
International Journal of Instruction July 2020 ● Vol.13, No.3

e-ISSN: 1308-1470 ● www.e-iji.net p-ISSN: 1694-609X
pp. 207-222

Citation: Threekunprapa, A., & Yasri, P. (2020). Unplugged Coding Using Flowblocks for Promoting

Computational Thinking and Programming among Secondary School Students. International Journal

of Instruction, 13(3), 207-222. https://doi.org/10.29333/iji.2020.13314a

Received: 20/09/2019
Revision: 12/01/2020
Accepted: 17/01/2020

OnlineFirst:12/04/2020

Unplugged Coding Using Flowblocks for Promoting Computational

Thinking and Programming among Secondary School Students

Arinchaya Threekunprapa
Ph.D. candidate, Institute for Innovative Learning, Mahidol University, Thailand,
arinchaya.thr@gmail.com

Pratchayapong Yasri
Dr., Institute for Innovative Learning, Mahidol University, Thailand,
pratchayapong.yas@mahidol.edu

 Computational thinking (CT) has become a necessary skill of students in the 21st
century. Various learning approaches have been developed to foster CT among
school students. However, these approaches predominantly rely on computer
devices and internet connection and fail to promote advanced computer concepts
necessary for programming. Therefore, this study developed an unplugged coding
activity using flowblocks, the term is coined to represent modified Blockly based
on flowcharts with user-friendly syntaxes, as a visual and programming tool,
delivered in the form of game-based learning. The activity included a series of
game missions to develop five programming concepts. The unplugged coding
activity was implemented based on a pre and post intervention design with 160
secondary students who had no prior experience about programming. Statistical
analyses showed that students’ conceptual understanding of coding and CT
increased significantly after participation. In addition, the perceptions of their
ability to learn programming, namely self-efficacy, statistically grew in the
posttest. It is therefore recommended for school teachers teaching basic
programming and CT to consider using this offline, engaging and cost-effective
approach as an alternative to computer-based methods of programming.

Keywords: computational thinking, unplugged coding, programming, flowcharts,
flowblocks, self-efficacy

INTRODUCTION

Computational thinking is considered to be an essential skill of 21st century learners.
Not only is it important for learning computer science conceptions, but also for solving
problems on a daily basis. It is generally defined as a thought process involved in
formulating problems and their solutions so that the solutions are represented in a form
that can be effectively carried out by computational steps and algorithms (Wing, 2006).

http://www.e-iji.net/
https://doi.org/10.29333/iji.2020.13314a

208 Unplugged Coding Using Flowblocks for Promoting …

International Journal of Instruction, July 2020 ● Vol.13, No.3

Educational organisations have implemented learning activities to promote
computational thinking among students. One method intensively used for this is the
study of computer programming which can be done by either text-based programming or
visual programming language (VPL). However, limitations exist. First and foremost,
they rely on computer devices and internet connection which may be out of reach by
schools in less privileged areas. Second, text-based programming is rather passive,
leading to a lack of motivation and unsatisfactory learning achievement. Furthermore,
VPL in its currently available form fails to incorporate advanced computer science
concepts such as inputs, variables, loops and loops with conditions which are of
importance for learning about computer programming.

Therefore, this study develops an unplugged coding using flowblocks activity to fill the
gaps mentioned. The term flowblock used throughout this paper is defined to represent
modified Blockly in the way that makes the shape of visual blocks more conceptually
accurate according to the concept of flowchart with user-friendly syntaxes. Its usage
requires no digital devices and can be completely used in a game-based learning
environment. In addition, the use of flowblocks that consist of diagrammatic shapes of
flowcharts and syntaxes lies at the heart of this development so that basic to more
advanced programming concepts can be cultivated. In addition, it aims to improve
school students’ interest in applying computational thinking to daily life rather than to
make them future programmers, its main mission is emphasise on algorithms rather
syntaxes and structures of computer programming. The effectiveness of this activity is
assessed by a conceptual test of programming concepts and a survey of self-efficacy.

RELEVANT RESEARCH

Computational Thinking: A Crucial Skill of the Current Century

Computational thinking (CT) has gained its popularity within the research community
(Lye et al., 2014) with over 1000 research articles related to it published in SCOPUS
journals during 2006 and 2017 (Hsu et al., 2018). In the educational arena, education
ministries in various countries have incorporated computer science in their national
curricula including USA, UK, New Zealand, Germany, India, Georgia, France, Korea,
Japan, Sweden, Finland, Israel, Russia, and Italy (Hubwieser et al., 2015). The most
recent one is Thailand where the subject has been integrated since 2018 (Ministry of
Education, 2018).

Computer Programming: A Way to Develop Computational Thinking

Although there exist different ways in which CT can be developed among school
learners, two main approaches are predominantly used: text-based programming and
visual language programming (Hsu et al., 2018; Lye et al., 2014).

