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1
introduction

Context and Overview

social scientists frequently measure unobservable char-
acteristics of people such as mathematics achievement or musical
aptitude. These unobservable characteristics are also referred to as
constructs or latent traits. To accomplish this task, educational and
psychological tests are designed to elicit observable behaviors that
are hypothesized to be due to the underlying construct. For
example, math achievement manifests in an examinee’s ability to
select the correct answer tomathematical questions, and a flautist’s
musical aptitude manifests in the ratings of a music performance
task. Points are awarded for certain behaviors, and an examinee’s
observed score is the sum of these points. For example, each item on
a 60-item multiple-choice test may be awarded 1 point for a
correct response and 0 points for an incorrect response. An exam-
inee’s observed score is the sum of the points awarded. In this
manner, a score is assigned to an observable behavior that is
posited to be due to some underlying construct.

Simply eliciting a certain type of behavior is not sufficient for
educational and psychological measurement. Rather, the scores
ascribed to these behaviors should exhibit certain properties: the
scores should be consistent and lead to the proper interpretation of
the construct. The former property is a matter of test score



reliability, whereas the latter concerns test score validation (Kane,
2006). Test score reliability refers to the degree of test score con-
sistency over many replications of a test or performance task. It is
inversely related to the concept of measurement error, which
reflects the discrepancy of an examinee’s scores over many replica-
tions. Reliability and measurement error are the focus of this text.
The extent to which test scores lead to proper interpretation of the
construct is a matter of test validity and is the subject of another
volume in this series.

The Importance of Test Score Reliability

Spearman (1904) recognized that measuring unobservable char-
acteristics, such as mathematics achievement or musical aptitude,
is not as deterministic as measuring physical attributes, such as the
length of someone’s arm or leg. Indeed, he acknowledged that
measurement error contributed to random variation among
repeated measurements of the same unobservable entity. For
example, an examinee may be distracted during one administra-
tion of a math test but not during another, causing a fluctuation in
test scores. Similarly, a flautist may perform one set of excerpts
better than another set, producing slight variations in the ratings
of musical aptitude. These random variations are due to measure-
ment error and are undesirable characteristics of scores from a test
or performance assessment. Therefore, one task in measurement is
to quantify the impact on observed test scores of one or more
sources of measurement error. Understanding the impact of mea-
surement error is important because it affects (a) statistics com-
puted from observed scores, (b) decisions made about examinees,
and (c) test score inferences.

Spearman (1904, 1910) showed that measurement error attenu-
ates the correlation between two measures, but other statistics are
affected as well (see Ree & Carretta, 2006). Test statistics, such as
the independent samples t-test, involve observed score variance in
their computation, and measurement error increases observed
score variance. Consequently, measurement error causes test sta-
tistics and effect size to be smaller, confidence intervals to be wider,
and statistical power to be lower than they should be (Kopriva &
Shaw, 1991). For example, Cohen’s d is the effect size for an
experimental design suitable for a independent-samples t-test.
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An effect size of d50:67 that is obtained when reliability is 1.0
notably decreases as reliability decreases; decreasing reliability to .8
attenuates the effect size to .60, and decreasing reliability to .5
attenuates effect size to .47. Figure 1.1 demonstrates the impact of
this effect on statistical power for an independent-samples t-test.
The horizontal line marks the statistical power of 0.8. The curved
lines represent power as a function of sample size per group for
score reliabilities of 1.0, 0.8, and 0.5. Notice that as reliability
decreases, more examinees are needed per group to maintain a
power of 0.8. Indeed, a dramatic difference exists between scores
that are perfectly, but unrealistically, reliable and scores that are
not reliable. Given the influence of reliability on statistics, the
conclusions and inferences based on these statistics may be erro-
neous and misleading if scores are presumed to be perfectly
reliable.

Although biased statistics are of concern, some of the greatest
consequences of measurement error are found in applications that
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concern the simple reporting of scores for individual examinees.
Many uses of test scores involve high-stakes consequences for the
examinee. For example, a student may be granted or denied
graduation because of a score on a mathematics exam. An appli-
cant may be granted or denied a job because of a score obtained on
a measure of some characteristic desired by an employer. Because
of such high stakes, test scores assigned to an examinee over many
replications should be consistent. We cannot have confidence in
test scores if the decision about an examinee (e.g., granted or
denied graduation) differed from one administration of the test
to another without any true change in the examinee’s capability.
Sizable measurement error can produce inconsistent decisions and
reduce the quality of inferences based on those scores.

The amount of measurement error in test scores must be closely
monitored, not only to appreciate the consistency of the test scores
but also to evaluate the quality of the inferences based on the
scores. Reliability is a “necessary but not sufficient condition for
validity” (Linn & Gronlund, 2000, p. 108). Scores must be reliable
in order to make valid inferences. If test scores are not consistent,
there is no way to determine whether inferences based on those
scores are accurate. Imagine watching someone throw darts at a
dart board and trying to guess (i.e., infer) the score zone that the
person is trying to hit. Suppose further that you have no knowl-
edge of the thrower’s intended target. If the darts hit the board in
close proximity to each other, you have a good chance of correctly
guessing the zone the person is trying to hit. Conversely, if the
darts are widely dispersed, you have very little chance of correctly
guessing the target score zone. Imagine that three darts are thrown
and each hits a different score zone: What is the likely target? It
could be any of the three zones or none of them. Wide dispersion
of the darts would limit your confidence in guessing the intended
target. Now suppose that all three darts hit close to each other in
the 18 zone. What is the intended target? The 18 zone is a good
guess for the intended target because of the consistency of their
location.

Although reliability is a necessary condition for making valid
inferences, it does not guarantee that our inferences about scores
will be accurate. It is not a sufficient condition for validation.
Scores may be reliably off-target. The tight grouping of darts
described in the previous paragraph is indicative of reliability.
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However, reliability does not guarantee that the darts are anywhere
close to the target. Suppose you see three darts hit the bull’s-eye
but later learn that the thrower was aiming for the 20 zone! Your
guess would have been a good one but nonetheless incorrect.

Reliability plays a key role in social science research and applied
testing situations. It impacts the quality of test scores, statistical
tests, and score inferences. Given the importance of reliability, the
purpose of this book is to facilitate a thorough understanding of
the selection, interpretation, and documentation of test score
reliability.

Organization of the Book

Since Spearman’s (1904) seminal work, various theories of test
scores have evolved to address the technical challenges in the
production of test scores and the characterization of score relia-
bility. Classical test theory, classification decisions, and general-
izability theory are three approaches discussed in this text. General
concepts and commonalities among these theories are emphasized
to make connections between them and facilitate an under-
standing of reliability. Distinctions between these theories are
also discussed to appreciate the necessity of each theory and to
help the psychometrician select an appropriate approach to char-
acterizing score reliability.

Each book in the Understanding Statistics or Understanding
Measurement series is organized around the same six chapters, as
prescribed by the series editor. As a result, the development of
concepts in this text differs from the development in other texts on
reliability. Rather than have separate chapters for classical test
theory, classification decisions, and generalizability theory, these
approaches are discussed together and organized around a parti-
cular theme. For example, data collection designs for each theory
are discussed in Chapter 2, whereas assumptions for each theory
are described in Chapter 3. This structure presented some chal-
lenges in deciding how to best organize the material, and some
readers may question my selection of content for each chapter.
However, the organization of this text fits with modern data
analysis and reporting techniques. Organizing the material in
this manner will facilitate a deeper understanding of reliability as
well as facilitate reliability analysis and reporting.

INTRODUCTION : 7



Chapter 1 presents an overview of classical test theory, classifi-
cation decisions, strong true score theory, and generalizability
theory. General concepts that cut across all topic areas are dis-
cussed, followed by a description of those concepts that are specific
to each theory. Emphasis is placed on concepts that are central to
understanding reliability and measurement error.

Chapter 2 begins with a description of data obtained from an
operational testing program. This data will provide a basis for
many of the explanations and examples throughout the text. It is
followed by a description of data collection designs used in relia-
bility analysis. An emphasis is placed on describing the type or
types of measurement error present in each design.

Assumptions in classical test theory, classification decisions,
and generalizability theory are described in Chapter 3. Particular
attention is given to assumptions involving the nature of measure-
ment procedure replications, and the consequences of these
assumptions on the part-test covariance matrix.

Chapters 1 through 3 provide the theoretical basis for selecting a
method of estimating reliability and reporting the results. Chapter
4 describes a variety of methods for estimating reliability. These
methods are organized in decision trees to facilitate the selection of
an appropriate method.

Reporting conventions described in Chapter 5 are based on
guidelines set forth in the Standards for Educational and
Psychological Testing (American Educational Research Association,
American Psychological Association, & National Council on
Measurement in Education, 1999). While it may seem unnecessary
to discuss the reporting of reliability, several studies have shown
that the literature is filled with poorly or improperly documented
score reliability (Qualls & Moss, 1996; Thompson & Vacha-Haase,
2000; Vacha-Haase, Kogan, & Thompson, 2000). Guidelines for
reporting reliability are illustrated with an analysis of scores from
three different testing programs. Each program served a different
purpose, which permitted a wide variety of reliability methods to be
demonstrated. These examples are concluded in Chapter 6, with
recommended strategies for discussing a reliability analysis.

Finally, this text is by no means exhaustive. Many others have
writtenmore technical and exhaustive works on one ormore of the
topics discussed herein. Chapter 6 also lists texts and other recom-
mended readings in reliability.
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General Concepts

Defining reliability as the degree of test score consistency conveys a
general sense of what it means to be reliable—test scores should be
consistent with something—but it lacks specification of the entities
with which test scores should be consistent. A more complete
definition of reliability would state something like, “Reliability is
the extent to which test scores are consistent with another set of test
scores produced from a similar process.” Further improvements to
this definition would state the specific details about the process that
produced the test scores, such as information about the selection
items for each test and the manner in which the data were collected.
A general definition is useful in that it can apply to many situations;
but in actuality, reliability is situation-specific. It only obtains its full
meaning with a compete specification of the situation. For example,
the statement, “Scores from a sixth grade math test are consistent,”
is incomplete. It does not indicate how the scores are consistent. The
statement, “Scores from a sixth grade math test are consistent with
scores obtained from the same examinees who took the same test
but at a different time,” is more complete and describes the process
by which scores were obtained. It also differs from other possible
statements such as, “Scores from a sixth grade math test are con-
sistent with scores from a different but very similar sixth grade math
test that was administered to the same examinees at a different time
point.” These two statements are more complete statements about
score reliability, and they communicate very different notions of
what it means for test scores to be consistent. Most importantly,
they reflect different sources of measurement error. In the first
statement, change in the examinee’s state from one testing occasion
to another is the primary source of error. The exact same test was
used for each administration. Therefore, error due to lack of test
similarity is not possible. In the second statement, scores may be
inconsistent because of changes in an examinee’s state from one
administration of the test to another, as well as a lack of similarity
between the two test forms. Although both of these statements refer
to the extent to which sixth grademath test scores are consistent, the
nature of the consistency and the sources of measurement error
differ. Therefore, a complete understanding of the meaning of
reliability is only possible through a complete specification of the
process that produced the test scores.
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The Measurement Procedure

When people think of educational and psychological measure-
ment, they often think of individual tests. However, measurement
involves muchmore than the test itself. The entire testing situation
and the process that produces test scores must be considered. A
measurement procedure (Lord & Novick, 1968, p. 302) encom-
passes all aspects of the testing situation, such as the occasion or
time of test administration, the use of raters, the particular selec-
tion of test items, the mode of test administration, and the stan-
dardized conditions of testing (i.e., those aspects of testing that are
fixed). It includes multiple aspects of the testing process, and it is
not simply limited to the test itself. All aspects of the measurement
procedure may affect the consistency of scores.

Sampling in Measurement

Sampling the Measurement Procedure. There are two types of
sampling in measurement: the sampling of one or more aspects
of the measurement procedure (e.g., items), and the sampling of
examinees (see Cronbach & Shavelson, 2004; Lord, 1955b; Lord &
Novick, 1968). The primary source or sources of measurement
error are attributed to sampling the measurement procedure. For
example, suppose a 50-item multiple-choice test of English lan-
guage arts (ELA) is constructed from an item pool of 200 items,
and this test is administered to a single examinee. Suppose further
that any administration of this test occurs at the same time of day.
The observed score that is obtained by counting the number of
items answered correctly is only one of the 4:5386� 1047 possible
scores the examinee could earn from 50-item tests created from
this pool of 200 items. It is very unlikely that the examinee will
obtain the exact same score for all of these possible tests. Observed
scores will vary due to the particular sample of items that comprise
each test (i.e., measurement error due to the selection of items).
One sample may be more difficult than another, or the examinee
may be more familiar with some topics discussed in each item but
not others. Other random aspects of the measurement procedure
may also produce variation of observed scores. For example, the
examinee may experience fatigue, distraction, or forgetfulness
during the administration of some tests but not others.
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Sampling the measurement procedure is also described as repli-
cating the measurement procedure (Lord & Novick, 1968, p. 47).
The latter phrase is preferred, given that the sampling may or may
not involve simple random sampling. Avoiding use of the word
“sampling” helps avoid the mistake of assuming that an instance of
the measurement procedure was obtained through simple random
sampling when it was not. Moreover, measurement procedure
replications may involve samples with specific characteristics,
such as prescribed relationships among observed score averages
(see Chapter 3). The term “replication” helps convey the notion
that the samples should have certain characteristics.

Brennan (2001a) stressed the importance of measurement pro-
cedure replications for the proper interpretation of reliability. He
wrote that to understand reliability, “an investigator must have a
clear answer to the following question: (1) What are the intended
(possibly idealized) replications of the measurement procedure?”
(p. 296). Continuing with the previous example, each sample of 50
ELA test items from the pool of 200 items may be considered a
replication. Therefore, the consistency of scores that the examinee
may obtain from all 50-item tests constructed from this pool
reflects the similarity of test items. It does not reflect variation of
scores due to testing occasion (e.g., testing in the morning rather
than the afternoon) because each replication occurred at the same
time of day. The meaning and interpretation of score reliability
are inseparably tied to replicating the measurement procedure:
“Reliability is a measure of the degree of consistency in examinee
scores over replications of a measurement procedure” (Brennan,
pp. 295–296). A clear definition of the measurement procedure
and the process of replicating it provide a clear specification of the
source or sources of error affecting scores and the interpretation of
reliability.

As emphasized by Brennan, the replications may be idealized
and only conceptual in nature. For example, the ELA item pool
discussed previously may not actually exist. Rather, the item pool
may be composed of all 50-item tests that might be created
according to the test specifications. This type of conceptual repli-
cation is frequently encountered in practice. Even though there is
no real item pool from which to sample items, only two real
replications are necessary for estimating reliability, and these
may be obtained by dividing a test into parts. All of the other
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possible replications do not need to occur, but they exist concep-
tually to facilitate the development of statistical theories under-
lying the scores and the interpretation of reliability.

Details of replicating the measurement procedure are particu-
larly evident in the development of specific theories of test scores
and the assumptions about test scores. Classical test theory,
classification decisions, and generalizability theory define scores
differently by imposing different restrictions on the way a mea-
surement procedure is replicated. As a result, there are many
different interpretations of reliability and methods for estimating
it. For example, replications in classical test theory may use the
administration of parallel test forms. In strong true score theory,
replications may involve randomly sampling items from a
domain. Generalizability theory permits the most exhaustive
definition of a replication, such that multiple aspects of the
measurement procedure may be considered simultaneously. For
example, randomly sampling test forms and testing occasions
may constitute a replication. As discussed in Chapter 3, the
assumptions about test scores specify the nature of replicating
the measurement procedure.

Sampling Examinees. Examinees participating in a measurement
procedure are assumed to be randomly sampled from a popula-
tion. If measurement error was held constant, and the population
is heterogeneous on the construct of interest, then different scores
would be observed for a group of examinees simply because of the
process of randomly sampling examinees. For example, consider a
population of examinees who differ in their mathematics ability. A
random sample of two examinees would likely result in one exam-
inee having better mathematical ability than the other. If error
scores for these two examinees were the same, the observed score
for the first examinee would be higher than the one for the second
examinee. Therefore, variation among observed scores is due, in
part, to randomly sampling examinees.

Replicating the Measurement Procedure and Sampling Examinees

Replicating the measurement procedure and sampling examinees
do not occur in isolation. They occur in tandem. Every examinee
in a sample has scores that are affected by sampling the
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measurement procedure. Therefore, the total variance of scores is
made up of variance due to real differences among examinees and
variance due to sampling the measurement procedure.

Table 1.1 contains an examinee-by-itemmatrix for the entire popu-
lation and all conditions of the measurement procedure that are of
possible interest. The observed score random variables are denoted by
X, with subscripts that denote the row and column number, respec-
tively. For example, X23 refers to the observed score random variable
for the second person and the third item. In this example, the observed
score random variable is the score on an individual item. Replicating
themeasurementprocedure involves the selectionof columns fromthe
table, whereas sampling examinees involves the selection of rows from
the table. Three possible samples of four examinees and two items are
indicated by the shaded areas of Table 1.1. The total variability of
observed scores in each shaded area will differ because of sampling
items and examinees. Reliability coefficients provide an index that
reflects the extent to which variation among real examinees differences
(i.e., sampling rows) explains this total variability. However, reliability
is a property of test scores from each sample. It is not a property of the
test itself. Each sample will produce a different reliability estimate.

Table 1.1

The InfiniteMatrix and Three Possible Samples of Four Examinees

and Two Items

Item

Examinee 1 2 3 4 5 6 7 . . . 1
1 X11 X12 X13 X14 X15 X16 X17 . . . X11

2 X21 X22 X23 X24 X25 X26 X27 . . . X21

3 X31 X32 X33 X34 X35 X36 X37 . . . X31

4 X41 X42 X43 X44 X45 X46 X47 . . . X11

5 X51 X52 X53 X54 X55 X56 X57 . . . X51

6 X61 X62 X63 X64 X65 X66 X67 . . . X61

7 X71 X72 X73 X74 X75 X76 X77 . . . X71
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

1 X11 X12 X13 X14 X15 X16 X17 . . . X11

. .
.
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In the next three sections, important details and concepts in
classical test theory, strong true score theory, and generalizability
theory will be reviewed. This review is by no means exhaustive and
the reader is encouraged to consult additional sources for a more
technical and thorough review.

