliability, (ranging from $90 \% / 90 \%$ to $99.999 \% /$ 99.999%), based on the number of samples required, as presented in Table 1.

It is important to recognize that the testing estimates provided here only include the cost of the tests. The cost of purchasing the requisite number of samples needed for testing is not included in these cost estimates. Again, this assumption biases the results against a finding of the elimination of the presumed cost savings.

Number of samples that could be tested, exhausting the presumed savings

The maximum number of doses that could be tested for safety, by exhausting the presumed cost savings, is calculated by dividing the total presumed savings by the cost of testing a specific drug (Column 8 in Table 4).

Presumed savings less the cost of testing

In order to ensure the quality of a particular drug at a particular confidence level with a particular level of reliability, different numbers of samples must be tested.

- To establish a 90% confidence level and 90% reliability, 22 samples must be tested. The calculations for this level of accuracy are presented in Column 9 in Table 4: the presumed cost savings less the cost of testing to $90 \% / 90 \%$.
- To establish a 99.99% confidence level and 99.99% reliability, 92099 samples must be tested. The difference in the cost of testing 92099 samples of the imported drugs and the presumed cost savings available from importation is presented in Column 10 in Table 4.
- To establish a 99.999% confidence level and 99.999% reliability, 1151287 samples must be tested. The
calculation of this level of accuracy is presented in Column 11 in Table 4.

Bottom line

In the case of online Canadian suppliers, to ensure the safety and quality of a particular drug with a 90% confidence level and 90% reliability, 22 samples must be tested, and the presumed savings exceed the cost of testing for all 24 drugs. For a 99.99% confidence level and 99.99% reliability, 92099 samples must be tested, the drugs for which the presumed savings exceed the cost of testing falls to only eight. And for a 99.999% confidence level and 99.999% reliability, 1151287 samples must be tested. In every case, the presumed savings are dwarfed by the cost of testing. The cost of testing ranges from 243 times the presumed savings for Advair to 34770 times the presumed savings for Orencia. That is, the cost of testing ranges from 243% the presumed savings for Advair to 3477079% the presumed savings for Orencia. Notably, all assumptions made in this analysis bias the results against a finding of the elimination of the presumed cost savings, yet the results indicate that the presumed cost savings will almost certainly be dwarfed by both (1) the costs of treating adverse medical events and (2) the costs of 'testing into safety'.

Limitations: issues affecting cost not studied

There are several issues that will certainly impact the cost of an importation programme that are not included in this study. These issues are beyond the scope of this work but will undoubtedly reduce the estimated cost savings. These include the following: shortages, quality controls, legal liability, post-sale pharmacovigilance and the implementation cost. Each is briefly addressed in the Data S2.

Discussion

Numerous states, as well as the Trump Administration, are currently exploring proposals to import lower-cost drugs from Canada, a seemingly simple way to address the demand for costly therapies with quick and substantial price relief for patients. However, policymakers and patients must recognize that the presumed cost savings may be elusive. This study evaluates the presumed cost savings from the purchase of drugs from an online Canadian supplier with a focus on two critical considerations: the cost of treating a potential adverse medical event and the cost of 'testing drugs into safety'. Accounting for these essential, but less visible, costs, these data establish that pharmaceutical importation does not ultimately result in cost savings when the expenses associated with treatment failure and quality testing are included in the calculus.

The consequences of pharmaceutical importation are worrying for Canadians, potentially exacerbating drug shortages for the country's 37 million residents, and at the same time, the impact on US pharmaceutical spending may not live up to expectations. For a 'Representative State', in the presence of an adverse medical event, the presumed savings from an online Canadian supplier are exhausted in the treatment of
only one patient in the case of Nexium, to 24318 adverse events for patients in the case of Advair. Further, the analysis shows that in every case, the cost of testing (99.999% confidence level with 99.999% reliability) exceeds the presumed cost savings, from more than two times the presumed costs savings to more than 34000 times. Importantly, the assumptions underlying this analysis were biased against this finding, resulting in a likely underestimation of the true cost of pharmaceutical importation programmes.

Conclusions

Pharmaceutical importation plans are politically attractive, but realistically dangerous and expensive if implemented safely and responsibly. The risks seem too great to justify the presumed cost savings that would quickly evaporate in the face of adverse medical events or a serious attempt to systematically test the quality of the imported drugs. While purchasing price-controlled medicines from a Canadian supplier has the potential to deliver some cost savings, it also involves significant risk. Accounting for treatment and testing, the numbers ultimately demonstrate that pharmaceutical importation fails to deliver cost savings. This analysis demonstrates that these schemes can be cheap, or they can be safe, but not both.