Traditionally, a heavy emphasis rests on text-based programming which relies on the
syntax of a programming language. However, this is perceived difficult to understand
and master. Therefore, it is not a surprise that many students face difficulties at the
beginning of learning, leading to an increase in a dropping rate (Mladenović et al.,
2018). In addition, this form of learning is passive, leading to a lower level of intrinsic
motivation to learn (Benware & Deci, 1984). Furthermore, research shows that there is

 Threekunprapa & Yasri 209

International Journal of Instruction, July 2020 ● Vol.13, No.3

no statistical correlation between the number of hours that students learned how to run
text-based programming and their improved skills in programming (Amoako et al.,
2013). This may be due to the fact that time is mostly used for correcting the syntax and
structure, instead of focusing on learning algorithm which is more useful to cultivate
computational thinking (Ma et al., 2011; Oddie et al., 2010). In addition, this form of
programming requires a high cognitive demand (Bati et al., 2014; Papavlasopoulou et
al., 2019).

A more recent development is the use of visual programming languages (VPL) or
Blockly such as Scratch (Burke, 2012; Lee, 2010) and Alice (Noone & Mooney, 2018;
Pellas & Vosinakis, 2018). In this way, learners are not required to remember the syntax
and structure, but to choose a block of a graphic syntax to complete a certain mission.
Using VPL, coupled with a game-based learning approach, has shown to potentially
improve learners' programming skills, motivation to learn, self-efficacy, positive attitude
for programming, and reflective thinking skills (Adler & Kim, 2018; Ching et al., 2018;
Durak, 2018; Kalelioğlu, 2015; Noone & Mooney, 2018; Pellas & Vosinakis, 2018;
Topalli & Cagiltay, 2018). Importantly, it helps K–12 novice programmers focus more
on algorithms (Mladenović et al., 2018; Noone & Mooney, 2018). However,
misconception can be arisen in relation to the relationship between the shape of blocks
and functions as current available programmes contain only one shape for different
functions (Mladenović et al., 2018).

One way to make the relationship between shapes and functions more conceptually
accurate while maintaining the essence of visualisation is through the use of flowcharts,
a diagram that depicts a process, system or computer algorithm. Learners are required to
connect different shapes to represent the sequence of coded instructions fed into a
computer, enabling it to perform specified logical and arithmetical operations. Research
has shown that it is an effective tool to improve computer science conceptions leading to
improved CT among learners (Giordano & Maiorana, 2015; Hooshyar et al., 2016;
Noone & Mooney, 2018). It is also found to be more effective, more engaging, and less
time consuming compared to using pseudocodes (Scanlan, 1989). Last but not least,
learning with flowcharts helps learners develop problem-solving skills (Giordano &
Maiorana, 2015; Hooshyar et al., 2016; Noone & Mooney, 2018).

Unplugged Coding: Coding without Computers

A pedagogical approach recently developed to engage students to learn about computer
science concepts without using digital devices and internet connection is known as
unplugged coding (Bell & Vahrenhold, 2018). It is shown to actively engage learners
and produce positive attitude towards learning computer science (Nishida et al., 2008).
It is considered an effective starting point for setting students ready for further
programming as its emphasis is on algorithm which is key to computational thinking and
prerequisite to more advanced computer programming (Bell & Vahrenhold, 2018). In
addition, as the term implies, it can be done off-line, requiring no computer devices,
making computer science more accessible to less privileged schools where digital means
and internet connection are out of reach.

210 Unplugged Coding Using Flowblocks for Promoting …

International Journal of Instruction, July 2020 ● Vol.13, No.3

Despite their advantages over traditional approaches for learning computer science,
currently available unplugged coding activities (Bell et al., 2009, 2012; Bell &
Vahrenhold, 2018; Thies & Vahrenhold, 2013) embrace some challenges. First of all,
they are primarily designed for primary school students involving only basic computer
science concepts (Bell & Vahrenhold, 2018; Thies & Vahrenhold, 2013) which may
lack potential to develop more sophisticated computational thinking skills such as
problem solving and programming. In addition, although the game-based learning
environment has been integrated in various unplugged coding activities, the purpose is
mainly for entertainment, while more collaborative learning can in fact be leveraged by
this playful setting. In addition, little attempt has been made to convey to effectiveness
of unplugged activities in terms of learning achievement, students’ perceptions towards
their ability to learn about computer programming and computer science, and their
perceptions towards unplugged coding activities. Such integrative frameworks would be
appropriate evidence for one to be certain about the usefulness and fruitfulness of
unplugged computer science.