Classical Test Theory

Observed scores and error scores were previously defined in broad
conceptual terms. However, they have a very specific definition in
classical test theory. Moreover, they are related to a third type of
score, the true score, which will be defined in more detail shortly.
Observed scores, error scores, and true scores are related by a well-
known formula,

X5T þ E ð1:1Þ

where X, T, and E represent the observed, true, and error score for
a randomly selected examinee, respectively.1 The definitions of
these scores are established with respect to replication of the
measurement procedure.

Replicating the Measurement Procedure

An examinee’s observed score is likely to differ upon each replica-
tion of the measurement procedure due to transient, internal
characteristics of an examinee, such as forgetfulness, guessing,
hunger, and distractibility. Variation among specific instances of
the measurement procedure, such as using a different test form for
each replication, also causes scores to vary from one replication to
the next. Supposing that many (preferably infinite) replications of
the measurement procedure have occurred, then an examinee will
have many observed scores that vary randomly. A histogram could
be used to graphically depict an examinee’s observed score dis-
tribution, as illustrated in Figure 1.2. The top portion of this figure

1
The letter T is actually the upper case Greek letter tau.
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shows the distribution of observed scores obtained by an examinee
over all possible replications of the measurement procedure. This
distribution provides information about the amount of variability
among observed scores, referred to as examinee-specific observed
score variance, and the location of the distribution, referred to as
the true score, which is marked by a thick solid vertical line in the
bottom panel of Figure 1.2.

An examinee’s true score is the score of primary interest in
measurement. It is defined as an examinee’s average observed
score obtained from all replications of the measurement proce-
dure. If an examinee actually participated in an infinite number of
replications, we could compute the average observed score to
obtain the actual true score. However, an examinee usually only
participates in one or two replications of the measurement proce-
dure, which is far short of the infinite number of replications

Observed Scores for an Examinee Over Many Replications
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needed to obtain the actual true score. We never know the actual
value of the true score, and we must estimate it from the observed
scores that are actually obtained. While defining true scores in
terms of an infinite number of observed scores appears as a
limitation, this definition facilitates the statistical development of
the theory and leads to methods for estimating the true score. It
also results in a definition of the reliability coefficient, an index
that describes the similarity of true and observed scores. Each of
these methods will be discussed in detail later. Finally, this defini-
tion of a true score makes evident that a true score is not defined as
some inherent aspect of the individual examinee. It is not some-
thing possessed, like hair color or weight. It is an abstraction
defined in terms of replicating the measurement procedure.

Now that observed scores and true scores have been defined, the
formal definition of error scores should be evident. The error score
is simply the difference between an examinee’s observed score and
true score. Like an observed score, an examinee has a different
error score for each replication of the measurement procedure,
and all of these scores make up an error score distribution. This
distribution has an average value of zero, but it has the same
variance as the examinee’s observed score distribution. Both of
these characteristics are evident in Figure 1.3. Examinee-specific
observed scores are displayed in the top panel of the figure, and
examinee-specific error scores are depicted in the bottom panel.
Notice the similarity of the two distributions. They have the same
variance. Only the average value is different, as evident in the value
of the bold vertical line. The observed score distribution has an
average equal to the true score, whereas the error score distribu-
tion has an average value of zero.

In each replication of the measurement procedure, the goal is to
obtain an observed score that is very close to an examinee’s true
score. When each replication of the measurement results in a small
error score, the variance of the examinee-specific error score dis-
tribution will be small, and we can have confidence that our
observed score is close to the true score on any one replication of
the measurement procedure. Conversely, when each replication of
the measurement procedure results in a large error score, the
variance of the examinee-specific error score distribution will be
large and indicate a large difference between observed scores and
true score. A large variance of the examinee-specific error score
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distribution means that our measurement procedure produced a
lot of random noise. Our confidence in the quality of observed
scores decreases as measurement error increases. However, mea-
surement error to this point has been defined in terms of a single
examinee who participates in many replications of the measure-
ment procedure—a situation that rarely, if ever, holds in practice.
Therefore, measurement error and reliability are defined with
respect to a sample of examinees.

Additional Restrictions That Define Classical Test Theory. Several
restrictions on the measurement procedure must be stated to
complete the definition of classical test theory. The restrictions
are that (a) the expected value (i.e., mean) of the examinee-specific
error score distribution is zero, (b) there is no relationship
between true scores and error scores, (c) there is no relationship

Observed Scores for an Examinee Over Many Replications
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between the error scores obtained from any two replications of the
measurement procedure, and (d) there is no relationship between
error scores obtained from one replication of the measurement
procedure and true scores obtained from any other replication of
the measurement procedure. The complete definition leads to
important results in classical test theory, such as the decomposi-
tion of observed score variance and the development of reliability
coefficient estimates.

Sources of Variance

The variance of observed scores over a sample of examinees is true
score variance plus error score variance,

s2ðXÞ5 s2ðTÞ þ s2ðEÞ: ð1:2Þ

The covariance between true and error scores is not part of this
result, given restriction (b) listed in the previous paragraph.
Observed score variance is the easiest term to explain. It is
simply the variance of the scores obtained from every examinee
in the sample.

True score variance is also easy to explain. The true score is fixed
for a single examinee, and it is the same in all replications of the
measurement procedure. There is no true score variance within an
examinee. However, true scores vary for a sample of examinees.
That is, each examinee likely will have a different true score. If each
examinee’s true score were known, we could compute the variance
of the true scores for a sample of examinees to obtain the true score

variance, s2ðTÞ. However, each examinee’s true score is unknown.
True score variance must be estimated from observed score var-
iance using certain methods that follow from classical test theory.
These methods will be described later.

Error score variance is more difficult to define because error
scores differ within an examinee (i.e., over replications), and each
examinee has a different error variance. This aspect is illustrated in
Figure 1.4 for three examinees, each with a different true score.

Error score variance, s2ðEÞ, for a sample of examinees is defined as
the average (i.e., expected value) of the examinee-specific error
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variances. If every examinee has a large examinee-specific error
variance, then the average (over examinees) error variance will also
be large. Conversely, if every examinee has a small examinee-
specific error variance, then the average (over examinees) error
variance will be small. For Figure 1.4, error variance is computed as
ð25þ 4þ 36Þ=3521:67:

A difficulty in using a variance term to describe error is that it
involves squared units. Therefore, the standard error of measure-
ment is the square root of the average2 of the examinee-specific
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Figure 1.4. Error Score Distributions for Three Examinees

2
More accurately, it is the expected value of the examinee-specific error

variances. The term average is used for simplicity.
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error variances. It describes the amount of measurement error
using the same units (i.e., the same scale) as the test itself, rather
than squared units. For the information in Figure 1.4, the standard

error of measurement is
ffiffiffiffiffiffiffiffiffiffiffi
21:67

p
54:66: In practice, error variance

and the standard error of measurement is not so easy to compute
because we do not know the true or error scores. Error score
variance may also be estimated with certain methods, as described
later.

Although using a statistic like the standard error of measure-
ment that employs the same scale as the test is useful for
interpretation, it limits comparisons among similar tests that
use different scales. For example, suppose there are two tests of
eighth grade ELAs that are proportionally built to the same
specifications, but each test has a different number of items. If
one test contains 60 items and another contains 90 items, and
the observed score is the reporting metric, the tests have two
different scales and the standard error of measurement may not
be used to compare the quality of the two measures. A “scale-
free” index is necessary to compare measures that involve dif-
ferent scales.

The Reliability Coefficient

Reliability is defined as the squared correlation between observed
scores and true scores, and this index turns out to be the ratio of
true score variance to observed score variance,

r2XT 5
s2ðTÞ

s2ðTÞ þ s2ðEÞ : ð1:3Þ

Unlike the standard error of measurement, the reliability coeffi-
cient is scale-independent, and it may be used to compare the
quality of measurement procedures that use different scales. The
downside is that the reliability coefficient does not tell us how far
observed scores deviate from true scores in the original metric.
Therefore, a useful practice is reporting reliability and the standard
error of measurement.
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Traub and Rowley (1991, p. 175) provide a succinct explanation
of the reliability coefficient and the meaning of its metric:

• It is a dimensionless number (i.e., it has no units).
• The maximum value of the reliability coefficient is 1, when all
the variance of observed scores is attributable to true scores.

• The minimum value of the coefficient is 0, when there is no
true-score variance and all the variance of observed scores is
attributable to errors of measurement.

• In practice, any test that wemay use will yield scores for which
the reliability coefficient is between 0 and 1; the greater the
reliability of the scores, the closer to 1 the associated reliability
coefficient will be.

The fact that all reliability coefficients behave in the manner
described by Traub and Rowley may perpetuate the myth that a
test has only one reliability coefficient. For many people, a descrip-
tion of the reliability coefficient metric is the sole framework for
interpreting reliability. However, as Brennan (2001a) points out,
the interpretation of reliability is founded upon the notion of
replicating the measurement procedure. This distinction is impor-
tant. All estimates of the reliability coefficient will behave as
described by Traub and Rowley, but each coefficient is interpreted
differently depending upon themanner in which themeasurement
procedure is replicated.

Estimating Unobserved Quantities

Kelley (1947) provided a formula for estimating an examinee’s
true score. It is an empirical Bayes estimator that is computed as a
weighted sum of an examinee’s score, x, and the group average, mX ,
where the weight is an estimate of the reliability coefficient.
Specifically, Kelley’s equation, is given by

T̂ 5 r̂2
XT x þ ð1� r̂2

XTÞm̂ X : ð1:4Þ

When reliability equals 1, the estimated true score is the exam-
inee’s observed score. If reliability equals 0, the estimated true
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score is the group average observed score. Kelley’s equation is
useful for reporting scores for examinees. All that is needed to
obtain an estimated true score is an examinee’s observed score, an
estimate of the group average observed score, and an estimate of
reliability.

True score variance and error variance may be defined in terms
of observable quantities: observed score variance and reliability.
Rearranging the definition of the reliability coefficient (Equation
1.3) results in an expression for the true score variance,

s2T5s2Xr
2
XT . True score variance may be estimated by substituting

an estimate of observed score variance for s2X and an estimate of

reliability for r2XT :
Error variance may also be expressed in terms of observable

quantities by rearranging Equation 1.3, s2E5s2Xð1� r2XTÞ. The
square root of this value is the standard error of measurement
(SEM), which is given by

SEM5sX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2XT

q
: ð1:5Þ

Error variance and the SEM may also be estimated by substituting
an estimate of observed score variance (or standard deviation) and
reliability into the preceding equations.

A ðg� 100Þ% confidence interval for true scores is X–zSEM,
where z is the 1� ð1� gÞ=2 quantile from the standard normal
distribution. This interval assumes that true scores have a unit
normal distribution. A 95% confidence interval is obtained when
z51:96.

This section defined classical test theory and presented some of
the results of this definition, such as the decomposition of
observed score variance and an expression for the reliability coef-
ficient. To select an appropriate estimate of reliability and properly
interpret it, the data collection design and underlying assumptions
must be specified. Data collection designs will be discussed in the
next chapter, along with implications for the proper interpretation
of reliability. Chapter 3 will discuss different assumptions in clas-
sical test theory and explain how each further restricts the mea-
surement procedure replications.

22 : RELIABILITY



Classification Decisions

Test scores as numbers alone are meaningless. They must go
through a process of scaling in order to take on meaning and have
an interpretive frame of reference. Two common methods of pro-
viding a frame of reference for test scores are the creation of test
norms and the establishment of cut-scores. Test norms reflect the
distribution of scores for a given population, and they allow for the
computation of auxiliary scores (Kolen, 2006), such as percentiles,
which facilitate the interpretation of scores. A percentile score refers
to the proportion of examinees that score at or below a particular
level. For example, a score of 85 on a mathematics test says little
about examinee achievement. If the norms indicate that a score of
85 falls in the 75th percentile, then we know that 75% of examinees
obtained a score at or below 85.Moreover, this number is well above
the median score and suggests an excellent level of mathematics
achievement. The number 85 takes on much more meaning when
reported in the context of test norms. Score interpretations in this
situation are relative to other examinees, and a test used for this
purpose is referred to as a norm-referenced test (Glaser, 1963).

Reporting test scores in a relative manner using percentiles or
some other score based on norms does not always serve the purpose
of testing. In many applications, such as licensure exams and high-
stakes achievement tests, the purpose of testing is to determine
where an examinee’s score falls with respect to an absolute standard.
A cut-score defines the boundary between two achievement levels,
such as pass or fail, and this absolute standard is commonly estab-
lished through a process of standard setting (see Cizek & Bunch,
2007). Licensure exams may have a single cut-score that defines the
boundary between granting the license or not. Educational tests
often have multiple achievement levels differentiated by multiple
cut-scores. For example, the National Assessment of Educational
Progress uses two cut-scores to define three achievement levels:
Basic, Proficient, and Advanced (Allen, Carlson, & Zelenak, 1999,
p. 251). Score interpretations in this setting are relative to the
criterion (i.e., cut-score) and not other examinees. Tests that use
cut-scores to distinguish different achievement levels are referred to
as criterion-referenced tests (Glaser, 1963).

Norm-referenced and criterion-referenced tests differ not only
in their implications for score interpretation, but also in their
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meaning of score reliability (Popham & Husek, 1969). Norm-
referenced tests are design to spread out examinees to facilitate
their rank ordering (i.e., relative comparison). As such, hetero-
geneity of true scores is desirable and will increase the classical test
theory reliability coefficient. Criterion-referenced tests, on the
other hand, are designed to classify examinees into achievement
levels, and it is perfectly acceptable for all examinees to be placed in
the same achievement level and have the same true score. As a
result, the classical test theory reliability coefficient may be 0 even
when all examinees are placed in the correct achievement level.
Popham and Husek noted this distinction and indicated that
reliability coefficients for norm-referenced tests are not appro-
priate for criterion-referenced tests.

Reliability for a criterion-referenced test must take into account
the cut-score or cut-scores and evaluate the consistency of classi-
fying examinees into achievement levels. One approach for
defining a reliability coefficient for criterion-referenced tests
involves the squared error loss (see Livingston, 1972). This
method is based on classical test theory, and it adjusts the classical
test theory reliability coefficient to take into account the distance
between the average score and the cut-score. Brennan and Kane
(1977) extended this approach to generalizability theory, as will be
discussed in that section. The supposition in squared error loss
methods is that achievement-level classification will be more cor-
rect when the average score is far away from the cut-score.
However, this method does not quantify the consistency or accu-
racy of classifying examinees into the achievement levels.
Hambleton and Novick (1973) make an argument for a second
approach, threshold loss, that specifically evaluates whether an
examinee’s score is above or below a cut-score.

The foundation for squared error methods are covered in the
sections on classical test theory and generalizability theory.
Foundational concepts for threshold loss methods are provided
in detail below, given that they differ from those discussed in
classical test theory and generalizability theory.

Replicating the Measurement Procedure

Reliability methods for criterion-referenced tests make use of the
notion of a domain score. A domain represents all of the items or
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tasks (either real or imagined) that correspond to the content area
or construct of interest. It is more than just the items on a test or
items that have actually been produced. It is a larger entity that
represents all possible items that are considered appropriate for a
measurement procedure. A domain is a sampling frame that
defines the characteristics of the items that may be included in a
measurement procedure. For example, the domain may be a bank
of 10,000 items or all possible items that could be automatically
generated by a computer (see Bejar, 1991).

A domain score is the proportion of items in the domain that an
examinee can answer correctly (Crocker & Algina, 1986, p. 193). It
is akin to a true score in classical test theory. Like a true score, the
definition of a domain score involves many more replications of
the measurement procedure than those that actually take place.
Take a common statistics analogy for an example. Suppose an urn
is filled with 100 white balls and 300 red balls. The true proportion
of red balls is 0.75. Rather than count every ball in the urn, this
proportion can be estimated by taking a random sample of, say, 30
balls. The proportion of balls in this sample of 30 is an estimate of
the true proportion of balls in the urn. To make a more direct
connection to testing, the domain is the urn of red and white balls.
A red ball represents a correctly answered item, and a white ball
represents an incorrectly answered item. Each examinee has a
different number of red balls in the urn. An examinee’s domain
score is the true proportion of red balls in the urn (i.e., proportion
of correctly answered items), and the observed score is the number
of red balls in the sample of 30. Because of the simple act of
sampling items from the domain, an examinee’s observed score
will differ from the domain score. Some random samples may
involve higher estimates due to the inclusion of more items that
can be answered correctly in the sample than those that can be
answered incorrectly. Other random samples may result in lower
estimates because the sample involves more items that can be
answered incorrectly than those that can be answered correctly.
The different estimates in this case are due to randomly sampling
items from the domain.

Observed scores will vary due to randomly sampling items from
the domain. Consequently, the proportion of examinees above
and below the cut-score will also vary from one replication to
another. Decision consistency refers to the extent to which
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examinees are placed into the same achievement level on two
replications of the measurement procedure. It is also referred to
as raw agreement or the proportion of agreement. Figure 1.5
illustrates decision consistency for a sample of 500 examinees.
The vertical and horizontal lines intersecting the plot identify the
cut-score. Examinees placed in the upper-right and lower-left
quadrant represent consistent decisions. The other two quadrants
represent inconsistent decisions. Decision consistency is based on
observed scores. Therefore, it is often of interest to also know the
extent to which observed score classifications match true score
classifications.

Decision accuracy refers the extent that achievement-level clas-
sification on the basis of observed scores agrees with classification
based on domain (i.e., true) scores. Figure 1.6 illustrates decision
accuracy for the same data illustrated in Figure 1.4 using observed
scores from the first replication. Notice that the y-axis now refers
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to domain scores, and the upper-right and lower-left quadrants
represent instances when examinees are classified by domain
scores in the same way that they are classified using observed
scores.