Declarations

Conflict of interest

The Author(s) declare(s) that they have no conflicts of interest to disclose.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Acknowledgements

The author is grateful to Dr. Flavia Sancier-Barbosa of Colorado College for her assistance in determining the appropriate sample size, to Dr. Peter H. Rheinstein, M.D., J.D., M.S., President of Severn Health Solutions to establish the indications for each drugs and the consequences of receiving an ineffective dose, and to NMS Labs for providing estimates of the costs of testing. The Partnership for Safe Medicines provided financial support for this project.

Authors' contributions

The author is responsible for the research, design and content of the entirity of this article.

Notes

${ }^{1}$ For Crestor: Annual savings $=\$ 1580$; Cost of treating Adverse Event $=\$ 165822$. Ratio of treatment relative to annual savings is the number of years of savings needed to cover the treatment cost. Specifically, $\$ 165822 / \$ 1580 \approx 105$ years.
${ }^{2}$ For Enbrel: Annual savings $=\$ 37$ 824; Cost of treating Adverse Event $=\$ 6699$. Ratio of treatment relative to annual savings is the number of years of savings needed to cover the treatment cost. Specifically, $\$ 6699 / \$ 37824=0.177$ years. Multiplying by 365 provides the number of days of savings needed to cover the treatment cost. Specifically, 0.177 years $* 365$ days/year ≈ 65 days.
${ }^{3}$ For example, in the case of Actos, the Representative State has a population of 6.54 million, of whom, there are 606000 patients who take this drug. 20% of those patients are assumed to be enrolled in the State program, such that 121200 patients are covered by the State program. Multiplying the number of covered patients (121 200) by the cost of treating an adverse event ($\$ 165822$) provides the cost of treating an adverse event in 100% of covered patients ($\$ 20097626400.00$).

References

1. Abutaleb Y, McGinley L. "Trump Administration Unveils Plan to Allow States to Buy Cheaper Drugs from Canada," Washington Post. 2019. https:// www.washingtonpost.com/health/2019/12/18/trump-administration-unveils-pla n-allow-states-buy-cheaper-drugs-canada/ (accessed 18 December 2019).
2. Roe G. "Utah Insurer Plans to Send Patients to Mexico for Cheaper Medicine," KUTV.com. 2019. https://kutv.com/news/local/utah-insurer-plans-to-se nd-patients-to-mexico-for-cheaper-medicine (accessed 29 October 2019).
3. IsraelPharm. "USA vs Canada vs Israel Drug Prices," webpost. 2017. http:// www.israelpharm.com/blog/canada-vs-israel-drug-price-comparison/ (accessed 11 March 2020).
4. National Academy for State Health Policy (NASHP). "Will States Save by Importing Drugs from Canada? Yes, Here's How," webpost. https://nashp.org/ wp-content/uploads/2017/11/drug-infographic-2.pdf (accessed 11 March 2020)
5. Pharmaceutical Security Institute (PSI). "Counterfeiting Situation: Therapeutic Categories," webpost, 2019. http://www.psi-inc.org/therapeuticcategories.cfm
6. NMS Labs. Correspondence with Author, February 2019. https://www.nm slabs.com/ (accessed 11 February 2019)
7. Sun LH. "They Went to Mexico for Surgery. They Came Back with a Deadly Superbug," The Seattle Times. 2019. https://www.seattletimes.com/nation-world/they-went-to-mexico-for-surgery-they-came-back-with-a-deadly-superb ug/ (accessed 23 January 2019).
8. U.S. Food and Drug Administration Office of Criminal Investigations. "April 13, 2018: Canadian Drug Firm Admits Selling Counterfeit and Misbranded Prescription Drugs Throughout the United States," webpost. 2018. https:// www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/ criminal-investigations/april-13-2018-canadian-drug-firm-admits-selling-counte rfeit-and-misbranded-prescription-drugs (accessed 13 April 2018).

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:

Data S1. This supplemental appendix contains the calculations for a brick-and-mortar Canadian pharmacy.
Data S2. This supplemental appendix describes how the drugs were selected and the methodology behind the collection of each piece of data utilized.

[^0]: Source: Author's calculations, May 2019. Details on the source of these data may be found in the Data S2.
 ${ }^{1}$ This dollar value was calculated by multiplying the average cost savings per unit by the number of doses prescribed per month.
 ${ }^{2}$ This dollar value was calculated by multiplying the average cost savings per unit by the number of doses prescribed per month by 12 .

 ${ }^{4}$ The .
 ${ }^{5}$ This number is calculated by dividing the cost of treating an adverse event by the presumed online savings per year (e.g. in the case of Crestor, $\$ 165822 / \$ 1580.07=104.95$). ${ }^{6}$ This number is calculated by dividing the online savings per year per patient by the cost of treating an adverse event per patient.
 imal (e.g. 0.72 in this case) by $30(0.72 * 30=21.6)$.