Game-Based Learning: Environmentally Friendly Classroom

Game-based learning is a form of gameplay with specifically defined learning outcomes
(Plass et al., 2015). It is an environment in which games are used to enhance knowledge
and skills, and where game activities involve problem-solving spaces and challenges that
provide players/learners with a sense of achievement (Qian & Clark, 2016). Attempts
have been made to use game-based learning as an approach of teaching programming
among students in various age groups. Research has shown that this learning
environment can help promote students’ motivation to learn, self-confidence and
efficacy, as well as positive attitudes towards learning computer science in general and
programming in particular (Adler & Kim, 2018; Ching et al., 2018; Kalelioğlu, 2015).
Furthermore, recent research has revealed that it is an effective learning strategy to teach
complex computational skills (Czerkawski & Lyman, 2015).

Self-Efficacy: A Psychological Framework of Learning

Self-efficacy is a social-cognitive theory that explains self-confidence of ability to
perform a certain task and how it influences what one does (Bandura, 1977). There are
four sources of efficacy expectations: mastery experience (doing), vicarious experience
(seeing), verbal persuasion (hearing) and psychological states (feeling). Self-efficacy has
been an important research area in education. In education, both learners’ and teachers’
perceived self-efficacy levels have a direct impact on the effectiveness of instruction
(Kadirhan et al., 2018). It is also used as a theoretical framework for conveying the
effectiveness of another learning innovation for teaching C programming with a mobile
game-based environment among university students (Daungcharone et al., 2019). Also,
it is found to increase when students are exposed to an environment of game-based
learning (Tapingkae et al., 2018). Of course, the purpose of learning is not only for
gaining better conceptual understanding, but also the level of confidence; thus this
framework is chosen as a psychological len for assessing the effectiveness of learning
innovation.

 Threekunprapa & Yasri 211

International Journal of Instruction, July 2020 ● Vol.13, No.3

METHOD

Unplugged Coding Using Flowblocks Activity
The principle underlying the design of this unplugged coding with flowblocks activity is
that it has to be a paper-based game that has an objective to deliver computer science
concepts (including sequence, repetition, input and variable, condition and loop). To
make the game more vivid, a scenario is important to allow players to think of the
situation and solve the problem. It has to involve a number of missions representing
various computer science concepts. As players proceed, they have to be challenged by
the mission which has more advanced computer science concepts. It is believed that
while completing each mission, players should be allowed to check the correctness of
their syntaxes by themselves so that self-directed learning can be promoted.

Based on the aforementioned, an activity is developed called Treasure Hunter. The main
mission is to find a treasure chest, walking grid by grid from an assigned starting point.
Two players are paired up on a voluntary basis to complete each mission. In order to
move to the treasure chest in their own designed direction, the players have to connect
flowblocks provided which include a set of ready-to-use syntaxes consisting of a start,
an end, and the number of repetitions, as well as a set of shapes and individual syntaxes
for players to connect by themselves. In this latter set, different shapes convey different
meanings. A parallelogram represents input/output. A rectangle represents a process. A
diamond shape represents a decision. These flowblocks are used together with a list of
actions of movements as well as questions (see Figure 1).

Figure 1
Flowblock Components and How to Connect Them

Therefore, to use these flowblocks in the missions, the players have to match a desired
syntax with a correct shape. Once they finish their arranged flowblocks. They have to do
a self-check where one group member reads out the syntax one by one, whereas the
other acts accordingly. If the process of self-check informs some errors, they have to
debug. Once they reach the position where the treasure chest is placed, they have to
open it and get the number of diamonds in the chest determined by the number of a 6-
face dice being rolled.

212 Unplugged Coding Using Flowblocks for Promoting …

International Journal of Instruction, July 2020 ● Vol.13, No.3

It is important to note that each mission has a different starting place, the number of
chests, the position of the chest, a variety of bonus points, different flowblock syntaxes
with different commands. Each pair of players have to move towards the treasure chest
in their designated direction from the assigned starting point. Barriers (rocks) are put
there for them to avoid. In this game, there are five missions in total (summarised in
Table 1). Each mission aims to promote at least one fundamental concept of computer
programming. As players proceed to the next mission, they have to apply the concept
that they previously learned. Therefore, to complete a mission, they have to use the
previously learned concepts as well as a recently explored concept. The concepts
focused in this game consist of sequence, repetition, input and variable, condition, loop,
as well as loop with condition.

Table 1
Mission Description

 Aim Concept Stage Short Description Syntax provided

1 Sequence: A basic
algorithm that allows
actions to be carried out in
order and step by step to
complete a certain task.

Let’s get the treasure
chest and avoid the
rocks.

Move Forward x 6
Turn Left x 4
Turn Right x 4
Open the chest

2 Repetition: A function to
repeat an action which
helps shorten the length of

coding, representing a
more effective way to
solve a problem.