Approaches for estimating decision consistency and decision
accuracy require that a continuous score be divided into two or
more discrete categories. For example, a score of 85 is transformed
to a score of Basic, Proficient, or Advanced depending on the
location of the cut-scores. Estimates are then based on these
categorical variables.

Methods for estimating decision consistency and decision accu-
racy from two replications are relatively straight forward and
simply quantify the information graphically summarized in
Figures 1.5 and 1.6. When only one replication is involved, the
methods become noticeably more complicated and require strong
assumptions about the nature of true and observed scores. Strong
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true score theory refers to methods that make strong assumptions
about the nature of test scores. These methods are considerably
more complicated than those used in classical test theory or gen-
eralizability theory.

Strong true score theory will be introduced in the next section.
Any presentation of this material is complicated, but an attempt is
made to here describe it in as simple a manner as possible without
completely omitting it.

Strong True Score Theory

Classical test theory assumes that test scores are continuous. It also
stipulates certain relationships among the moments (e.g., mean
and standard deviation) of the score distributions, although no
particular distributions are specified. That is, the scores are not
presumed to follow any specific probability distribution. Classical
test theory is a distribution-free theory. Strong true score theory,
on the other hand, does assume that scores follow a particular
distribution. These additional assumptions are what gives rise to
the “strong” in strong true score theory. The advantage of strong
true score theory is that scores may be modeled with probability
distributions, and the fit of the model can be evaluated. However,
the disadvantage is that stronger assumptions are made about the
scores and, if these assumptions are not appropriate, the model is
of limited utility.

Distributional Assumptions

Domain Scores. The two-parameter beta distribution provides the
probability of a domain score, �, which ranges from 0 to 1. It has
two shape parameters, a and b, and it is given by

f ð�Þ5Bða;bÞ�a�1 ð1 � �Þb�1; ð1:6Þ

where Bða; bÞ denotes the beta function. One would not compute
Equation 1.6 by hand. It would only be computed using a
computer.
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Lord (1965) introduced a four-parameter beta distribution that
restricts the lower (l) and upper (u) limits of the beta distribution,
such that 0 � l � � � u � 1. It is given by

f ð�Þ5 ð� l þ �Þa�1 ðu � �Þb� 1

ðu � 1Þaþb�1Bða; bÞ : ð1:7Þ

A benefit of these restrictions is that the lowest true scores may be
restricted to account for random guessing. That is, domain scores
lower than expected from random guessing have a 0 probability.
Overall model fit, therefore, tends to be better with the four-
parameter beta distribution.

Conditional Distribution of Observed Scores. Once a domain score
is known, the binomial distribution provides the probability of an
observed score for an n-item test. Specifically,

f ðxj�Þ5 n
x

� �
�x þ ð1 � �Þn� x: ð1:8Þ

Unlike classical test theory, error scores in this model are not
independent of domain scores. This feature results in a method
for computing a conditional error variance, as described below.
The challenge in computing this probability is that the examinee’s
domain score is unknown. However, it may be modeled with a
probability distribution or estimated directly from the data, as
described below.

Observed Scores. Keats and Lord (1962) demonstrated that when
the conditional distribution of observed scores given domain
scores is binomial, and the distribution of domain scores is a
two-parameter beta distribution, the marginal distribution of
observed scores follows a beta-binomial distribution,

hðxÞ5 n
x

� �
Bðx þ a; n� x þ bÞ

Bða;bÞ : ð1:9Þ
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Furthermore, the two parameters are given by,

a5 �1þ 1

r21

� �
m̂X ð1:10Þ

and,

b5�aþ n

r21
� n: ð1:11Þ

Equation 1.9 provides the probability of a particular observed score,
x, given the number of test items and estimates of the mean
observed score,m̂ X , and the Kuder-Richardson formula 21 relia-
bility coefficient,r21;(Kuder & Richardson, 1937). Unfortunately,
Equation 1.9 is too complicated to compute by hand and must be
evaluated with a computer. However, the advantage of Equation 1.9
is that it provides a way of modeling observed scores without regard
for domain scores, and it lends itself to other applications in mea-
surement, such as smoothing scores for equipercentile equating, as
well as the derivation of decision consistency indices.

Lord (1965) combined the four-parameter beta distribution
with the binomial distribution to compute a different form of
Equation 1.9. His four-parameter beta-binomial distribution is
not shown here, but it too will be denoted hðxÞ.

Estimating Domain Scores. If no distributional assumptions are
made, an examinee’s domain score may be estimated directly from

the data using the maximum likelihood estimator, �̂51=n �
n

i51
xi,

which is the proportion of items an examinee answers correctly.
An empirical Bayes estimator is also possible under the condition
that the examinee is from a group with a unimodal score distribu-
tion with group mean, m̂ X . This estimator of the domain score is

�̂
�
5 r21�̂þð1� r21Þ m̂X

n

� �
: ð1:12Þ
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This formula is Kelley’s equation based on domain scores. If a
measure has an r21 estimate of 1, then the maximum likelihood
and empirical Bayes estimators are the same.

If domain scores are assumed to follow a two- or four-para-
meter beta distribution, the posterior distribution of domain
scores given observed scores may be computed using Bayes the-
orem (see Hogg & Tanis, 2001) as

f ð�jxÞ5 f ðxj�Þf ð�Þ
hðxÞ : ð1:13Þ

In this way, domain score estimates and 95% credible intervals for
domain scores may be computed.

Alternatively, a ðg� 100Þ% confidence interval for true scores
may be obtained from the binomial error model by solving
Equation 1.8 for the lower and upper bound. Clopper and
Pearson (1934) define the lower, �L, and upper, �U , bounds of
the confidence interval as

Xn
i5X

n
i

� �
�iL ð1 � �L Þn� i5 ð1� gÞ=2

XX
i50

n
i

� �
�iU ð1 � �U Þn� i5 ð1þ gÞ=2:

ð1:14Þ

Reliability and Conditional Standard Error of Measurement

In strong true score theory, reliability is still the ratio of true score
variance to observed score variance. Although strong true score
theory is not developed in the same manner as classical test theory,
it leads to some of the same reliability estimates as classical test
theory, such as the Kuder-Richardson formula 20 and 21 (Kuder &
Richardson, 1937). Chapter 4 discusses these estimates in more
detail.

In strong true score theory, the binomial distribution provides a
relatively easy method for obtaining examinee-specific error
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variances (i.e., error variance conditional on true score). The
binomial distribution has a variance of n�ð1� �Þ(see Hogg &
Tanis, 2001), and Lord (1955b) showed that when adopting the
notion of sampling items from a domain, this formula was the
error variance for a given score. By transforming the domain
score to the raw score metric and denoting it by t, domain scores
take on a value between 0 and the total number of items, n: The
variance of the binomial distribution may then be expressed as
tðn� tÞ=n: Keats (1957) improved upon this estimator by
incorporating a small sample correction to obtain
tðn� tÞ=ðn� 1Þ. He also multiplied this value by the adjust-

ment factor ð1� r2XTÞ=ð1� r21Þ to account for small differences
in item difficulty. Taking the square root of this conditional
error variance results in an estimate of the standard error of
measurement conditional on true score,

CSEMðtÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2XT
1� r21

tðn� tÞ
n� 1

s
: ð1:15Þ

Keats further demonstrated that the average value of the condi-
tional error variance was equal to the standard error of measure-
ment in classical test theory. To compute the conditional standard
error of measurement, an estimate of reliability is substituted for

r2XT . The important implication of Equation 1.15 is that error
variance may be computed for specific score levels. This contrasts
with classical test theory, in which all examinees are assigned the
same error variance (see Equation 1.5), regardless of their true
score.

This section introduced squared error and threshold loss
methods for evaluating reliability in criterion-referenced tests.
Decision consistency and decision accuracy were defined,
and strong true score concepts necessary for estimating these
quantities from a single replication were briefly discussed.
The methods presented in this section suffer from the same
weakness as classical test theory: Only one source of error
is reflected in a single estimate. Multiple sources of error can
only be considered simultaneously using generalizability
theory.
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Generalizability Theory

A reliability analysis conducted via generalizability theory consists
of two distinct steps, and each step consists of its own terminology
and concepts. The first step is a generalizability study, and its
purpose is to identify important characteristics of the measure-
ment procedure and evaluate the amount of score variability
attributed to each characteristic. The second step is a decision
study, and its purpose is to determine the dependability of scores
obtained from a measurement procedure and possibly design
more efficient measurement procedures.

Generalizability Study

In the discussion of classical test theory, two types of sampling
were described: sampling of examinees and replicating the mea-
surement procedure. These types of sampling are more formally
integrated into generalizability theory, and, as discussed in
Chapter 3, the sampling is assumed to be random. The population
defines characteristics of the objects of measurement that may be
sampled for participation in the measurement procedure.
Examinees typically constitute the object of measurement, but
generalizability theory permits other entities, such as expert per-
formance raters, to be the object of measurement. In what follows,
examinees are the objects of measurement. A desirable source of
score variability arises from sampling examinees from the popula-
tion. Undesirable sources of variability result from the process of
sampling other aspects of the measurement procedure.

Sampling (i.e., replicating) the measurement procedure contri-
butes to measurement error. Classical test theory and strong true
score theory only permit one source of sampling in addition to the
sampling of examinees. Therefore, only one source of measure-
ment error may be considered at any one time. Generalizability
theory, on the other hand, allows sampling from multiple sources
in addition to sampling examinees. This multifaceted sampling
permits error to be partitioned into multiple sources and the
influence of each or all sources, as well as their interactions, may
be considered simultaneously. To properly conduct or conceptua-
lize this multifaceted sampling, the sampling framemust be clearly
defined.
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Sources of measurement error are referred to as facets in general-
izability theory. Test items are an example of an item facet. The
occasion in which a measurement procedure is conducted (e.g.,
morning, afternoon, and evening administrations) constitutes an
occasion facet. A measurement procedure may have one facet or
many facets. The number of facets selected depends on the major
sources of error present in a measurement procedure. However, it is
wise to select only those sources of measurement error that are likely
to have the greatest impact on scores. Model complexity increases
exponentially as the number of facets increases. The universe of
admissible observations refers to all of the facets from which samples
may be drawn in order to create an instance of the measurement
procedure. It is a sampling frame that specifies the characteristics of
every facet that may be included in a measurement procedure.

In a generalizability study, the population and universe of
admissible observations are defined, as well as the observed uni-
verse design. A design specifies (a) the organization of the facets,
(b) the facet sample size, and (c) the size of the universe. When
discussing design considerations for the generalizability study, the
phrase “observed universe design” or “observed design” is used to
indicate the design that resulted in actual data. It reflects the
characteristics of an observed measurement procedure. An
observed design pertains to the universe of admissible observa-
tions and is part of the generalizability study because the data are
used to estimate variance components for individual observations
of each facet. Design considerations in the dependability study,
discussed later, are referred to as the data collection design. This
distinction is important because, in the generalizability study, the
design pertains to single observations (e.g., a single item), but it
refers to a collection of observations (e.g., a group of items) in the
dependability study. Moreover, the observed design and data
collection design may be the same or they may be different.

Observed designs may involve a single facet or multiple facets. A
design with a single facet is referred to as a single-facet design. One
with two facets is referred to as a two-facet design. Designs with
more than two facets are referenced in a similar manner. Once a
number of facets have been specified, aspects of their organization
must be described.

A facet is crossed with another facet when two or more condi-
tions of one facet are observed with each condition of another
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facet. Consider a design that involves an item facet and an occasion
facet. When all items are administered on all occasions, the item
and occasion facets are crossed (see Fig. 1.7). Crossing is denoted
with a multiplication sign. For example, “Item � Occasion”
would be read as “item crossed with occasion.” This notation
may be simplified to i� o. (Note that this text uses Brennan’s
[2001b] notational conventions). A facet may also be crossed with
the object of measurement. When all objects of measurement, say
examinees, respond to all items, examinees and items are crossed.
This design would be denoted as p� i, where p refers to examinees
(i.e., persons). Data collection designs in which all facets and
objects of measurement are crossed are referred to as fully crossed
designs.

Cronbach noted that generalizability theory’s strength lies in its
ability to specify designs that are not fully crossed (Cronbach &
Shavelson, 2004). A nested facet (call it A) occurs when (a) two or
more conditions of A are observed with each condition of another
facet (referred to as B), and (b) each condition of B contains
different levels of A (Shavelson &Webb, 1991, p. 46). For example,
suppose a measurement procedure is conducted on two occasions,
and a different set of items is administered on each occasion. Items
are nested within occasion (see Fig. 1.8). Nesting is denoted with a
colon. For example, “Items : Occasion” would be read as “items
nested within occasion.” For brevity, this relationship may also be
denoted as i : o. A facet may also be nested within the object of

Day 1 Day 2

Item 1 Item 2 Item 3 Item 4 Item 5

Figure 1.7. Diagram of Items Crossed with Occasions (i.e., Day of

Administration)
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measurement. For example, items are nested within examinees if
each examinee is given a different set of test items, a situation
commonly encountered in computerized adaptive testing (see van
der Linden & Glass, 2000). This design may be denoted i : p.
Designs that do not involve any crossed facets are referred to as
nested or fully nested designs. Those that involve a combination of
nested and crossed facets are referred to as partially nested designs.

Facet sample sizes are specified in the observed design strictly
for the purposes of observing a measurement procedure and
obtaining data. These sample sizes are denoted with a lowercase
n with a subscript that represents the facet. For example, the
observed sample size for the item facet is denoted ni. The linear
model effects and the variance components in a generalizability
study (described below) refer to facet sample sizes of 1. For
example, a measurement procedure may be observed by adminis-
tering a 64-item test to 2,000 examinees. Every examinee responds
to the same 64 items. Therefore, this design is crossed. Variance
components estimated in the generalizability study from this data
refer to variance attributable to a single item or the interaction of
an examinee and a single item. The data collection design in the
decision study (discussed later) specifies facet sample sizes for the
purpose of estimating error variance and reliability for a collection
of elements from a facet (i.e., a group of test items). Facet sample
sizes play a greater role in the decision study.

When defining the observed design, the size of the universe
must be considered. Random universes are unrestricted and
larger than the particular conditions included in a measurement

Day 1 Day 2

Item 1 Item 2 Item 3 Item 4

Figure 1.8. Diagram of Items Nested Within Occasion (i.e., Day of

Administration)
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procedure. An item facet is random if the items that appear on a
test are randomly sampled from, or considered exchangeable with,
all possible items that could have been included on the test. The
ELA item pool scenario described earlier is an example. In that
scenario, a 50-item ELA test was created from an item pool of 200
items. The item pool serves as the universe and the 50 selected
items are part of a specific instance of the measurement procedure.
Presumably the 50 items were selected at random or the test
designer is willing to exchange any one of the 50 items for any
other item in the pool. In this case, the item facet is considered to
be random. Conversely, fixed universes are restricted to those
conditions that are actually included in the measurement proce-
dure. For example, the item facet is fixed if there was no item pool
and the 50 ELA items were considered to exhaust all of the items in
the universe. The difference between random and fixed universes is
more than a semantic one. Each implies a different generalization
and interpretation of score reliability.

An observed universe designmay be characterized using a linear
model, and many different models are possible in generalizability
theory. Each model decomposes a single examinee’s score on
single observations of the facets. Three designs will be considered
in this text: p� i, p� i� o, and p� ði : oÞ. In the p� i design, all
examinees respond to all items. The score for an examinee on a
single item, Xpi, is the sum of four parts,

Xpi5 mþ vp þ vi þ vpi; ð1:16Þ

where m refers to the grand mean (i.e., average score over all
examinees and all facets), vp refers to the person effect, and vi
refers to the item effect. The term vpi reflects the interaction between

persons and items.However, this latter effect is confoundedwith the
residual, given that there is only one observation per cell. This effect
is due to the interaction of the person and item, as well as any other
random source of error not reflected in the design. Because of this
confounding, it is referred to as the residual effect.

The notation used here is not entirely descriptive of the effects in
the linear model. For example, the item effect is actually vi5mi � m.
The shortened versions of these effects are used herein for brevity

INTRODUCTION : 37



and to reduce the technical aspects as much as possible to facilitate
an understanding of reliability. The complete linear models are
described in Brennan (2001b) and Shavelson and Webb (1991).

A p� i� o design with an item and occasion facet requires that
all examinees respond to all items on all occasions. Scores are
described as

Xpio 5mþ vp þ vi þ vo þ vpi þ vpo þ vio þ vpio: ð1:17Þ

Effects due to person, item, and the person-by-item interaction are
the same as stated previously. The effect due to occasion is vo. Two-
way interactions between person and occasion, vpo, and item and

occasion, vio, and the three-way interaction between person, item,
and occasion, vpio are also part of this model.

Finally, a score from a two-facet design with items nested within
occasion, p� ði : oÞ, is characterized by

Xpio 5mþ vp þ vo þ vi : o þ vpo þ vpi : o: ð1:18Þ

Nesting items within occasion reduces the number of effects that
influence scores. There are only five effects in this model but seven
effects in the two-facet fully crossed design.

Variance Components. A generalizability study is conducted to
estimate the amount of score variance associated with each effect
in the universe of admissible observations. Each effect in the linear
model has its own variance component. That is, total score varia-
bility is decomposed into variance due to each effect and their
interactions. In the p� i design, the variance components are

s2ðXpiÞ5s2ðpÞ þ s2ðiÞ þ s2ðpiÞ: ð1:19Þ

Item variance, s2ðiÞ, reflects the extent to which items vary in
difficulty. Variance due to the person-by-item interaction,

s2ðpiÞ, indicates variability associated with items that are difficult

for some examinees yet easy for others. Finally, s2ðpÞ indicates the
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amount of variability among examinees due to the underlying
construct. Each of these effects is found in the more elaborate
two-facet crossed design.