Let’s get the treasure
chest and avoid the
rocks through the

shortest route

Move Forward x 2
Turn Left x 2
Turn Right x 2

Open the chest
Repeat

3 Input and variable: Input is
the way to get the value
from the user (a dice).
Variable is the way to store
the value to use in the
program.

Let’s get all treasure
chests determined
by the number
shown on a rolled
dice.

Move Forward x 6
Turn Left x 4
Turn Right x 4
Open the chest
Num of Chest = Roll
the dice
Repeat

4 Condition: For different
actions to be made which
generally appear in the
form of yes and no
condition. Hence, actions
different depending on the

absence or presence of the
condition.

Let’s get a treasure
chest, move while
can move forward

Move Forward x 2
Turn Left x 2
Turn Right x 2
Open the chest
Can move forward?

5 Loop with condition: To
repeat an action by the yes
and no condition. For
example, while loop is to
execute an action while a
set condition is true.

The journey turns
dark and the hunters
have to visit every
single place (grid) to
look for the treasure.

Move Forward
Turn Left
Turn Right
Can move forward?
Have visited the place
in front?
Have visited all the
places?

 Threekunprapa & Yasri 213

International Journal of Instruction, July 2020 ● Vol.13, No.3

Data Collection and Analysis

This study adopts a quantitative methodology using a pre-post intervention research
design. Participants in this study were 160 secondary school students recruited by
convenience sampling who had no experience in programming. The process of data
collection took approximately 3 hours. It started with a pretest in which each of the
participants voluntarily took for 15 minutes. After that, they were introduced to the
activity in which the participants were paired up and completed all the missions within
2.5 hours. In the meantime, the participants were assisted in the learning process through
scaffolding by facilitators. Once they accomplished the given tasks, they were asked to
complete a posttest which took up to 15 minutes. Ethical considerations are taken into
consideration in this study with respect to the right and safety of participant both
physically and psychologically.

Classroom materials include a set of flowblock components, five mission cards, a dice
and a character representing a treasure hunter. All of these were given all at once since
start. Therefore, each pair spent different time per mission as they went through. Two
research tools were used as the pretest and posttest. First, a computational thinking test
is to assess skills to use computer science concepts to solve problems which contains 3
items, each of which is worth 5 points (15 in total). CT1 assess the concept of sequence,
while CT2 and CT3 assess repetition, inputs as well as variables, and conditions as well
as loops the conditions, respectively. Second, the self-efficacy questionnaire, containing
12 statements describing the four main sources of self-efficacy and beliefs (3 statements
for each), assessed by a 5-Likert scale. Statistical analyses were used to examine the
difference between the mean scores.

FINDINGS

Computational Thinking Test

There was a statistically significant increase in the posttest mean score (11.23)
compared to the pretest mean score (1.98), based on a Wilcoxon-signed rank test of the
total score (Z = -10.875, p = 0.000). The same test is done for specific items (CT1, CT2
and CT3) which also shows a statistically significant increase in the posttest mean score.
Specifically, the mean score of CT1 statistically increased from 1.406 to 4.344 (Z = -
9.567, p = 0.000), which is the highest learning gain. The mean score of CT2
statistically increased from 0.519 to 3.800 (Z = -10.203, p = 0.000). Likewise, the mean
score of CT3 statistically rose from zero to 3.081 (Z = -10.012, p = 0.000).

Table 2
Computational Thinking Test: Pretest and Post-test Mean Scores

 Pretest Posttest

 Mean N SD SE Mean N SD SE

CT1 1.406 160 2.046 0.162 4.344 160 1.334 0.106

CT2 0.519 160 1.197 0.095 3.800 160 1.528 0.121

CT3 0.056 160 0.257 0.020 3.081 160 1.785 0.141

Total 1.981 160 2.608 0.206 11.230 160 3.209 0.254

214 Unplugged Coding Using Flowblocks for Promoting …

International Journal of Instruction, July 2020 ● Vol.13, No.3

Self-Efficacy Test
There was a statistically significant increase in the posttest mean score (14.79 out of 20)
compared to the pretest mean score (13.45 out of 20), based on a Wilcoxon-signed rank
test of the summation of self-efficacy (Z = -6.902, p = 0.000). Inferential statistics were
performed to assess a significant difference in each of the four constructs which showed
a statistically significant increase in the mean scores of mastery experience (Z = -6.009,
p = 0.000), vicarious experience (Z = -5.076, p = 0.000), as well as psychological state
(Z = -6.086, p = 0.000). However, this statistical difference in mean scores between the
pretest and the posttest was not present in verbal persuasion, despite the fact that the
mean score of verbal persuasion was the highest among the other four aspects in both
tests.