Variance components for the p� i� o design are

s2ðXpioÞ5s2ðpÞ þ s2ðiÞ þ s2ðoÞ þ s2ðpiÞ þ s2ðpoÞ
þ s2ðioÞ þ s2ðpioÞ: ð1:20Þ

Scores may be higher on some occasions than others. Variability of

scores due to occasion is reflected in s2ðoÞ. Item difficulty may
vary depending on occasion. That is, items may be difficult on one
occasion but easy on another. This source of variability is reflected

in s2ðioÞ. Variance for the person-by-occasion interaction, s2ðpoÞ,
is interpreted similarly; variability of examinee performance from
one occasion to another. Finally, variance due to the interaction of
persons, items, and occasions, as well as any remaining source of

random error, is reflected in the residual term, s2ðpioÞ.
The p� ði : oÞ design consists of fewer variance components

than the p� i� o due to nesting. These components are

s2ðXpioÞ5s2ðpÞ þ s2ðoÞ þ s2ði : oÞ þ s2ðpoÞ þ s2ðpi : oÞ: ð1:21Þ

The two components unique to this design are s2ði : oÞ and

s2ðpi : oÞ. The former term reflects variability of item difficulty
within an occasion. The latter term corresponds to the interaction
between persons and items nested within occasion, as well as other

sources of random variability. That is, s2ðpi : oÞ is also a residual
term.

In a generalizability study, variance components are estimated
using ANOVA methods. Estimates are then interpreted in a rela-
tive manner by computing the proportion of variance explained by
each component (i.e., the ratio of one source of variance to the
total variance). Examples of these computations will be provided
later. Variance component estimates are used in a decision study
to evaluate the dependability of scores and to design efficient
measurement procedures.
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Decision Study

Scores in a generalizability study reflect the contribution of single
observations of each facet. In the p� i design, the score Xpi is a

person’s score on an individual item. In the p� i� o design, the
score Xpio is a person’s score on a single item on a single occasion.

Variance components estimated in a generalizability study tell us
how much each facet and facet interaction contributes to varia-
bility of these “single observation” scores. In practice, tests are
rarely composed of a single item or a single item administered on a
single occasion. Rather, scores are based on a collection of items or
a collection of items obtained from a collection of occasions. A
decision study provides the framework for evaluating the depend-
ability of scores obtained by averaging over a collection of facets.
More importantly, the universe of generalization is defined in a
decision study by specifying the number of observations of each
facet that constitutes a replication of the measurement procedure
and other details of the data collection design.

The number of observations of each facet (i.e., the items facet
sample size) is denoted in the same way as the facet sample size in
the observed design, but a prime mark is added. For example, the
item facet sample size is denoted n0i . The prime is added because
the sample size in the decision study may differ from the sample
size in the observed design.

A decision study allows one to evaluate the reliability of different
data collection designs that may be the same as or different from the
observed design. Decision study facet sample sizes may be the same
as or different from the actual sample sizes used when imple-
menting the measurement procedure in a generalizability study.
For example, a 60-item test may have been administered to exam-
inees when conducting the generalizability study (ni 560), but a
researcher may be interested in evaluating the reliability of a shorter
45-item test in the decision study (n0i 545). As another example,
suppose a 60-item test is administered over a two-day period (30
items per day), but the researcher notices examinees experiencing
notable fatigue during testing each day. Data from the two-day
testing could be used in a decision study to evaluate the reliability of
extending testing to four days, but reducing the number of items
per day to 15. A decision study allows one to consider various data
collection designs, as well as different ways to organize the facets.
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A variety of methods for organizing facets may be evaluated in a
decision study. For example, a p� i observed design may be used
to evaluate a p� I or an I : p data collection design (use of the
capital letter I will be explained shortly). Or, a p� i� o observed
design may be used to evaluate a p� I � O, p� ðI : OÞ, or
I : O : p data collection design. The number of possible data col-
lection designs is not unlimited, however. Nested facets in the
generalizability study cannot be crossed in the decision study. An
i : p generalizability study cannot be used to conduct a p� I
decision study. Therefore, a generalizability study should be con-
ducted with as many facets crossed as possible.

The size of the universe of generalization may be the same
as or different from the universe of admissible observations.
An infinite (i.e., random) facet in the universe of admissible
observations may be fixed in the universe of generalization as
long as there is at least one random facet in the design. The
converse is not true. A fixed facet in the universe of admis-
sible observations may not be made infinite in the universe of
generalization. Therefore, to have the most flexibility in con-
ducting a decision study, the generalizability study should be
conducted with as many random facets as possible.

Linear models in a decision study reflect the composite nature
of scores. For example, the linear model for the p� I design with
n0i items is given by

XpI 5mþ vp þ vI þ vpI : ð1:22Þ

The score XpI refers to an average score over n0i items. The capital

letter I denotes an average over the n0i items. More generally, a
capitalized facet index indicates an average over that facet (see
Brennan, 2001b). This notation is intentional, and it distinguishes
a decision study linear model from a generalizability study linear
model. Each effect in the model is interpreted with respect to the
collection of observations for each facet. The item effect, vI , refers
to the effect of n0i items (i.e., a test form), and the person-by-item
interaction refers to the differential effect of test forms for exam-
inees. Linear models for the two facet designs are adjusted in a
similar manner.
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In the p� I � O design, an examinee’s average score from n0i
items and n0o occasions is given by

XpIO 5mþ vp þ vI þ vO þ vpI þ vpI þ vIO þ vpIO: ð1:23Þ

Nesting items within occasion reduces the total number of effects
in the decision study linear model, just as it did in the general-
izability study linear model. In the p� ðI : OÞ design, an exam-
inee’s average score from n0i items that are nested within n0o
occasions is

XpIO5 mþ vp þ vO þ vI :O þ vpO þ vpI :O: ð1:24Þ

Each of these linear models shows that observed scores are com-
prised of a number of effects, all of which influence scores upon
each replication of the measurement procedure.

Replicating the Measurement Procedure. The universe of general-
ization includes all possible randomly parallel instances of a mea-
surement procedure. For example, a universe of generalization may
involve all possible 60-item eighth grade mathematics test forms
that could be administered to every examinee. Another universe of
generalization may involve all possible 30-item sixth grade ELA test
forms that could be administered on one day, and all possible 30-
item sixth grade ELA test forms that could be administered on a
second day. Each particular instance of the universe of general-
ization constitutes a replication of the measurement procedure. For
example, one 60-item eighth grade mathematics test administered
to all examinees is one replication of the measurement procedure. A
second 60-item eighth grade mathematics test administered to all
examinees is another replication of the measurement procedure. As
in classical test theory, the score a person obtains from one replica-
tion will differ from the score obtained on another replication
because of random error (i.e., sampling from each facet).
However, in generalizability theory, scores observed in each repli-
cation are affected by multiple sources of error, not just a single
source of error, as in classical test theory. All of the terms in
Equations 1.22, 1.23, and 1.24 except m and vp may be thought of
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as error scores. However, the exclusion of m and vp does not imply

that these two effects are true scores.
Generalizability theory does not make use of true scores as they

were defined in classical test theory. A similar concept exists, and it
depends on the definition of a universe of generalization. A uni-
verse score is the average of all possible observed scores a person
would obtain from every possible randomly parallel replication of
the measurement procedure. For example, imagine that a random
sample of 60 mathematics items were given to an examinee, and
the examinee’s average score was computed. Suppose then that
another random sample of 60 mathematics items was selected and
administered to the examinee and another average score was
computed. Repeating the process of randomly sampling items
and computing an average score a large number of times would
result in a distribution of observed scores. The universe score
would be the average value of all of these scores. A histogram of
these scores would look similar to Figure 1.2, but the x-axis would
be average scores, not sum scores.

In generalizability theory, we seek to determine how well an
observed score generalizes to the universe score in the universe of
generalization (Brennan, 2001b). This notion explains the use of
the term “generalizability” in generalizability theory. To evaluate
this generalization, the amount of variance associated with
observed scores must be determined. If observed score variance
is primarily due to universe score variance (i.e., the variance of
universe scores among a sample of examinees), then observed
scores may be reliably generalized to universe scores. That is, we
can have confidence that observed scores are close to universe
scores. Contrarily, if observed score variance is mostly due to
error variance, then observed scores will not reliably generalize to
universe scores, and we cannot have confidence that observed
scores are close to universe scores.

Sources of Variance. It is well known in statistics that if scores
x1; x2; . . . ; xn are independently and identically distributed with a

given mean, m, and variance, s2, then the distribution of the

average of these scores, x51=n �
n

i51
xi, has a mean m and variance

s2=n (see Hogg & Tanis, 2001). That is, the variance for an average
score is the variance for the individual score divided by the sample
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size. This result is commonly encountered in statistics classes,
where it is known as the standard error. It also plays an important
role in a decision study.

Variance components estimated in a generalizability study per-
tain to individual observations, and these components are used to
estimate variance components for an average of observations in a
decision study. Therefore, a decision study variance component is
usually the generalizability study variance component divided by
the facet sample size. (“Usually,” because in some designs, multiple
generalizability study variance components are combined before
division by the sample size.) An obvious result of dividing a
variance component by the facet sample size is that the amount
of variance decreases. Consider the variance components for the
p� I design, which are given by

s2ðXpIÞ5s2ðpÞ þ s2ðiÞ
n0i

þ s2ðpiÞ
n0i

: ð1:25Þ

Three sources of variance are evident in this equation. Universe

score variance is denoted s2ðpÞ, and it indicates the amount that
scores vary due to real differences among examinees. Variance
attributed to the group of n0i items (i.e., a test form) and the
person-by-form interaction is reflected in the remaining two
terms on the right-hand side. More importantly, these latter
terms represent two sources of error variance that decrease as the
number of items increases.

Increasing the number of facets increases the sources of error
variance, as is evident in the p� I � O design. Seven sources of
variance comprise the total observed score variance,

s2ðXpIOÞ5s2ðpÞ þ s2ðiÞ
n0i

þ s2ðoÞ
n0o

þ s2ðpiÞ
n0i

þ s2ðpoÞ
n0o

þ s2ðioÞ
n0in0o

þ s2ðpioÞ
n0in0o

: ð1:26Þ

One source is universe score variance, while the others are sources
of error variance. Notice that variance for interacting facets are
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divided by the product of two facet sample sizes. Therefore,
increasing a facet sample size not only reduces variance for that
facet, but also other variance terms that involve that facet.

Similar observations can be made among the p� ðI : OÞ design
variance components,

s2ðXpIOÞ5s2ðpÞþ s2ðoÞ
n0o

þs2ði : oÞ
n0in0o

þs2ðpoÞ
n0o

þs2ðpi : oÞ
n0in0o

: ð1:27Þ

Universe score variance and four sources of error variance are
evident in this design. Although there are fewer sources of error
variance in the p� ðI : OÞ than in the p� I � O, it is not necessa-
rily true the total amount of variance will be smaller in the former
design than the latter.

Types of Decisions. At the beginning of the section on classification
decisions, relative and absolute score scales were discussed. A
relative method of scaling compares one examinee’s scores to
another examinee’s score. Absolute scaling compares an exami-
nee’s score to some standard, such as a cut-score. The decision to
use one scaling method or another depends on the type of decision
a test user must make. A relative decision involves a relative method
of scaling for the purpose of deciding which examinees score
higher (or lower) than others. For example, an employer may
want to use a job placement test to select the most qualified
applicant. Scores on this test should do a good job of rank ordering
examinees, so that the highest-scoring examinee may be selected
for the job. An absolute decision involves an absolute method of
scaling for the purpose of deciding whether examinees have met or
have failed to meet some standard. No rank ordering is involved,
as all examinees may be above or below the standard. For example,
a licensing board may want use a test to determine whether or not
examinees meet some minimum standard of proficiency. Scores
on the test are used to decide who is proficient and who is not. For
granting a license, it does not matter if one examinee scores higher
than another, as long as both are above the standard.

Generalizability theory formally integrates the type of decision
into measurement error. Important sources of error for relative
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decisions are those that affect the rank ordering of examinees.
These sources of error involve the interaction between a facet
and the object of measurement because they disrupt the ordering
of examinees. That is, an effect may increase scores for some
examinees, but decrease scores for others. Table 1.2 lists relative
error for the three designs under consideration. Notice that the
sources of error that constitute relative error are those that involve
the object of measurement index and one or more facet index.
Relative error is denoted with a lowercase Greek letter delta, d:
Variance for relative error is denoted s2ðdÞ.

Important sources of error for absolute decisions are those that
affect the ordering of examinees and the absolute standing of
examinees. These sources of error involve the interactions and
the main effects. Interactions affect scores in the manner described
in the previous paragraph, which may cause some examinees to be
above the cut-score and some to be below. Main effects shift scores
up or down for all examinees, possibly moving all scores above or
below a cut-score. Given that relative and absolute shifts in scores
affect the absolute standing of examinees, absolute error tends to
be larger than relative error. This result is evident in Table 1.2.
Absolute error terms involve more sources of error than relative
error terms. Absolute error is denoted with an uppercase Greek

letter delta,D. Absolute error variance is denoted s2ðDÞ.

Reliability Coefficients. There are two types of reliability coeffi-
cients in generalizability theory. The generalizability coefficient was
introduced by Cronbach and associates (1963) when generaliz-
ability theory was first introduced. This coefficient describes the
reliability of scores used for relative decisions. It is the ratio of
universe score variance to universe score variance plus relative
error variance,

Er2 5
s2ðpÞ

s2ðpÞ þ s2ðdÞ : ð1:28Þ

Note that E denotes mathematical expectation. Equation 1.28
really describes a family of coefficients, with each member char-
acterized by a different expression for relative error. For example,
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each design in Table 1.2 has its own expression for relative error,
hence its own generalizability coefficient.

Absolute decisions differ from relative decisions, as described
earlier. Brennan and Kane (1977) defined the index of depend-
ability to describe the reliability of scores used for absolute deci-
sions. It represents the ratio of universe score variance to universe
score variance plus absolute error variance,

F5
s2ðpÞ

s2ðpÞ þ s2ðDÞ : ð1:29Þ

Because of the notation used to introduce this index, it is also
referred to as the phi coefficient (�). Like the generalizability
coefficient, the � coefficient represents a family of reliability coef-
ficients in which each member of the family is characterized by a
different term for absolute error.

In generalizability theory, the selected coefficient should match
the type of decision a test user is making. A generalizability

Table 1.2

Relative and Absolute Error for Three Random Designs

Variance Design Expression

Universe

Score
All s2ðpÞ5s2ðpÞ

Relative Error p � I

p � I �O

p � I : O

s2ðdÞ5 s2ðpiÞ
n0
i

s2ðdÞ5 s2ðpiÞ
n0
i

þ s2ðpoÞ
n0
o

þ s2ðpioÞ
n0
i
n0
o

s2ðdÞ5 s2ðpoÞ
n0
o

þ s2ðpioÞ
n0
i
n0
o

Absolute

Error

p � I

p � I �O

p � I : O

s2ðDÞ5 s2ðiÞ
n0
i

þ s2ðpiÞ
n0
i

s2ðDÞ5 s2ðiÞ
n0
i

þ s2ðoÞ
n0
o

þ s2ðpiÞ
n0
i

þ s2ðpoÞ
n0
o

þ s2ðioÞ
n0
i
n0
o
þ s2ðpioÞ

n0
i
n0
o

s2ðDÞ5 s2ði :oÞ
n0
i

þ s2ðoÞ
n0
o

þ s2ðpoÞ
n0
o

þ s2ðpioÞ
n0
i
n0
o
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coefficient should be used for relative decisions and a� coefficient
should be used for absolute decisions. Although this seems to go
without saying, the magnitude of each coefficient will usually
differ, making it tempting to report the larger of the two.
Generalizability coefficients are usually larger than � coefficients
because of the smaller error term in the ratio. However, it is not
appropriate to report a generalizability coefficient for test scores
used to make absolute decisions. Sometimes both types of deci-
sions are made. Educational tests are an example. Many states
report test scores as well as achievement levels. In this situation,
estimates of both coefficients should be reported, not just the
larger of the two.

Estimating Unobserved Quantities. Variance components are esti-
mated with ANOVA methods, as explained in Brennan (2001b)
and Shavelson and Webb (1991). These estimates are then sub-
stituted into the expression for relative or absolute error. The
standard error of measurement is estimated by taking the square
root of the expression for relative or absolute error that is applic-
able for a given data collection design. A relative standard error of

measurement is
ffiffiffiffiffiffiffiffiffiffiffi
s2ðdÞp

and an absolute standard error of mea-

surement is
ffiffiffiffiffiffiffiffiffiffi
s2ðDp Þ. Examples of these computations are pro-

vided later.
The flexibility of generalizability theory should be evident even

in this short introduction. It liberalizes reliability concepts from
classical test theory by allowing multiple sources of error to be
considered simultaneously. Although not discussed herein, gen-
eralizability theory also extends to tests comprised of multiple
factors. However, multivariate generalizability theory is rather
complicated and beyond the scope of this text.

Data collection designs are discussed in more detail in the next
chapter, and the primary assumptions in generalizability theory
are described in Chapter 3. Example computations and example
write-ups follow in subsequent chapters.

Chapter Summary

The chapter began by stressing the importance of reliability in the
social sciences and the impact of reliability on the quality of test
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scores, statistical analysis, and score validation. General concepts
that cut across classical test theory, classification decisions, and
generalizability theory were described, and an overview of these
three approaches to score reliability was provided. This review was
not exhaustive by any means, and the reader is encouraged to
consult additional sources. It is hoped that by emphasizing the
notion of replicating the measurement procedure, the reader
understands that there is no one reliability coefficient and no
single interpretation of reliability. The entire measurement proce-
dure and how it is replicated should be considered to identify
important sources of error, quantify the impact of error on test
scores, and interpret a reliability coefficient.
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2
data collection

designs

data collection designs in measurement fit the
framework of within-subjects factorial designs (see Keppel &
Wickens, 2004). Designs for classical test theory and classification
decisions are limited to a two-factor design. Examinees (i.e., the
object of measurement) always represent one factor in the design,
and a source of measurement error represents the other. The
particular source of error may differ, but only one source is
characterized by a design.