Table 3
Self-Efficacy Test

Mean Pretest Posttest

Mastery Experience 3.24 3.81

Vicarious Experience 3.49 3.76

Verbal Persuasion 3.76 3.83

Psychological State 2.96 3.39

Total Self-Efficacy 13.45 14.79

DISCUSSION

This study integrates the usefulness of visual programming language (VPL) as well as
flowcharts to make an unplugged coding activity more conceptually appropriate. In its
current form, VPL such as Blockly and Scratch, does not emphasise on the meaning of
block shapes, while this is a focus on flowchart in which different shapes signify
different algorithmic tasks. Therefore, we bring in the user-friendly nature of VPL and
integrate it with the concepts of flowchart, and coin a new term as flowblocks. In
addition, this study incorporates human friendly language to make syntaxes accessible to
younger age groups of learners and novice learners of programming. On top of this, this
study adopts game-based learning into the activity in order to engage students in the
learning process and make the activity more engaging and challenging.

It is believed that a careful design of the unplugged coding with flowblocks activity that
adopts diagrammatic representation of flowcharts, the five computer science concepts
integrated missions, the repetition of particular concepts throughout the missions, and
the self-check process, together contributes to the improvement of students’
computational thinking score. To be more specific, in the pretest as shown in Table 4,
this chosen example which in fact represents the majority exhibits that the student was
not aware of using flowcharts, but rather used a form of pseudocodes to complete the
pretest. In addition, although the sense of sequence can be slightly detectable, it is not
fully developed. However, through the aid of the unplugged coding using flowblocks
activity, the student learned how the syntax is supposed to start and how the following
syntaxes should be connected using provided flowblocks in a correct sequence (see
Appendix for selected flowblocks from students). Before getting the mission completed,
many students had to go through a series of debugs which, of course, help them learn

 Threekunprapa & Yasri 215

International Journal of Instruction, July 2020 ● Vol.13, No.3

and grow a sense of computational thinking as they proceeded. Therefore, the student
could respond to the posttest correctly with accurate understanding of sequences. Since
this fundamental concept can be easily comprehended and is repeatedly used in every
single task of the further missions, the mean score of CT 1 (assess the concept of
sequence) reached the highest compared to the other two tests, undoubtedly.

A similar scenario is found in the test result of CT 2 which assesses students’ concepts
of repetition, input and variable. A student whose response is representative is chosen
who appears to have some understanding of the shape of flowcharts. However, the sense
of using repetition, input and variable is absent (see also Table 4). Missions 2 and 3 in
the developed activity are designed to cultivate such concepts in which students can
learn more complex and advanced algorithm. Many had to debug their coding
repeatedly with appropriate scaffolding. Assumingly, the fact that students repeatedly
took the input from an indicated number by rolling a dice and store it in the variable and
use that number for repetition helps them to understand more deeply about these
concepts. Because of this, it is believed that students then were able to complete the
posttest successfully. However, due to the complication of these concepts and a lack of
repeated actions in this current level, the mean score of CT 2 is slightly lower than that
of CT 1 which is not surprising.

Improved understanding is evidently presented in the result of CT 3 which assesses
students’ concepts of loops and loops with condition. A representative sample is chosen
here who did not provide an answer to the pretest. A process of reaffirmation is done to
ensure that this response is not due to the limited time, but merely a lack of background
knowledge. However, once participating in missions 4 and 5, the student started to learn
about loops and loops with condition, alongside the repeated use of the previously
learned concepts of sequence, repetition, input, and variable. With a series of debugs
and scaffolding, the participant completed these final two missions successfully.
However, it is important to admit that the time allocated for these two missions,
although the longest, is not adequate to ensure that all students fully comprehended
these most advanced computer science concepts chosen to teach in this unplugged
activity. Having said that, a number of students could gain a fair level of understanding
as their mean score of the whole sample is around 3 out of 5 which is considered a very
good starting point for the first exposure to such concepts, not to mention the
improvement of understanding compared to the pretest.

The aforementioned results are in line with several studies adopting unplugged coding to
cultivate students’ learning basic concepts of computer programming (Bell &
Vahrenhold, 2018). However, this study offers a new set of evidence that unplugged
coding using flowblocks can be used to teach advanced concepts such as input, variable,
loops and loops with condition (missions 3, 4 and 5) which are found missing in early
studies that mainly focus on sequence and repetition. In addition, the use of a series of
debugs and self-compiling by students themselves with some scaffolding is novel in this
study. Last but not least, this is the first unplugged coding activity using game-based
learning to layout the missions in order, each of which advances understanding.

Despite showing a variety of advantages, there are areas of improvement to be done in
further study. First, extra time with multiple exposures are required for school students

216 Unplugged Coding Using Flowblocks for Promoting …

International Journal of Instruction, July 2020 ● Vol.13, No.3

to fully develop conceptual understanding of loops with conditions. There may be an
additional mission for this concept alone to be exercised. Furthermore, since students
have to choose the right shape of flowblocks and syntaxes by themselves, there is a
possibility that, by the process of self-check, some may choose the right syntax but a
wrong shape, yet they can proceed the mission without realising that this is not accurate.
Of course, the facilitator can help observe and minimise this potential problems.
However, when a group of students is larger, this could be problematic. It is suggested
here that if the use of mobile devices and internet connection are not limited, a
development of an AR application to validate the correctness of shape and syntax may
be crucial. Some may be interested to just produce videos or even worksheets for
students to consult when needed.