Generalizability theory builds on the factorial nature of a data
collection design and allows a single design to incorporatemultiple
sources of error. It also allows the sources of error to be organized
in different ways. For example, a single design may involve two
sources of error: items and occasions. These sources may be
organized as crossed or nested. Items and occasions are crossed if
every item is administered on every occasion. Items are nested
within occasions if a different set of items is administered on each
occasion. The factorial nature of a data collection design permits a
measurement procedure to be characterized in numerous ways.

A data collection design is chosen to isolate a source of error and
achieve a particular interpretation of a reliability estimate. For
example, the influence of time on observed scores may be



evaluated by taking measurements on the same examinees at two
time points. With a carefully chosen time interval between the two
measurements, the main source of changes in the observed scores
for each examinee is the lack of stability in the construct of interest.
Moreover, the appropriate interpretation of a reliability estimate
based on this design is as a coefficient of stability. Interpreting this
estimate as a coefficient of equivalence is inappropriate. The data
collection design isolates a particular source or sources of error
and guides the interpretation of a reliability estimate.

The next section describes a real-worldmeasurement procedure
that will form the basis of many examples in this chapter.
Subsequent sections describe data collection designs commonly
encountered in measurement. Classical test theory designs are
organized according to how the measurement procedure is repli-
cated. Designs involving two whole-test replications and two or
more part-test replications are described. Designs in generaliz-
ability theory are organized according to the number and organi-
zation of facets. All designs are revisited in Chapter 4, when various
methods for estimating reliability are discussed.

Description of Real-world Measurement Procedure

The South Carolina Benchmark Testing Program consists of the
Benchmark Assessments of student learning and professional
development opportunities for teachers. Assessments cover the
state curriculum standards, a comprehensive set of learning goals
and objectives, for English Language Arts (ELA) and mathematics.
The Benchmarks are administered in the fall and spring to provide
teachers with feedback on student progress during the academic
year. Each test administration is followed by professional devel-
opment activities that help teachers interpret test scores and adapt
curricula and instruction for student needs. The goal of the
Benchmark program is to improve classroom instruction and
student performance.

The ELA Benchmarks for eighth grade are aligned to the 2002
ELA standards (see Table 2.1; South Carolina Department of
Education, 2002). The first three strands (i.e., Reading 1, 2, and
3) tap into reading comprehension and have the following goal:
“The student will draw upon a variety of strategies to comprehend,
interpret, analyze, and evaluate what he or she reads” (p. 156). The
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last two strands, listed in Table 2.1, involve research and are based
on the goal: “The student will access and use information from a
variety of appropriately selected sources to extend his or her
knowledge” (p. 171). Each strand is further subdivided into stan-
dards that identify the specific aspects of what students should
know and be able to do, but, for brevity, the standards are not
listed herein.

Example reliability computations and write-ups involve the fall
administration of the grade eight test of ELA. This particular test
emphasizes reading comprehension, and it consists of eight testlets

Table 2.1

English Language Arts (ELA) Curriculum Standards and

Percentage of Items in Each Standard for Grade Eight

Strand Description Form A Form B

Reading 1 The student will integrate

various cues and strategies to

comprehend what he or she

reads.

44 31

Reading 2 The student will use a

knowledge of the purposes,

structures, and elements of

writing to analyze and interpret

various types of texts.

31 38

Reading 3 The student will use a

knowledge of semantics,

syntax, and structural analysis to

determine the meaning of

unfamiliar words and read texts

with understanding.

6 9

Research 1 The studentwill select a topic for

exploration.

9 3

Research 2 The student will gather

information from a variety of

sources.

9 19
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of eight questions for a total of 64 items. Testlets are a subset of
items that are related by a common feature, such as a reading
passage or graphic (Wainer & Kiely, 1987). For the ELA assess-
ment, the testlets are formed around a common reading passage.
All 64 questions are not administered on the same day. Rather, the
first four testlets are administered on day one and the second four
are administered the next day. Schools had a two-week window to
administer the assessment resulting in variability of when the two
occasions were observed.

Data Collections Designs in Classical Test Theory

Data collection designs in classical test theory always involve a
two-factor design. Only one factor represents a source of measure-
ment error, but the particular source of error differs according to
themanner in which themeasurement procedure is replicated. For
example, one type of replication may involve administering a test
to a group of examinees, allowing a few weeks to pass, then
administering the same test to the same examinees. Another type
of replication may involve administering two different (although
very similar) test forms to the same examinees on two occasions.
Each type of replication involves a two-factor design, but the
source of error is different. There are many ways to define a
replication, even when restricted to a two-factor design. Defining
a replication begins with deciding whether to use a whole-test or
part-test replication. Test-retest, alternate forms, and test-retest
with alternate forms all use whole-test replications.

Whole Test Replications

Test-Retest Reliability Coefficient. Reliability coefficients esti-
mated by two whole-test replications include test-retest, alternate
forms, and test-retest with alternate forms. In the test-retest
design, scores obtained by administering the same test on two
different occasions are compared. Table 2.2 outlines the data
collection design. Error variance in this design is due to random
temporal fluctuations of the characteristic being measured, as well
as to changes in other attributes such as such as alertness, forget-
fulness, distractibility, hunger, and guessing. Differences in the
test administration, such as different testing rooms or different
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administration times, may also contribute to error variance. If
observed scores substantially fluctuate from one occasion to
another because of random temporal fluctuations among exam-
inee characteristics, the observed scores will not be stable. On the
other hand, if there is very little random variation among exam-
inee characteristics from one occasion to another, observed scores
will be stable over time. The test-retest reliability coefficient is
known as a coefficient of stability. It reflects the extent to which
observed scores provide stable estimates of true scores (over time).

Proper interpretation of the test-retest reliability coefficient
depends on the time interval between the two administrations of
the measurement. Choosing an appropriate time interval is a fine
balance between making it long enough to avoid the introduction
of additional sources of error and short enough to avoid having
examinees change in a systematic way on the characteristic of
interest.

Practice effects and fatigue are two potential sources of pro-
blems with test-retest reliability estimates. If examinees remember
their first responses to items when responding to them a second
time, the error scores from the two administrations will be related
and violate a basic assumption of the classical test score model.
Gulliksen (1950, p. 197) notes that this effect will result in a
reliability estimate that is larger than it should be. However, his
statement does not take into account other, possibly contradic-
tory, effects, such as the influence of fatigue.

The test-retest method requires examinees to take the same test
twice, which doubles the amount of testing time. Fatigue caused by
such an extended testing period will systematically alter examinee

Table 2.2

Data Collection Design for Test-Retest

Reliability

Person Occasion 1 Occasion 2

P1 Form A Form A

P2 Form A Form A

P3 Form A Form A

P4 Form A Form A
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performance (i.e., modify true scores due to a bias among error
scores). Lord and Novick (1968) note that for the test-retest
reliability coefficient, such an effect introduces additional error
and lowers the estimate of reliability. Taken together, fatigue and
practice effects do not cancel out each other, and their combined
influence on the test-retest reliability coefficient is unknown (Lord
& Novick). Nevertheless, one must carefully consider the time
interval between measurements. It should be long enough to
avoid practice effects and fatigue, yet short enough to avoid
having the examinee develop or systematically change on the
characteristic being measured.

Systematic changes among true scores may also occur in pre-
post research designs. Therefore, test-retest reliability is not an
appropriate reliability coefficient for this situation. In a pre-post
design, examinees participate in the first measurement adminis-
tration, some sort of intervention designed to systematically alter
the characteristic being measured is introduced, and a second
measurement is conducted. For example, suppose a researcher
has developed a newmethod for teaching reading comprehension.
This researcher recruits students for a study designed to evaluate
the amount that reading comprehension improves due to the new
teaching method. After completing a measure of reading compre-
hension, the students participate in the new instructional method
every day during school for four months. At the end of this time
period, the students complete the same measure of reading com-
prehension. If the researcher’s hypothesis is supported, students
will systematically improve their scores on the reading compre-
hension test. The observed score variance is likely to change as well.
In this situation, the characteristic being measured changes sys-
tematically as a result of the new teaching method. Test-retest is
sensitive to random variation among observed scores, provided
that true scores do not change systematically from one replication
of the measurement to another. When true scores are expected to
change as a result of some type of intervention, test-retest is not an
appropriate reliability coefficient. If it is used, the reliability esti-
mate will be smaller than it should be (Lord & Novick, 1968,
p. 134).

The time interval between occasions should be reported when-
ever a test-retest reliability estimate is reported, given its influence
on the reliability estimate. Only those estimates based on the same
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time interval are comparable. For example, a test-retest reliability
estimate of 0.60 obtained by administering the measure two weeks
apart does not permit the same interpretation of the same size
estimate that was obtained by administering the measures three
months apart. Stated differently, a two-week test retest estimate
reflects a different method of replicating the measurement proce-
dure than a three-month test-retest reliability estimate.

Alternate Forms Reliability Coefficient. When reliability is esti-
mated by having examinees take two whole-test replications,
each on a different occasion, the influence of practice effects may
be reduced by using a different test form for each occasion. In this
design, scores on each form are compared. The time interval
between measurement administrations is typically shorter than
the time intervals used when estimating test-retest reliability, but
it should be long enough to minimize fatigue. Counterbalancing
the order in which forms are administered eliminates the influence
of occasion (i.e., time or stability of the characteristic being mea-
sured). Forms may be counterbalanced by administering one form
to half of the examinees and the other form to the remaining
examinees during the first occasion. Examinees then respond to
the alternate form on the second occasion. Consider the ELA
Benchmark assessment for an example. Form A and Form B of
this measure are designed to be very similar. Suppose that half of
the examinees complete Form A on the first occasion and Form B
on the second occasion, and the other half of the examinees do the
opposite. An outline of this design is shown in Table 2.3.

Table 2.3

Data Collection Design for Alternate Forms Reliability

with Counterbalancing

Person Occasion 1 Occasion 2

P1 Form A Form B

P2 Form A Form B

P3 Form B Form A

P4 Form B Form A
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Because the comparison is between forms and not occasion,
alternate forms reliability is not a coefficient of stability.
Rather, it is a coefficient of equivalence. The primary source
of error is test forms, but other sources of error, such as
fatigue and learning, are also at play. The coefficient reflects
the extent to which test forms are interchangeable. When test
forms are very similar and observed scores are not adversely
impacted by test form-specific content or difficulty, the alter-
nate forms reliability coefficient will be high. Conversely, as
the composition and difficulty between the two forms diverge,
the estimate will decrease.

Alternate forms reliability reduces the influence of practice
effects, but the influence of fatigue remains. As such, the time
interval between administrations still must be given careful con-
sideration. It must be long enough to minimize the influence of
fatigue. An additional challenge in using the alternate forms
approach is the development of two test forms. In some situations,
the creation of two test forms may be cost prohibitive.

Test-Retest with Alternate Forms. Features of the previous two
designs are combined in the test-retest with alternate forms
design. The purpose of this design is to reduce the impact of
practice effects that are common to the test-retest method. Like
the alternate forms method, examinees take a different form of the
test on each of two occasions. Like the test-retest method, test
forms are not counterbalanced, and the time interval between
occasions should be several weeks. In this design, scores on the
two forms are compared. The design is sensitive to error scores
that result from variation of the characteristic being measured, as
well as to differences in test form composition. It requires careful
consideration of the time interval between occasions and the
composition of each test form.

For example, suppose that all examinees took Form A of
the ELA Benchmark and three months later took Form B (see
Table 2.4). ELA is a characteristic that is likely to change quite a
bit over several months, considering that students will continue to
receive ELA instruction during that time. Moreover, there are
some obvious differences in the content of the two test forms.
See the percentage of items on each form for Reading 3 and
Research 2 that are listed in Table 2.1. Both sources of error will
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affect the correlation of scores obtained from the two occasions. A
shorter time interval, preferably one that does not involve addi-
tional ELA instruction, and test forms that are more similar would
result in a larger reliability estimate in this situation. However, this
larger reliability is no more correct than one obtained using a long
time interval and dissimilar content. They are both correct, but
each estimate should be interpreted with respect to the time
interval and test form composition.

The benefit of using this method in lieu of the test-retest
method depends on the amount of error contributed by dif-
ferences in test forms relative to those introduced by practice
effects. If practice effects are likely to contribute more error
than test forms, the test-retest method with alternate forms is
preferred. Conversely, if error due to test forms is likely to be
greater than that due to practice effects, the test-retest method
is preferred.

Estimating reliability through two whole-test replications is
costly and time consuming. Test developers must cover the
expense of two different test administrations and, if alternate
forms are required, the expense of two different test forms.
Examinees must spend twice the amount of time in testing
simply to obtain an estimate of reliability. With two whole-test
replications, the reliability estimate pertains to scores on one
replication or the other, not the average score from both replica-
tions. Therefore, only one replication is actually needed for score
reporting. The inefficiency of two whole-test replications is over-
come by a single administration and subsequent partition of the
test into two or more part-test replications.

Table 2.4

Data Collection Design for Test-Retest with Alternate Forms

Person Occasion 1 Occasion 2

P1 Form A Form B

P2 Form A Form B

P3 Form A Form B

P4 Form A Form B
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Two Part-Test Replications

Many of the data collection designs commonly encountered in
practical applications of classical test theory are based on part-test
replications, in which a part-test may be considered half of a test,
some other portion of the test items, or even a single test item.
Table 2.5 generically depicts the data collection design for a part-
test. In this design, data are collected on a single occasion by the
administration of an entire test. However, the test is divided into
parts for the computation of the reliability coefficient. The part-
tests are referred to as items in Table 2.5, but the part tests need not
be individual items. Each part-test may be considered a group of
items. This section considers designs with two part-test replica-
tions (i.e., n5 2, Item 15 part one, Item 25 part two, and items 3
and 4 are ignored in Table 2.5).

Split-halves. The most basic way to estimate reliability from a
single test administration is to divide the test into two halves,
correlate the half-test scores, and adjust the correlation. Three
methods for splitting a test in half are recommended: (a) randomly
select half of the items to create one half-test form and assign the
remaining items to the other half-test form, (b) create matched
item pairs by selecting pairs of items with similar means and item-
total correlations, and randomly assign an item from each pair to a
form, and (c) assign the odd numbered items to one half and the
even numbered items to another. Once two halves are established,
the half-test scores may be correlated to obtain an estimate of
half-test reliability. This reliability coefficient may be adjusted to
full-length reliability using one of a variety of methods, each of

Table 2.5

Data Collection Design for p x I

Person Occasion 1 Occasion 2

P1 Item 1, Item 2, Item 3 Item 4 –

P2 Item 1, Item 2, Item 3 Item 4 –

P3 Item 1, Item 2, Item 3 Item 4 –

P4 Item 1, Item 2, Item 3 Item 4 –

Note: n0
i 54; n0

o51
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which are discussed in Chapter 4 . The particular choice of adjust-
ment method depends on the tenability of the assumptions under-
lying the part-test replications.

Other Two-part Divisions. Partitioning a test into two halves or
two halves that contain similar content is not always possible. A
test involving one or more testlets is an example. In test construc-
tion, testlets are often treated as a single question, and an entire
testlet is assigned to a test form rather than individual items.
Testlets may prevent one from splitting a test exactly in half, if
each testlet contains a different number of items. One part of a test
may contain many more items than another simply because of the
presence of testlets in one or both part-test forms.

Dividing a test into two parts of equal length may also be
difficult when one is interested in balancing the content of the
two part-tests. Depending on the order of the items and the
content area measured by each item, an odd-even split may
result in two part-tests that measure different aspects of a test’s
table of specifications. For example, an odd-even split of the
benchmark ELA test results in two part-tests that differentially
represent the test’s content areas (see Table 2.6). Notice the dif-
ferent percentages of items tapping into each content area and the
manner in which these percentages differ between the odd and
even part-tests. In particular, notice that only the odd half contains
items that measure Research 1. If the two part-tests were modified

Table 2.6

Odd-Even Partition of Test: Number and Percentage

(in Parentheses) of Items in Each ELA Content Areas

Content Area Odd Half Even Half

Reading 1 11 (34) 11 (34)

Reading 2 13 (41) 11 (34)

Reading 3 5 (16) 8 (25)

Research 1 2 (6) 0 (0)

Research 2 1 (3) 2 (6)

Total 32 (100) 32 (100)
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to better balance the five content areas, the two part-tests may no
longer be equal in length. For example, Table 2.7 lists another way
to assign items to the part tests in order to better balance content.
The resulting two part-tests no longer have the same number of
items, although the difference is only two items. This unequal test
length may seem innocuous, but, as explained in the next chapter,
it has implications for the assumptions underlying the nature of
each replication and the selection of a reliability estimator. The
ELA example demonstrates that balancing content between two
part-tests of equal length can be difficult, particularly if testlets are
present.

There are many ways to divide a test into two parts of equal
length, and additional ways to divide a test into two parts of
unequal length. The difficulty in selecting a two-part division of
a test is a limitation of this approach. Suppose a test consists of
n5n1 þ n2 items, of which n1 items will be assigned to one part-
test and the remaining n2items will be assigned to the other part-

test. There are 1
2

ðn1þn2Þ!
n1!n2!

h i
unique ways to split a test into two

halves (i.e., n15n2)
1, and ðn1þn2Þ!

n1!n2!

h i
unique ways to divide the test

into two unique parts of unequal length (i.e., n1 6¼ n2). For

Table 2.7

Content Partition of Test: Number and Percentage

(in Parentheses) of Items in Each ELA Content Areas

Content Area Part 1 Part 2

Reading 1 11 (36) 11 (33)

Reading 2 12 (39) 12 (36)

Reading 3 6 (19) 7 (21)

Research 1 1 (3) 1 (3)

Research 2 1 (3) 2 (6)

Total 31 (100) 33 (100)

1
The symbol “!” denotes the factorial function. For example, 4! is read “four

factorial,” and it equals 4 � 3 � 2 � 1 5 24.
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example, a 20-item test may be split into 20!
10!10!

1
2 592;378 unique

half-tests. If there is reason to assign five items to one part-test and

15 items to the other part-test, there are 20!
5!15! 515;504 possible

ways to achieve such a partition of the test items. Given the
number of possibilities, it should be clear that there is no
one “true” partition of the items. Any partition of the items into
two parts is defensible, and each partition will likely result in a
different estimate of reliability. The number of possibilities for
partitioning a test into two parts is a limitation of this method.

Multiple Part-test Divisions. Dividing a test into two parts is not
always suitable. If a test is comprised entirely of testlets like the
eighth grade ELA Benchmark assessment, it makes more sense to
treat each testlet as a separate part, rather than arbitrarily partition
the test into two parts (Feldt, 2002). This approach would divide
the ELA Benchmark test into eight parts—one part for each testlet.

Testlets are not the only reason to divide a test into multiple
parts. In many applications, a test may contain multiple item types
such as multiple-choice, short-answer, and extended-response
items. In these situations, it is more appropriate to have each
part represent an item type (Qualls, 1995). For example, all of
the multiple-choice items would form one part. The short-answer
would form another part. A third part would be comprised of the
extended-response items.

There are many ways to partition a test into multiple parts. One
may be to balance the test specifications, whereas another may be
to balance test specifications and item type. The number of all
possible k part-test partitions is given by the multinomial coeffi-

cient, ðn1þn2þ ...þ nkÞ!
n1!n2! ...nk!

. To demonstrate this computation, a 20-item

test can be divided into four parts of equal length in
20!

5!5!5!5! 511;732;745;024 ways. Each possible partition will result

in a different reliability estimate. Like the two-part test partitions,
the multiple part-test division makes it difficult to determine
which partition is most appropriate. Some may be justified on
logical or test construction grounds, but all are “correct.”

The most common applications of multiple part-test partitions
treat each item as a part. Well-known coefficients such as
Cronbach’s a (Cronbach, 1951), Raju’s b (Raju, 1977), and
Guttman’s l (Guttman, 1945) are three examples. An additional
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benefit of these estimates is that they solve the problem of deter-
mining which partition of the test to use. These estimates result in
the average value for all possible half-test replications without
having to compute the reliability estimate for all possible parti-
tions (Cronbach). Deciding whether to use, for example,
Cronbach’s a or Guttman’s l is a matter of the assumptions one
is willing to make about the test scores. This decision process is
discussed in Chapter 4 .

Whether one is splitting a test in two or dividing the test into 10
parts, all of the possible partitions reflect only one source of
measurement error: error due to the sampling of items. As such,
estimates that use part-test replications are referred to as internal
consistency estimates. They reflect relationships among items.
Other sources of error, such as occasion, are not explicitly part of
these coefficients. Multiple sources of error can be included in the
data collection design using generalizability theory, as will be
discussed shortly.

Data Collection Designs for Classification Decisions

Data collection designs for classification decisions are similar to
whole-test replications described for classical test theory. A design
involves either one or two whole-test replications. One major
difference is that a cut-score is included in each replication for
measures that involve classification decisions. Hence, a cut-score
and the process of standard setting itself may be considered part of
the data collection design. Altering the cut-score changes the
definition and interpretation of reliability for classification deci-
sions. Indeed, reliability for classification decisions may be
improved by simply increasing or decreasing the cut-score.
Collecting data for classification decisions requires observation
of one or two measurement procedures and the establishment of
one or more cut-scores. The design remains a two-factor design
and is thus limited to one source of error.

Data Collection Designs in Generalizability Theory

Generalizability theory builds on the factorial nature of data col-
lection designs and permits multiple sources of error to be
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analyzed simultaneously. Moreover, the designmay involve facets2

that are fully crossed, fully nested, or partially nested. This flex-
ibility results in a single framework that can account for a see-
mingly endless number of data collection designs. The challenge is
limiting the possibilities to one or more designs that are most
appropriate for a given situation.

There are two purposes for conducting a decision study, and
each one provides guidance on selecting a data collection design. A
measurement procedure that is well established is not likely to
undergo revisions prior to the next administration. Therefore, a
data collection design that matches the observed design is the only
one of interest. The purpose of a decision study in this scenario is
to estimate reliability for the observed measurement procedure.

Conversely, a measurement procedure in development will
likely be modified before the next administration. Therefore, any
data collection design that improves the efficiency and reliability of
a measurement procedure is of interest. Eligible designs are not
limited to the observed design. (Recall that the observed design
pertains to the measurement procedure actually implemented to
collected data for the generalizability study. The data collection
design is part of the decision study, and it may or may not be the
same as the observed design.) In this scenario, the purpose of a
decision study is to estimate reliability for a variety of designs and
select one that best refines the measurement procedure. Future
observed designs are then based on the refined procedure.

Each data collection design affects the definition of universe
score, universe score variance, and error variance. As a result, each
design results in a different estimate and interpretation of relia-
bility; the numerator and denominator in Equation 1.28 and
Equation 1.29 may differ with each design. Given the plethora of
data collection designs, this section will only discuss designs that
(a) are commonly encountered in research, (b) make connections

2
Notice the difference in language. Factors refer to everything in the design,

but facets refer to factors that are sources of measurement error. The object of
measurement refers to the examinee factor. Therefore, a two-factor design in the
experimental literature is the same as a one-facet design in generalizability theory.
The number of factors in generalizability theory is the object of measurement plus
the number of facets.
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between classical test theory and generalizability theory, and (c)
are specific to the ELA Benchmark assessment.

Common Data Collection Designs

Random Designs. The most basic design in generalizability theory
is the p� I design (see Table 2.5). It is a design typically used in
classical test theory, and it leads to some of the same reliability
estimates. Unlike classical test theory, analysis of this design in
generalizability theory results in estimates of three different
sources of variance: p, I, and pI. Each of these sources of variance
may be combined in different ways—according to the type of
decision of interest (i.e., relative or absolute)—to produce an
estimate of reliability.

A slightly more complex design, but one that still only permits
one source of measurement error, is the I : p design. As shown in
Table 2.8, each examinee is administered a different set of items, but
all items are administered on the same occasion. An example of this
design is computerized adaptive testing (CAT; van der Linden &
Glass, 2000). ACAT is composed of items tailored to each individual
examinee, as determined by a computer algorithm. As such, each
examinee may be given a different set of items. There are only two
sources of variance in this design: p, and I:p. As a result, expressions
for relative and absolute error are the same in this design.

Two sources of measurement error and their interactions are
captured in a two-facet p� I � O design (see Table 2.9). In this
design, items and occasions are the two facets. The facets and the

Table 2.8

Data Collection Design for I:p

Person Occasion 1 Occasion 2

P1 Item 1, Item 2 –

P2 Item 3, Item 4 –

P3 Item 5, Item 6 –

P4 Item 7, Item 8 –

Note: n0
i 5 2; n0

o 5 1
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object of measurement (i.e., persons) are fully crossed. Data col-
lection involves administering the same items to every examinee
on every occasion. This design partitions the total variability into
seven different sources: p, I, O, pI, pO, IO, and pIO. Reliability
estimates from this design (and other data collection designs)
pertain to examinees scores that are averaged over all facets. In
the p� I � O design, an examinee’s individual scores (i.e., scores
for each item on each occasion) are averaged over items and
occasions.

In some measurement applications, examinees are adminis-
tered a different test form on different occasions. The SC
Benchmark test is a good example. Given that each occasion
involves a different set of items, the items are nested within occa-
sion. Table 2.10 demonstrates the data collection design when

Table 2.9

Data Collection Design for p x I x O

Person Occasion 1 Occasion 2

P1 Item 1, Item 2 Item 1, Item 2

P2 Item 1, Item 2 Item 1, Item 2

P3 Item 1, Item 2 Item 1, Item 2

P4 Item 1, Item 2 Item 1, Item 2

Note: n0
i 5 2; n0

o 5 2

Table 2.10

Data Collection Design for p x (I:O)

Person Occasion 1 Occasion 2

P1 Item 1, Item 2 Item 3, Item 4

P2 Item 1, Item 2 Item 3, Item 4

P3 Item 1, Item 2 Item 3, Item 4

P4 Item 1, Item 2 Item 3, Item 4

Note: n0
i 5 2; n0

o 5 2
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items are nested within occasion. Total observed score variance is
partitioned into five sources: p, O, I:O, pO, and pI:O.

Mixed Designs. A data collection design not only involves a defi-
nition of the number of facets and the organization of facets
(i.e., crossed or nested), but also a specification of the size of
the universe of generalization. A design may involve all random
(i.e., infinite) facets, or a combination of random and fixed facets.
The former design is referred to as a random effects design, whereas
the latter is called a mixed design. The only restriction is that a
design must have at least one random facet. Therefore, a single-
facet design always involves a random facet. A two-facet design,
however, may have one random and one fixed facet. As explained
in detail shortly, fixing a facet can affect the definition of a universe
score and increase universe score variance. The result is that
reliability estimates tend to be higher for a mixed design than a
random design with the same facet sample sizes and organization
of facets.

Mixed designs involve at least one fixed facet. Deciding which
(if any) facet to fix depends on the definition of a measurement
procedure replication. A facet should be fixed if all levels of the
facet are observed in a measurement procedure. That is, the
observed procedure exhausts all levels of a facet. For example, a
design with a fixed items facet assumes that the items included in
the measurement procedure exhaust all items in the universe. No
other items exist or will be developed for the measurement proce-
dure. Fixing a facet potentially increases universe score variance
and reduces error variance thereby increasing estimates of relia-
bility. It also redefines the universe score and limits the universe of
generalization. Therefore, reliability estimates from mixed designs
necessarily have an interpretation different from those from
random designs. Generalizations beyond the fixed facet are not
permissible.

Fixing an effect has the potential to increase the value of uni-
verse score variance while decreasing relative and absolute error
variance. Consider the variance terms for the p� I � O and
p� ðI : OÞ designs. Fixing occasions in either design changes the
expressions for universe score variance and error variance. This
result is evident by comparing expressions in Tables 1.2 and 2.11.
Notice that the person-by-occasion interaction component is
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added to universe score variance and removed from error variance.
The variance component for occasions is also removed from
absolute error variance. Consequently, generalizability and� coef-
ficient estimates based on components from amixed design poten-
tially involve a larger numerator and smaller denominator than
corresponding estimates from a random design. Subsequently, a
mixed design reliability estimate may be larger than a random
design estimate, given the same facet sample sizes.

Fixing a facet does not always increase universe score variance
and decrease error variance. The result depends on the design and
which facet is fixed. Fixing the item facet changes the expression
for universe score variance and error variance in the p� I � O
design, but not the p� ðI : OÞ design (details not shown).
Universe score and error variance are the same for the random
p� ðI : OÞ design and the mixed design with items fixed.
This result makes sense conceptually. If the occasion facet is

Table 2.11

Universe Score, Relative Error, and Absolute Error Variance for

Mixed Designs (Items Random, Occasions Fixed)

Design Variance Expression

p � I �O
Universe

Score
s2ðpÞ5s2ðpÞ þ s2ðpoÞ

n
0
o

Relative

Error
s2ðdÞ5 s2ðpiÞ

n
0
i

þ s2ðpioÞ
n

0
i n

0
o

Absolute

Error
s2ðDÞ5 s2ðiÞ

n
0
i

þ s2ðpiÞ
n

0
i

þ s2ðioÞ
n

0
i n

0
o

þ s2ðpioÞ
n

0
i n

0
o

p � ðI : OÞ Universe

Score
s2ðpÞ5s2ðpÞ þ s2ðpoÞ

n
0
o

Relative

Error
s2ðdÞ5 s2ðpi : oÞ

n
0
i n

0
o

Absolute

Error
s2ðDÞ5 s2ði : oÞ

n
0
i n

0
o

þ s2ðpi : oÞ
n

0
i n

0
o
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random (i.e., infinite) and items are nested within occasion, then
items are necessarily random. Therefore, the p� ðI : OÞ design
with items fixed has the same variance components as the
p� ðI : OÞ with items random.

Although a data collection design may differ from the observed
design, there are some limitations. A facet that is nested in the
observed design (i.e., the generalizability study) may not be
crossed in the data collection design (i.e., the decision study),
and a facet that is fixed in an observed design may not be
random in a data collection design. Therefore, the greatest
number of data collection design possibilities occurs when the
observed design is fully crossed and random.

Classical Test Theory Designs Restated as Data Collection Designs

The test-retest, test-retest with alternate forms, and multi-part
division designs in classical test theory may also be characterized
in generalizability theory by data collection designs that involve a
hidden facet. A hidden facet results when a facet has a sample size of
1, causing the facet variance components to be confounded with
variance components for other facets. Hidden facets are not evi-
dent in classical test theory designs. However, restating these
designs as data collection designs in generalizability theory obvi-
ates the hidden facet. The test-retest design described in Table 2.2
is based on a p� I � O data collection design in generalizability
theory, but the number of occasions in the data collection design
differ from the number of occasions in the observed design.
Brennan (2001b) explains that the test-retest design allows one
to estimate reliability for scores from one test occasion or the
other, not the average of scores from the two occasions.
Specifically, the test-retest design is equivalent to a p� I � O
data collection design with a fixed-item facet and a random occa-
sion facet with one occasion (i.e., n0o51). The occasion facet is
considered to be random because it makes no difference if relia-
bility pertains to scores from the first or second occasion. If one
were interested in assigning scores that were the average of the two
occasions, then the appropriate data collection design would have
two occasions (i.e., n0o52). In this latter design, error variance due
to occasion and interactions with occasion would be smaller, and
the subsequent reliability estimate would be larger, because the
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facet sample size is larger. However, the interpretation of a relia-
bility estimate resulting from this latter design differs from the
interpretation of an estimate from a test-retest design; the estimate
either pertains to scores from a single occasion or scores averaged
over occasions.

Brennan (2001b) also described a data collection design for the
test-retest with alternate forms design listed in Table 2.4. The test-
retest with alternate forms design also produces a reliability esti-
mate that pertains to scores from one occasion only, not the
average of scores from both occasions. Therefore, the number of
occasions is 1. Items are nested within occasion in the test-retest
with alternate forms design because a different test form (i.e., a
different group of items) is administered on each occasion. This
design is denoted p� ðI : OÞ: Like the test-retest design, the occa-
sion facet is random in the test-retest with alternate forms design.
This facet is random because it makes no difference which form is
selected for the first occasion and which is selected for the second.
Unlike the test-retest design, items are also random. The reason
items are random is that a design with an infinite (i.e., random)
number of occasions, each with a unique set of items, implies that
items are also infinite. This consideration helps explain why a
p� ðI : OÞ design with items fixed and occasions random results
in the same variance components as the same design with items
random and occasions random.

Finally, the multi-part division design (i.e., designs for internal
consistency) may be conceptualized as data collection designs in
two ways. The first is a p� I design with items random (see Table
2.5). If the number of items in the data collection design is the
same as the number of items in observed design, and the error term
describes relative error, the resulting generalizability coefficient
(Equation 1.28) is equivalent to Cronbach’s a. However,
Brennan (2001a) argued that a multi-part division design entails
a hidden occasion facet. Therefore, the data collection design is
actually a p� I � O design with one occasion, a fixed occasion
facet, and a random item facet.

Data Collection Designs for the ELA Benchmark Assessment

Table 2.12 lists several possible data collection designs, given the
ELA Benchmark generalizability study. This list is by no means
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exhaustive, but it illustrates several data collection designs that
serve different purposes. Only the first row of Table 2.12 corre-
sponds to the actual way in which data were collected for the
generalizability study (i.e., the observed design). The additional
rows describe more efficient alternative designs that involve
fewer items within a testlet, fewer occasions, or both. The
impact of such efficiencies on the measurement procedure is
evaluated by considering a variety of designs in a decision study.
An argument could then be made for using a more efficient
design, if reliability tends to be comparable to the less efficient
observed design.

Table 2.12

Possible Data Collection Designs for the ELA Benchmarks with

Items Random

Design Purpose Items (n0
i) Occasions

(n0
0)

Occasions

1 Observed Design 32 2 Random

2 Reduce Items 28 2 Random

3 Reduce Items 24 2 Random

4 Reduce Items 32 2 Fixed

5 Reduce Items 28 2 Fixed

6 Reduce Items 24 2 Fixed

7 Reduce Occasions 64 1 Random

8 Reduce Occasions

and Items

56 1 Random

9 Reduce Occasions

and Items

48 1 Random

10 Reduce Occasions 64 1 Fixed

11 Reduce Occasions

and Items

56 1 Fixed

12 Reduce Occasions

and Items

48 1 Fixed
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Measurement procedure efficiencies are not the only reason one
would consider alternative data collection designs. If an observed
design resulted in low reliability, one would seek ways to improve
it. Facets sample sizes may be increased to evaluate the impact on
reliability. For example, the number of items within an occasion
may be increased from 32 to 50. Similarly, the number of occasions
could be increased. The most efficient way to increase reliability is
to focus on the largest variance components and increase the
sample sizes for the facet or facets involving those components.

Chapter Summary

This chapter related data collection designs to within-subjects
factorial designs. In classical test theory and classification deci-
sions, data collection designs are two-factor designs. One factor
represents examinees, and the other a source of measurement
error. The source of error may vary, but each design is a two-
factor design.

Generalizability theory builds on the factorial nature of data
collection designs and permits one or more facets to be included in
the design. The facets may be crossed, nested, or partially nested; a
strength of generalizability theory identified by Cronbach
(Cronbach & Shavelson, 2004). In addition, facets may be fixed
or random, as long as the design includes at least one random facet.