Table 4
Student Responses and Questions used in CT 1, CT 2 and CT 3

CT 1
Question & Pretest

CT 1
Posttest

CT 2
Question & Pretest

CT 2
Posttest

CT 1 Question

CT 1 Pretest answer

CT 1 Posttest answer

CT 2 Question

CT 2 Pretest answer

CT 2 Posttest answer

CT 3 Question CT 3 Posttest

Turning to the increased self-efficacy, it is believed that the game-based environment
where students work in pairs to self-check so as to complete the missions is key to this.

 Threekunprapa & Yasri 217

International Journal of Instruction, July 2020 ● Vol.13, No.3

Hermans and Aivaloglou (2017) whose study focuses on using a 4-week unplugged
lesson to introduce basic concepts of computer science including loops, conditions and
variables to elementary students, without applying these concepts to coding, also result
reveals that after the implementation of the lesson the level of self-efficacy of student
participants increased statistically in comparison to their counterparts (those learning
through a traditional way of learning computer science concepts using computer
devices). To be more specific, theoretical framework by Bandura (1977) explains that
there are four major sources that contribute to changes in levels of self-efficacy,
composing of mastery experience, vicarious experience, verbal persuasion and
psychological state which are then discussed in turn.

First and foremost, before proceeding to the next mission, students in this study have to
self-check their algorithm. When errors exist, they have to debug their algorithm until
they complete the mission (successfully reach and open the treasure box). Throughout
this practice which demands a great deal of trial-and-error effort, students are able to
develop mastery experience as shown in the statistical increase in the score given to this
aspect of self-efficacy in the posttest against the pretest. A study conducted by Kudo &
Mori (2015) reveals that mastery experience that comes with the completion of a task is
key to enhance self-efficacy. The study shows the statistically greatest learning gains
among students who have direct and successful experience, compared to those without
direct experience and those with direct experience but without success.

Furthermore, working in pairs helps students see how the partner is doing and hear what
he or she is talking about simultaneously. Also, the setting of this activity is an entire
classroom where each pair of students can also see and hear what other pairs are doing.
Therefore, being able to see what others are achieving is believed to be a factor that
allows students to gain vicarious experience. Likewise, being able to hear what others
are completing could promote verbal persuasion. It can be repeatedly observed in the
class that whenever one pair can complete a mission, a voice of success can be joyfully
heard which makes other pairs feel more motivated and become more confident that
they could also do the same. This somewhat explains why the level of vicarious
experience and verbal persuasion increased statistically in the posttest.

However, it is important to note that verbal persuasion also plays a great role as
encouragement when missions get harder and students encounter a number of failures. It
is evident that each pair always encourage each other when they feel that they are behind
the other pairs. Also, whenever a pair is left behind, the presence of a facilitator is found
to be encouraging when words of encouragement and proper guidance are given
appropriately. This is something that instructors and facilitators have to be concerned
when a setting where teaching is conducted is a naturalistic one. It is unavoidable that
students compare themselves to others. There are times when comparison puts them
down. Therefore, instructors and facilitators are to offer constructive verbal persuasion
that helps students proceed their tasks more effectively. It is shown that verbal
persuasion also has negative effects on individuals’ efficacy beliefs because when
delivered inappropriately, it can diminish self-efficacy beliefs of individuals than to
enhance them (Kiran & Sungur, 2012). In terms of psychological state, the final source

218 Unplugged Coding Using Flowblocks for Promoting …

International Journal of Instruction, July 2020 ● Vol.13, No.3

of self-efficacy, it is believed that collaboration within pairs and mild competition
among others are a medium that excites students to learn joyfully and actively. This may
contribute to the positive increase in the level of motivation displayed in the form of
psychological state in the posttest in this study. This result is also in line with other
studies where the adoption of unplugged coding activities can help promote
psychological state and motivation to learn of learners (Daungcharone et al., 2019; Dorji
et al., 2015), especially secondary school students (Nishida et al., 2008).