Data collection designs contribute to the definition of a mea-
surement procedure replication. However, to fully define a repli-
cation and identify an appropriate reliability coefficient, the
assumptions underlying each replication must be established.
The next chapter describes assumptions in detail, along with the
consequences for violating them. Once the data collection design
and underlying assumptions have been established, a reliability
coefficient may be selected. Chapter 4 describes a variety of coeffi-
cients that are likely to be used in an analysis.
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3
assumptions

assumptions about a measurement procedure and the
nature of test scores fall into three different categories: assump-
tions about (a) dimensionality, (c) error score correlations, and (c)
the nature of measurement procedure replications. Assumptions
in these categories, in conjunction with the data collection design
and item type, guide the selection of an appropriate reliability
coefficient. In this chapter, each type of assumption is described
in detail, followed by a discussion of the consequences for violating
the assumption. This information sets the stage for selecting an
appropriate method for estimating reliability, as discussed in the
next chapter.

Dimensionality

Dimensionality refers to the number of factors or dimensions
underlying scores produced from a measurement procedure. For
example, the Benchmark assessment of English Language Arts
(ELA) measures a single factor, English Language Arts, whereas
the Achievement Goal Questionnaire (Elliot & McGregor, 2001)
measures four factors, Performance Approach, Mastery
Avoidance, Mastery Approach, and Performance Avoidance. The



desired number of dimensions is determined by the theoretical
basis of the construct. However, theory does not guarantee that a
measurement procedure will tap into the desired number of
dimensions. Dimensionality must be empirically tested upon
each observation of the measurement procedure.

A variety of terms are commonly encountered in the literature
on dimensionality, but these terms are not used in a standard
way. Some authors (e.g. Kline, 1998) use the term unidimensional
to describe a measurement procedure in which items correspond
to one and only one factor, but the measure may involve one or
more factors. Those authors use the term multidimensional to
refer to cases in which the measure involves multiple factors, and
items contribute to two or more factors. To clarify the language,
this text will refer to the former case as simple structure and the
latter as complex structure. Moreover, a measurement procedure
that involves only one factor is referred to as unidimensional, and
a measurement procedure that involves two or more factors is
referred to as multidimensional. A multidimensional measure
may involve simple or complex structures. Synonyms for uni-
dimensional and multidimensional measures commonly
encountered in the literature are homogenous and heterogeneous
tests, respectively. With this clarification of terminology, the
necessary assumption about dimensionality may be stated.

All methods for estimating reliability discussed in this text assume
that themeasurement procedure is unidimensional. There is only one
true score, T, for an examinee in classical test theory (see Equation
1.1); only one domain score distribution (see Equation 1.6) for an
examinee in strong true score theory; and only one universe score, vp,
for an examinee in generalizability theory (see Equation 1.22). The
assumption of unidimensionality is critical to selecting an appro-
priate method for estimating reliability. This assumption is tested
first, and it should be tested prior to selecting amethod for estimating
reliability (Komaroff, 1997; Osburn, 2000; Raykov, 1998, 2001).
Ironically, most researchers do not learn how to test unidimension-
ality until after learning about reliability. Methods for testing uni-
dimensionality are complex and only encountered in statistics classes
that are more advanced than courses on score reliability. Therefore,
these methods are only briefly described here.

Selecting a method to test unidimensionality depends on the
nature and amount of data. When data are presumed to be
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normally distributed, unidimensionality may be evaluated using
exploratory or confirmatory factor analysis (see Kline, 1998;
Stevens, 1996). One such method is described by Raykov (1997).
Other methods such as DIMTEST (Stout, 1987) are available for
evaluating the assumption of unidimensionality with non-nor-
mally distributed data, such as binary items (i.e., items scored
right or wrong). Dimensionality should only be tested by these
methods when the sample size is adequate (Raykov, 2001).
Unfortunately, most methods for testing dimensionality require
a large sample size (see Finch & Habing, 2007; Gagné & Hancock,
2006).

For a small sample size, few options exist for testing dimension-
ality. Dimensionality may be explored by checking the inter-item
correlations for patterns of low or negative correlations (Green,
Lissitz, & Mulaik, 1977). This information, combined with the
theoretical basis for a construct, may provide some evidence in
support of unidimensionality, but a formal confirmatory test is
preferred.

Cronbach’s a and other measures of internal consistency are not
tests of unidimensionality (Cronbach, 1951; Schmitt, 1996).
Internal consistency refers to the interrelatedness of items, but
unidimensionality means that only one factor underlies test
scores. Internal consistency is required for unidimensionality,
but it does not guarantee unidimensionality (Cortina, 1993;
Cronbach, 1951; Green et al., 1977; Schmitt, 1996). Internal con-
sistency may be high even when a test measures multiple dimen-
sions. This result occurs when common factors account for a large
portion of test variance (Cronbach, 1951). Several authors have
demonstrated that high values of Cronbach’s a may be observed
with multidimensional scores (Cortina, 1993; Feldt & Qualls,
1996; Green et al., 1977; Osburn, 2000; Schmitt, 1996).
Therefore, Cronbach’s a and other measures of internal consis-
tency should never be used as a measure of unidimensionality.

Violation of Unidimensionality

Reliability is underestimated when scores are not unidimensional
(Cortina, 1993; Cronbach, 1951; Feldt & Qualls, 1996; Osburn,
2000). The estimate may still be reasonably high, but it will be
smaller than it should be. For example, Osburn demonstrated that
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with a true reliability value of 0.76, Cronbach’s awas only 0.7 when
scores were multidimensional. This difference may seem small, but
there is no guarantee that it will always be so small. It is better to
avoid the influence of multidimensionality altogether by ensuring
that scores are unidimensional or using a method of estimating
reliability that is appropriate for multidimensional measures.

Stratified a is a method for estimating reliability for multi-
dimensional scores that have simple structure (Cronbach,
Schönemann, & McKie, 1965; Rajaratnam, Cronbach, & Gleser,
1965). It works by dividing the content areas, subscales, or factors
of a multidimensional measure into separate strata, and then
pooling the within-strata error variances. It increases (or decreases)
as the pooled within-strata error variance decreases (or increases).
Stratified a diverges the most from Cronbach’s a for multidimen-
sional measures with simple structure and uncorrelated factors
(Cronbach et al., 1965). In this situation, stratified a will be higher
than Cronbach’s a and closer to the true value. As the magnitude of
the correlations between strata approaches the magnitude of inter-
item correlations within strata, Cronbach’s a will approach the
value of stratified a (Cronbach et al.; Rajaratnam et al., 1965).

If test scores are multidimensional andmultiple sources of error
are present, multivariate generalizability theory provides the best
way to estimate reliability. Indeed, stratified awas developed in the
context of multivariate generalizability theory (Brennan, 2001b).
This method is beyond the scope of this text, but the reader is
encouraged to read Brennan’s text on generalizability theory for
more information.

Error Score Correlations

Error scores were described in Chapter 1 and denoted by an E in
Equation 1.1. The notion of error score correlations is related
closely to dimensionality. Error score correlations may represent
shared sources of variance other than those due to a common
factor (Kline, 1998). In this situation, only a subset of items may
show error score correlations. A more extreme case arises when
correlated errors are due to use of a model that specifies fewer
dimensions than it should. In this situation, all items will exhibit
error score correlations (Raykov, 1998). The following assumption
about error score correlations simplifies the development of many
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reliability coefficients, but violation of this assumption may result
in biased estimates.

All methods for estimating reliability discussed in this text
assume that error scores are uncorrelated. This assumption was
specifically stated for classical test theory but it also pertains to
classification decisions and generalizability theory.

Violation of Uncorrelated Errors

A variety of authors have demonstrated that internal consistency
estimates of reliability are artificially inflated in the presence of
positively correlated errors (Green & Hershberger, 2000;
Komaroff, 1997; Lucke, 2005; Raykov, 1998, 2001; Zimmerman &
Williams, 1980; Zimmerman, Zumbo, & LaLonde, 1993).
However, this effect is not consistent; it is confounded by the
effect of violating other assumptions. If errors are correlated
because of an unspecified underlying factor, internal consistency
will be underestimated (Green & Hershberger). Moreover, if the
assumptions of unidimensionality, t-equivalence (described
later), and correlated errors are simultaneously violated, the
effect on estimates of internal consistency is less predictable.
Komaroff (1997) and Raykov (1998) indicate that the negative
bias of multidimensionality is not only attenuated by the positive
bias of correlated errors, but that the positive bias may prevail,
thus resulting in an overestimate of reliability. Given the variety
of ways that correlated errors may influence measures of internal
consistency, the assumption should be examined through con-
sideration of possible sources of correlated error that may occur
in a measurement procedure. Statistical methods may then be
selected to best account for these violations.

Correlated errors may be caused by a variety of things likely to
be encountered in normal testing practice, such as test speeded-
ness, testlets, context effects, and model misspecification (Lucke,
2005; Raykov, 2001). Test speededness refers to the situation in
which some examinees are unable to complete a test within the
time limit. These examinees either leave the unreached items as
unanswered or rapidly guesses the response to remaining items
to complete the test within the time limit. In either case,
item responses are predominantly incorrect. A split-half relia-
bility estimate computed from a first-half/second-half split, will
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underestimate reliability (Traub, 1994). Conversely, if the coeffi-
cient is based on an odd-even split, the reliability estimate will be
larger than it should be (Traub). The latter effect is a result of a
perfect correlation among unreached items in each half that are
scored incorrect or the qualitatively different response patterns
among rapidly guessed items.

Testlets are groups of related items. The Benchmark assessment
of ELA is an example. Each testlet involves eight questions that
involve a single reading prompt. A group of math items that share
a graph is another example. The problem of correlated error
occurs in testlets because within-testlet item correlations tend to
be larger than the between-testlet item correlations. Conditions of
testing may also result in correlated errors.

Context effects are conditions of the testing that persistently
influence scores. Item placement and order effects are examples.
The occasion of testing is another. Context effects that arise due to
test occasion may affect the relationship among items. For
example, a test administered on a Thursday and Friday is likely
to show an occasion effect. Students may put forth effort and
aspire to obtain the correct response on Thursday, but on Friday
students may be distracted by the coming weekend and exhibit a
tendency to provide incorrect responses. As a result, test occasion
may induce a correlation among items if it is not specifically
treated as part of a model (i.e., when it is a hidden facet).

Finally, model misspecification occurs when an important fea-
ture of the data is not included in a model. A measurement model
that involves fewer factors than it should is an example. As
explained previously, fitting a unidimensional model to multi-
dimensional data will cause correlated errors among items.
Hidden facets are another example of a way in which model
misspecification may result in correlated errors.

Most methods for testing the assumption of uncorrelated error
are complex and beyond the scope of this text. Exploratory and
confirmatory factor analysis, structural equation modeling, and
item-response theory provide techniques for testing this assump-
tion and estimating reliability. Raykov (1998), Komaroff (1997),
and Green and Hershberger (2000) describe factor analytic and
structural equation modeling methods for handling correlated
error. Mixture item response theory models (Rost, 1990) or the
testlet model (Wainer, Bradlow, & Wang, 2007) are viable
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alternatives that do not assume normally distributed item
responses. Perhaps the simplest alternative is to include the
source of correlated error in a data collection design and estimate
reliability using generalizability theory. For example, a testlet may
be included in a data collection design by treating items as nested
within a testlet. Context effects and the influence of the test occa-
sion may be included in the model in a similar fashion.

Assumptions related to dimensionality and error score correla-
tions are commonly overlooked in practical applications of test
score reliability. However, violating these assumptions may
notably bias the reliability estimate. These assumptions must be
considered along with the more well-known assumptions in mea-
surement that are described in the next section.

The Nature of Measurement Procedure Replications

Classical Test Theory

In Chapter 1, replications in classical test theory were described in
terms of the defining characteristics of the theory, and many of those
features are tautologies. They are true by definition, and we cannot
test the veracity of such claims. However, there are also testable
assumptions that further define classical test theory and the nature
of replications. The assumptions of unidimensionality and uncorre-
lated errors are two such assumptions. Feldt and Brennan (1989)
described additional assumptions about the nature of measurement
procedure replications, which they referred to as the degree of part-
test similarity. These assumptions are listed below in order from
the least restrictive to most restrictive to demonstrate the nested
structure of the assumptions. That is, a more restrictive assump-
tion is defined by constraining parameters on a less restrictive
assumption. This nested structure has important implications for
conducting formal statistical tests of the assumptions (see
Jöreskog, 1971; Reuterberg & Gustafsson, 1992). Example covar-
iance matrices based on those described in Feldt (2002) are
provided to illuminate the consequences of each assumption
and emphasize their nested organization. These matrices are
based on four part-test replications, but they may be easily
extended to describe measures composed of more parts.
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Congeneric Measures. The assumption of congeneric measures
(Jöreskog, 1971) is the youngest and most general. All other
assumptions in classical test theory (i.e., t-equivalence, essential
t-equivalence, and parallel) are nested within congeneric measures
and may be obtained through certain restrictions on the conge-
neric assumption.

A pair of replications (e.g., test items, part-tests) are congeneric if
they have unequal error variances, and the true score for person i on
one replication is a linear transformation of the true score from a
second replication. This implies that congeneric measures have (a)
different expected (i.e., average) observed scores, (b) different true
score variances, (c) different observed score variances, (d) different
covariance and correlations between observed scores from any pair
of congeneric measures, (e) different covariance and correlations for
any congeneric measure and an external measure, and (f) different
reliabilities.

To further understand the implications of congeneric measures,
consider either j 5 1; . . . ; k whole-test replications or a single n
item test divided into k part-test replications (e.g., each item
represents a part, n5 k). The k components involved in either
case will be referred to as “parts.” As described in Feldt (2002), the
observed score for examinee a on part j is the proportional con-
tribution of the part to the total true score, ljTa, plus person-

specific error, Eaj, plus a constant, cj. Specifically,

Xaj 5ljTa þ Eaj þ cj: ð3:1Þ

The effective test length parameter1 lj reflects each part’s propor-

tional contribution to the composite true score and, subsequently,
each part’s contribution to the total true score variance. It may or
may not be proportional to the size (i.e., number of items on) of

1
In factor analysis, the effective test length parameter is referred to as a

factor loading. The effective test length parameters are factor loadings con-
strained to be nonzero proportions that sum to unity. Total true score
variance (i.e. factor variance) is unconstrained and freely estimated when
effective test length parameters are used. In factor analysis, factor variance is
constrained to unity while some factor loadings are unconstrained and freely
estimated.
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each part (Feldt). It is constrained, such that lj > 0 and �
k

j51
lj 5 1.

As a result, true scores on two congeneric measures are related by

T2a 5
l1
l2

T1a þ c12 ð3:2Þ

where c12 is a constant equal to ðc1 � c2Þ=l2: The constant indi-
cates that true scores from one replication may be larger or smaller
than true scores on another, and the effective length parameter
allows true scores from the two replications to have a different
scale, yet be perfectly correlated.

To explain the implications of Equation 3.1, consider a covar-
iance matrix for a k5 4 part test:

l21s
2
T þ s2E1 l1l2s2T l1l3s2T l1l4s2T

l2l1s2T l22s
2
T þ s2E2 l2l3s2T l2l4s2T

l3l1s2T l3l2s2T l23s
2
T þ s2E3 l3l4s2T

l4l1s2T l4l2s2T l4l3s2T l24s
2
T þ s2E4

0
BBBB@

1
CCCCA; ð3:3Þ

where s2T is the composite true score variance (i.e. factor variance).
Observed score variance for the entire four-part composite is the
sum of all elements of this matrix. It can be broken down into
different components. The unique subscript on each error variance
indicates that the error variance for each part is allowed to differ
from any or all other error variances. Similarly, the unique subscript
on each effective length parameter indicates that each part has a
different loading on the composite true score and composite true
score variance. Different combinations of true score and error score
variances along the upper left to lower right diagonal indicate that
each part can have a different observed score variance. For example,

the observed score variance for part 1 is s2X1
5 l21s

2
T þ s2E1 : In

addition to the unique aspects of each congeneric part, relation-
ships among the parts are evident in Equation 3.3.

True scores for any two parts are perfectly correlated. For
example, the true score correlation for part 1 and part 2 is
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l1l2s2Tffiffiffiffiffiffiffiffiffiffi
l21s

2
T

q ffiffiffiffiffiffiffiffiffiffi
l22s

2
T

q 51: ð3:4Þ

In contrast, the observed score covariance and correlation may
differ for each pair of parts. Different combinations of effective
length parameters for the off-diagonal elements indicate that the
covariance between any pair of parts may differ from the covar-
iance between any other pair of parts. The correlation between
pairs may also differ. For example, the observed score correlation
between parts 1 and 2 is

r12 5
l1l2s2T
sX1

sX2

;

where sXj
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2j s

2
T þ s2Ej

q
. Given that the numerator (i.e., the

covariance) and denominator can differ for each pair of parts,
the correlations for each pair can differ. Finally, reliability for
each part can differ. For example, the reliability for part 1 is

r2XT 5
l21s

2
T

l21s
2
T þ s2E1

:

Each part may have different values in the numerator and denomi-
nator and, therefore, a different reliability.

Although the assumption of congeneric measures is arguably
the most tenable in practice, estimating congeneric reliability
coefficients is difficult and may require iterative procedures
(see Jöreskog, 1971; Reuterberg & Gustafsson, 1992). An easier
method for estimating reliability requires the assumption of
classical congeneric measures, a slightly different assumption
than congeneric.

Classical Congeneric Measures. Classical congeneric measures
(Feldt, 1975, 2002; Feldt & Brennan, 1989) require that the
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contribution of each part to the composite error variance be
proportional to the effective test length. The covariance matrix
for classical congeneric measures with four parts is

l21s
2
T þ l1s2E l1l2s2T l1l3s2T l1l4s2T

l2l1s2T l22s
2
T þ l2s2E l2l3s2T l2l4s2T

l3l1s2T l3l2s2T l23s
2
T þ l3s2E l3l4s2T

lkl1s2T l4l2s2T l4l3s2T l24s
2
T þ l4s2E

0
BBBBB@

1
CCCCCA; ð3:5Þ

where s2E is the composite (i.e., total) error variance. This matrix is
the same as that in Equation 3.3 with the exception of effective test
length parameters being included in the error variance term. This
restriction does not affect the implications of congeneric measures,
and the benefit of this added restriction is that simplified formulas
may be used for estimating the reliability of classically congeneric
scores.