CONCLUSION

Computational thinking has become a topic of interest among educators recently.
Learning approaches have been developed to assist learners to cultivate the skill and put
it into practice. So far, two main approaches have been used. One is text-based
programming which is a traditional way to type various characters from a syntax.
However, it is rather passive and inaccessible to general leaners. The other is visual
programming languages which is the use of drag and drop provided blocks to construct
an algorithm. However, it misses some computational concepts such as the meaning of
block shapes. Therefore, this study aims to overcome the challenges by developing an
unplugged coding with flowblocks activity that is adopted in an environment of game-
based learning. This activity consists of a set of missions that intend to cultivate
concepts related to computer programming and computational thinking with no aids of
computer devices. Adopting a quantitative methodology, data collection is done among
secondary school students who have no prior knowledge about computer programming
based on a pre-post intervention approach. A set of flowblock components are made
ready for them to proceed with five missions that incorporate different computer science
concepts, with the aid of facilitators who help scaffold. Data analysis shows that by
participating in the learning innovation, students exhibit statistically improved learning
achievement and significantly increased self-efficacy. It is therefore recommended for
other instructors teaching basic concepts in computational science to consider using this
form of unplugged coding with flowblocks activity to promote conceptual understanding
and emotional engagement among their own groups of learners. Also, it is suggested to
other researchers that this strand of research is emerging, yet knowledge about it is far
from saturation. Aspects related to the development of unplugged coding are to be
uncovered.

ACKNOWLEDGEMENT

This work has been supported by the 60th Year Supreme Reign of His Majesty King
Bhumibol Adulyadej Scholarship from Institute for Innovative Learning, Mahidol
University. Furthermore, special thanks are given to Dr.Parames Laosinchi from the
Institute for Innovative learning, Mahidol University for his contribution on my work
regarding logic in the missions and statistical inference.

REFERENCES

Adler, R. F., & Kim, H. (2018). Enhancing future k-8 teachers’ computational thinking
skills through modeling and simulations. Education and Information Technologies,
23(4), 1501–1514.

 Threekunprapa & Yasri 219

International Journal of Instruction, July 2020 ● Vol.13, No.3

Amoako, P. Y. O., Adu-Manu, K., Arthur, J., & Adjetey, C. (2013). Performance of
students in computer programming: Background, field of study and learning approach
paradigm. International Journal of Computer Applications, 77, 17–21.

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change.
Advances in Behaviour Research and Therapy, 1(4), 139–161.

Bati, T. B., Gelderblom, H., & van Biljon, J. (2014). A blended learning approach for
teaching computer programming: Design for large classes in sub-saharan africa.
Computer Science Education, 24(1), 71–99.

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science
unplugged: School students doing real computing without computers. New Zealand
Journal of Applied Computing and Information Technology, 13(1), 20–29.

Bell, T., Rosamond, F., & Casey, N. (2012). Computer science unplugged and related
projects in math and computer science popularization. In The Multivariate Algorithmic
Revolution and Beyond (pp. 398–456). Springer, Berlin, Heidelberg.

Bell, T., & Vahrenhold, J. (2018). CS unplugged—how is it used, and does it work?
Springer, Cham.

Benware, C. A., & Deci, E. L. (1984). Quality of learning with an active versus passive
motivational set. American Educational Research Journal, 21(4), 755–765.

Burke, Q. (2012). The markings of a new pencil: Introducing programming-as-writing in
the middle school classroom. Journal of Media Literacy Education, 4(2), 121–135.

Ching, Y.-H., Hsu, Y.-C., & Baldwin, S. (2018). Developing computational thinking
with educational technologies for young learners. TechTrends, 62(6), 563–573.

Czerkawski, B. C., & Lyman, E. W. (2015). Exploring issues about computational
thinking in higher education. TechTrends, 59(2), 57–65.

Daungcharone, K., Panjaburee, P., & Thongkoo, K. (2019). A mobile game-based c
programming language learning: Results of university students’ achievement and
motivations. International J of Mobile Learning and Organisation, 13(2), 171–192.

Dorji, U., Panjaburee, P., & Srisawasdi, N. (2015). A learning cycle approach to
developing educational computer game for improving students’ learning and awareness
in electric energy consumption and conservation. Educational Technology & Society,
18(1), 91–105.

Durak, H. Y. (2018). The effects of using different tools in programming teaching of
secondary school students on engagement, computational thinking and reflective
thinking skills for problem solving. Technology, Knowledge and Learning.
https://doi.org/10.1007/s10758-018-9391-y

Giordano, D., & Maiorana, F. (2015). Teaching algorithms: Visual language vs
flowchart vs textual language. 2015 IEEE Global Engineering Education Conference
(EDUCON), 499–504.

220 Unplugged Coding Using Flowblocks for Promoting …

International Journal of Instruction, July 2020 ● Vol.13, No.3

Hermans, F., & Aivaloglou, E. (2017). To scratch or not to scratch?: A controlled
experiment comparing plugged first and unplugged first programming lessons.
Proceedings of the 12th Workshop on Primary and Secondary Computing Education -
WiPSCE ’17, 49–56.

Hooshyar, D., Ahmad, R. B., Yousefi, M., Fathi, M., Horng, S.-J., & Lim, H. (2016).
Applying an online game-based formative assessment in a flowchart-based intelligent
tutoring system for improving problem-solving skills. Computers & Edu, 94, 18–36.

Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach
computational thinking: Suggestions based on a review of the literature. Computers &
Education, 126, 296–310.

Hubwieser, P., Giannakos, M., Berges, M., Brinda, T., Diethelm, I., Magenheim, J., …
Jasute, E. (2015). A global snapshot of computer science education in k-12 schools.
ITICSE-WGR ’15 Proceedings of the 2015 ITiCSE on Working Group Reports, 65–83.

Kadirhan, Z., Gül, A., & Battal, A. (2018). Self-efficacy to teach coding in k-12
education. In C. B. Hodges (Ed.), Self-Efficacy in instructional technology contexts (pp.
205–226). Cham: Springer International Publishing.

Kalelioğlu, F. (2015). A new way of teaching programming skills to k-12 students:
Code.org. Computers in Human Behavior, 52, 200–210.

Kiran, D., & Sungur, S. (2012). Middle school students’ science self-efficacy and its
sources: Examination of gender difference. Journal of Science Education and
Technology, 21(5), 619–630.

Kudo, H., & Mori, K. (2015). A preliminary study of increasing self-efficacy in junior
high school students: Induced success and a vicarious experience. Psychological
Reports, 117(2), 631–642.

Lee, Y.-J. (2010). Developing computer programming concepts and skills via
technology-enriched language-art projects: A case study. Journal of Educational
Multimedia and Hypermedia, 19(3), 307–326.

Lye, S. Y., Koh, J. H. L., Yee Lye, S., & Hwee Ling Koh, J. (2014). Review on teaching
and learning of computational thinking through programming: What is next for k-12?
Computers in Human Behavior, 41, 51–61.

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the
models of programming concepts held by novice programmers. Computer Science
Education, 21(1), 57–80.

Ministry of Education. (2018). Computing science teacher guide. The Institute for the
Promotion of Teaching Science and Technology.

Mladenović, M., Boljat, I., & Žanko, Ž. (2018). Comparing loops misconceptions in
block-based and text-based programming languages at the k-12 level. Education and
Information Technologies, 23(4), 1483–1500.

 Threekunprapa & Yasri 221

International Journal of Instruction, July 2020 ● Vol.13, No.3

Nishida, T., Idosaka, Y., Hofuku, Y., Kanemune, S., & Kuno, Y. (2008). New
methodology of information education with “computer science unplugged.” In R. T.
Mittermeir & M. M. Sysło (Eds.), Informatics education - supporting computational
thinking: Vol. 5090 LNCS (pp. 241–252). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Noone, M., & Mooney, A. (2018). Visual and textual programming languages: A
systematic review of the literature. Journal of Computers in Education, 5(2), 149–174.

Oddie, A., Hazlewood, P., Blakeway, S., & Whitfield, A. (2010). Introductory problem
solving and programming: Robotics versus traditional approaches. Innovation in
Teaching and Learning in Information and Computer Sciences, 9(2), 1–11.

Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2019). Exploring children’s
learning experience in constructionism-based coding activities through design-based
research. Computers in Human Behavior, 99, 415–427.

Pellas, N., & Vosinakis, S. (2018). The effect of simulation games on learning computer
programming: A comparative study on high school students’ learning performance by
assessing computational problem-solving strategies. Education and Information
Technologies, 23(6), 1–30.

Plass, J. L., Homer, B. D., & Kinzer, C. K. (2015). Foundations of game-based learning.
Educational Psychologist, 50(4), 258–283.

Qian, M., & Clark, K. R. (2016). Game-based learning and 21st century skills: A review
of recent research. Computers in Human Behavior, 63, 50–58.

Scanlan, D. A. (1989). Structured flowcharts outperform pseudocode: An experimental
comparison. IEEE Software, 6(5), 28–36.

Tapingkae, P., Panjaburee, P., & Srisawasdi, N. (2018). Development of a digital
citizenship computer game with a contextual decision-making-oriented approach. 2018
International Symposium on Educational Technology (ISET), 230–234.

Thies, R., & Vahrenhold, J. (2013). On plugging unplugged into cs classes. Proceeding
of the 44th ACM Technical Symposium on Computer Science Education - SIGCSE ’13,
365. New York, New York, USA: ACM Press.

Topalli, D., & Cagiltay, N. (2018). Improving programming skills in engineering
education through problem-based game projects with scratch. Computers & Education,
120, 64–74.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33.

222 Unplugged Coding Using Flowblocks for Promoting …

International Journal of Instruction, July 2020 ● Vol.13, No.3

APPENDIX

Selected flowblocks from students

Mission 1 Mission 2 & 3 Mission 4 & 5