Essentially t-Equivalent Measures. If Equation 3.1 is restricted
such that the true score from replication 1 is equal to the true
score from replication 2 (i.e. have the same effective length para-
meter) plus a constant, then the replications are essentially t-
equivalent. Under this assumption, error variances are allowed to
differ, but true score variance is the same for all parts. This implies
that essentially t-equivalent measures have (a) different expected
observed scores; (b) equal true score variances; (c) different
observed score variances; (d) the same covariance, but possibly
different correlation between observed scores from any pair of
essentially t-equivalent measures; (e) the same covariance, but
possibly different correlation, for any essentially t-equivalent mea-
sure and an external measure; and (f) different reliabilities.

The observed score model for essentially t-equivalent measures
is given by, Xaj 5lTa þ Eaj þ cj. The difference between this equa-

tion and Equation 3.1 is that the effective length parameter (i.e.
factor loading) is the same for all parts. As a result, each of the
k parts contributes equally to the composite true score.
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The part-test observed score covariance matrix is

1=4ð Þ2s2T þ s2E1 1=4ð Þ2s2T 1=4ð Þ2s2T 1=4ð Þ2s2T
1=4ð Þ2s2T 1=4ð Þ2s2T þ s2E2 1=4ð Þ2s2T 1=4ð Þ2s2T
1=4ð Þ2s2T 1=4ð Þ2s2T 1=4ð Þ2s2T þ s2E3 1=4ð Þ2s2T
1=4ð Þ2s2T 1=4ð Þ2s2T 1=4ð Þ2s2T 1=4ð Þ2s2T þ s2E4

0
BBB@

1
CCCA:

ð3:6Þ

In Equation 3.6, each part contributes equally to the composite
(i.e., total) true score variance. Therefore, each part’s contribu-
tion to the composite true score variance may be expressed as 1/k
times the composite true score variance. That is, the effective
length parameter is 1/k. Consequently, the off-diagonal elements
(i.e., the covariance terms) are now equal, but the correlations
among parts differ. For example, the correlation between part 1
and 2 is

1=4ð Þ 2s2T
sX1

sX2

;

where sXj
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=kð Þ 2s2T þ s2Ej

q
. The numerator of the correlation

between any two parts will be the same, but the denominator will
differ as a result of different part-test observed score variances.
Like congeneric measures, the reliabilities will be different for each
part, but this result is strictly due to the different error variances.
The true score variances are the same for each part.

t-Equivalent Measures. The assumption of t-equivalence restricts
the essentially t-equivalent model by stipulating that true scores
are the same for each replication, Ta1 5 Ta2, but error variances are
allowed to differ. As a result, observed scores from each part must
have the same expected value. These stipulations imply that
(a) t-equivalent measures have equal expected observed scores,
(b) equal true score variances, and (c) different observed score
variances. It also implies the items (d) through (f) that were listed
for essentially t-equivalent measures.
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In terms of observed scores, t-equivalent measures require that
Xaj 5lTa þ Eaj(note the missing constant). However, the covar-

iance matrix turns out to be the same as the one for essentially
t-equivalent measures.

Parallel Measures. The oldest and most strict assumption is par-
allel measures. It requires parts to have (a) equal expected observed
scores, (b) equal true score variances, (c) equal observed score
variances, (d) the same covariance and correlation between
observed scores from any pair of parallel measures, (e) the same
covariance and correlation for any parallel measure and an
external measure, and (f) equal reliabilities.

The observed score linear model for each parallel part is the
same as that listed for t-equivalent parts. However, the added
assumption of equal error variances results in a different covar-
iance matrix. The matrix for a four-part measure with parallel
parts is:

1=4ð Þ2s2T þ 1=4ð Þs2E 1=4ð Þ2s2T 1=4ð Þ2s2T 1=4ð Þ2s2T
1=4ð Þ2s2T 1=4ð Þ2s2T þ 1=4ð Þs2E 1=4ð Þ2s2T 1=4ð Þ2s2T
1=4ð Þ2s2T 1=4ð Þ2s2T 1=4ð Þ2s2T þ 1=4ð Þs2E 1=4ð Þ2s2T
1=4ð Þ2s2T 1=4ð Þ2s2T 1=4ð Þ2s2T 1=4ð Þ2s2T þ 1=4ð Þs2E

0
BBBBB@

1
CCCCCA:

ð3:7Þ
In Equation 3.7, each part contributes equally to the composite (i.e.,
total) true score variance and composite error variance. Therefore,
each part’s contribution to the composite true score variance may
be expressed as 1/k times the composite true score variance, and
each part’s contribution to the composite error score variance may
be expressed as 1/k times the composite error score variance. That is,
the effective length parameter is 1/k. The difference between the
matrix in Equation 3.7 and the one in Equation 3.6 is the equality of
error variances. With equal error variances, not only are the covar-
iance terms equal, but the corresponding correlations are equal and
the part-test reliabilities are equal.

The assumption of parallel measures is the most restrictive, and it
is arguably unlikely to hold in practice. If the assumption is tenable,
however, all of the parts are interchangeable or, as noted byGulliksen,
“it makes no difference which one is used” (1950, p. 28). Lord and
Novick wrote a similar description, “Parallel measurements measure
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exactly the same thing in the same scale and, in a sense, measure it
equally well for all persons” (Lord & Novick, 1968, p. 48).

Violation of Essential t-Equivalence

Internal consistency reliability coefficients such as Cronbach’s a esti-
mate the true reliability when measures are at least essentially
t-equivalent (i.e., essentially t-equivalent, t-equivalent, or parallel),
the measure is unidimensional, and error scores are uncorrelated.
These coefficients become lower bounds to true reliability under the
assumption of congenericmeasures (Lord&Novick, 1968). Violating
the assumption of essential t-equivalence and working with a lower
bound to reliability is not difficult, provided that scores are unidimen-
sional and error scores are uncorrelated. It typically leads to the
following lower-bound line of reasoning: “my value of Cronbach’s a
is 0.8. This value is a lower bound, which indicates that the true
reliability value is higher. Therefore,my scores are acceptably reliable.”
That is, as long as the lower bound is acceptably high, the true
reliability is also acceptably high because it is guaranteed to be
higher than the lower bound. This line of reasoning is only justified
when scores are also unidimensional and have no correlated errors.
Simultaneous violation of essential t-equivalence and uncorrelated
errormay cause the reliability estimate to actually be an upper bound,
not a lower bound! Under these circumstances, the lower-bound line
of reasoning is fatally flawed and leads to erroneous conclusions. This
consequence is another reason why evidence of unidimensionality
and uncorrelated error should be obtained prior to estimating relia-
bility. The tenability of the lower-bound line of reasoning rests on the
veracity of these assumptions.

Statistical tests of parallel, t-equivalence, and congeneric mea-
sures are possible through confirmatory factor analysis (CFA; see
Jöreskog, 1971; Reuterberg & Gustafsson, 1992). The tenability of
these assumptions may also be explored by careful consideration
of scores produced from various splits of the data. For example,
the most obvious violation of parallel measures occurs when each
part contains a different number of items. Observed scores for
each part cannot have equal means or variances when the number
of items on each part is different. For example, Table 3.1 lists the
descriptive statistics for the odd-even and content balanced parti-
tion of the ELA Benchmark Assessment into two parts. The means
and variances for the two part-tests are more discrepant for the
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Content-based partition than for the Odd-Even partition,
although the correlation and covariance between parts appear to
be similar. These statistics also demonstrate the difficulty of bal-
ancing content while creating part-tests that are of equal length
and reasonably parallel. The odd-even split results in part-test
scores that are more likely to meet the assumption of parallel
measures than the content-based split.

Another situation that may invalidate certain assumptions
occurs when items are assigned a different number of points or
weighted differently. For example, a test comprised of binary and
polytomous items could result in part-tests that have very different
maximum possible scores. Amaximum possible score is the sum of
the total number of points awarded by each item. As such, even
when a test has an equal number of items, the maximum possible
score may differ. In this situation, the assumption of parallel
measures would be hard to justify. The two parts test would
more likely be congeneric.

If one is uncertain whether scores are parallel, essentially
t-equivalent, or congeneric, then multiple estimates should be
reported; one estimate that assumes essentially t-equivalent
scores and another that assumes congeneric measures. This prac-
tice will provide more evidence that supports the reliability of
scores, provided that the measure is unidimensional and contains
no error score correlations.

Table 3.1

Descriptive Statistics for Two Part-Test Partitions and the

Total Test

Partition Test Mean Variance Correlationa Covariance

Odd-

Even

Odd-Part 17.5 41.72 0.87 36.52

Even-Part 16.73 42.53 – –

Content Part 1 15.93 37.68 0.87 36.41

Part 2 18.06 46.79 – –

None Total 33.98 157.28 – –

aCorrelation and covariance computed between part-tests.
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Classification Decisions and Generalizability Theory

Randomly Parallel Measures. Strong true score theory and gener-
alizability theory assume that replications are randomly parallel. In
strong true score theory, items are randomly parallel if the items
that make up the measurement procedure are considered to be
random samples from the domain (Lord, 1955a). Generalizability
theory extends this notion to multifaceted sampling by assuming
that observations from each facet are randomly sampled from the
universe. For example, occasions and items are considered to be
randomly sampled in a two-facet design.

Parallel and randomly parallel measures are distinct
assumptions that lead to different results. Parallel measures
underpin the early development of classical test theory model.
It is a strict assumption that implies certain characteristics of
the observed scores, such as equality of expected observed
scores and equal observed score variances. Randomly parallel
measures are parallel in content but “need not have equal
means or equal variances” (Crocker & Algina, 1986, p. 124).
Moreover, randomly parallel measures permit the use of alter-
native measurement models and possibly stronger distribu-
tional assumptions about scores.

Distributional Assumptions. Although strong true score theory
and generalizability theory share the assumption of randomly
parallel measures, they are very different with respect to distribu-
tional assumptions about scores. The assumption of randomly
parallel measures justifies the use of the binomial distribution in
strong true score theory (Equation 1.8), but it does not guarantee
that the binomial distribution is appropriate. Statistical tests are
available for evaluating model–data fit (see Lord, 1965), but
careful consideration of item characteristics may also provide
evidence in support of or contrary to the binomial distribution.
First, the binomial distribution requires a constant probability of
success for each item. Tests comprised of items that vary widely in
difficulty are not likely to meet this requirement, and the score
distribution may be better characterized by an item-response
theory model (see Birnbaum, 1968). Second, only binary scored
items are permitted. More complex distributions are suitable for
polytomous items (i.e., items scored in an ordinal fashion such 1,
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2, 3, or 4) and combinations of binary and polytomous items (see
Lee, 2007).

Distributional assumptions in strong true score theory necessi-
tate careful consideration of model–data fit and other item
characteristics, but no such considerations are necessary for gen-
eralizability theory. Generalizability theory is “weak” in the sense
that it is distribution-free. Like classical test theory, it makes no
distributional assumptions about scores. It is flexible and easily
applied to binary or polytomous items.

Violation of Randomly Parallel Measures

Failing to randomly sample items from the domain does not
necessarily result in a violation of the randomly parallel assump-
tion. As long as items on a test are exchangeable with items in the
domain, the assumption of randomly parallel measures is sup-
ported. An item is exchangeable if it makes no difference whether it
is used on the test or some other item specified by the domain is
used on the test. This notion is reflected in Cronbach, Gelser,
Nanda, and Rajaratnam’s defense of the randomly parallel
assumption:

The essential requirement for reasonable application of sam-
pling theory is that the universe be defined clearly enough
that one can recognize elements belonging to it . . . . A seman-
tically and logically adequate definition will enable the con-
sumer of research to consider possible candidates for
membership in the universe, to judge whether the candidate
is indeed included by the definition, and to reach the same
conclusion as other interpreters of the definition. (Cronbach,
Gleser, Nanda, & Rajaratnam, 1972, p. 368)

Kane (2002, p. 172) described this practice as representative
sampling:

If it can be plausibly claimed that the sample of conditions in
the [generalizability] study is representative of a specified
universe of admissible observations, then the [generaliz-
ability] study variance components can be linked to this
universe. Further, if the universe of generalization employed
in subsequent [decision] studies is equivalent to or is a subset
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of this universe of admissible observations, the [generaliz-
ability] study variance components can be used to evaluate
the dependability of inferences to this universe of
generalization.

Therefore, justifying or refuting the assumption of randomly par-
allel measures often involves justifying exchangeability. If exchan-
geability can be established, the assumption of randomly parallel
measures is supported; items may be considered a random sample
from some model (Bernardo, 1996). If exchangeability cannot be
established for a measurement procedure, then the wrong data
collection design, and ultimately the wrong measurement model,
is being used. Correcting a violation is thus a matter of identifying
the data collection design for which exchangeability is tenable.

Item exchangeability is an appropriate assumption for a p� i
design if items in the universe are of similar difficulty and content.
Under these conditions, items are exchangeable and may be con-
sidered a random sample. However, if the content (denoted here as
c) is deemed too variable, and the “true” design is a p� ði : cÞ
design, item exchangeability is not tenable for the p� i design.
Items that vary widely by content are only exchangeable under the
p� ði : cÞ design or some other design that accounts for content
area. The table of specifications model in multivariate general-
izability theory is an example of an alternative design. Identifying a
data collection design that satisfies exchangeability is aided by
clearly defining the universe.

Exchangeability in a multifaceted measurement procedure, such
as one that involves items and raters, requires careful specification of
the universe. A replication of the measurement procedure should be
exchangeable with any other replication. Therefore, test specifica-
tions should clearly define permissible items, and rater specifica-
tions should define permissible raters. For example, test
specification might define item type and content area, and rater
specifications might stipulate the type of rater, the rater training
process, and ongoing rater quality-assurance procedures. Any repli-
cation conforming to these specifications may then be considered
exchangeable with any other replication. A well-defined universe of
admissible observations provides reassurance that the appropriate
design has been identified and that replications of the measurement
procedure are exchangeable.
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Chapter Summary

All methods described in this text assume unidimensionality and
uncorrelated error scores. Violating these assumptions may posi-
tively or negatively bias reliability estimates and lead to erroneous
conclusions about the quality of test scores. Therefore, these
assumptions should be tested prior to estimating reliability.
Once the veracity of these assumptions has been evaluated, the
nature of measurement procedure replications should be
examined.

A variety of coefficients are available for scores that are assumed
to be congeneric, classical congeneric, essentially t-equivalent,
t-equivalent, randomly parallel, or parallel. Choosing the right
coefficient depends in part on knowing which assumption is most
tenable. Choosing the wrong coefficient can result in obtaining a
lower bound to reliability (i.e., underestimating reliability).
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4
methods

information up to this point in the text provides the
context for knowing when each method of estimating reliability is
appropriate. For this chapter, reliability coefficients are organized
into decision trees in Figures 4.1 and 4.2 to facilitate an under-
standing of the conditions that led to their development and the
selection of an appropriate coefficient. Details of these coefficients
are explained in the bodyof this chapter. All of the coefficients listed
in these figures require the assumptions of unidimensionality and
uncorrelated errors. Figure 4.1 pertains to relative decisions (i.e.,
norm-referenced tests), and Figure 4.2 applies to absolute decisions
(i.e., criterion-referenced tests). Each decision tree involves choices
about the number of sources of error, the type of replication, the
number of parts, and the underlying assumptions. Only those
choices necessary for identifying a reliability coefficient are listed
in the decision tree. For example, selecting a coefficient in general-
izability theory only requires choices about the type of decision and
the number of measurement error sources. The data collection
design and the assumption of randomly parallel measures are not
listed for generalizability theory because they do not provide addi-
tional help in choosing a generalizability theory coefficient over
some other method. However, these latter two considerations are



important for estimation and interpretation of a coefficient in
generalizability theory. Some coefficients may be listed in more
than one place, but for simplicity, coefficients are only listed in the
place that requires the least restrictive assumption. For example,
Cronbach’sa is listedunder t-equivalent, but it couldalsohavebeen
listed under parallel.

Number of Sources
of Error?

One One or More

Type of
Replication?

Generalizability Theory:
Generalizability Coefficient

Part-test

Number of
Parts?

Whole-test

Test-Retest

Alternate forms

Test-retest with
alternate forms

Two

Assumptions?

Two or More

Assumptions?

Parallel

Spearman-
Brown Flanagan Angoff-Feldt

Callender and
Osburn

Raju Hoyt Feldt

Cronbach’s α Kristof

Guttman’s
Feldt-Gilmer

KR-20 Raju’s β

KR-21 Jöreskog

τ-equivalent Congeneric τ-equivalent Congeneric

2

Figure 4.1. Decision Tree for Selecting a Method for Estimating Reliability for

Relative Decisions
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Number of Sources
of Error?

One One or More

Type of
Replication?

Generalizability Theory:
Φ coefficient

Part-test

Woodruff and
Sawyer

 Breyer and Lewis Huynh

Livingston

LivingstonSubkoviak

Hanson and Brennan

Brennan and Wan

Livingston and Lewis

Raw Agreement

Cohen’s κ

One Whole-test Two Whole-test

Figure 4.2. Decision Tree for Selecting a Method for Estimating Reliability for

Absolute Decisions



Reliability Coefficients for Relative Decisions

Whole-Test Replications

Test-retest, alternate forms, and test-retest with alternate forms all
involve the administration of a complete test form on two occa-
sions. A coefficient of stability is obtained from the test-retest
design described in Chapter 2 (see Table 2.2) by correlating
scores from each occasion. Error scores will be large, and the
reliability estimate will be low if the construct being measured
changes a lot from one occasion to another. Conversely, error
scores will be small and reliability will be high when the construct
remains stable over time. Other sources of random variation also
contribute to error but to a lesser extent. The design is primarily
affected by random fluctuations of the construct. To assess error
due to other sources, such as choice of test form, an alternate data
collection design and coefficient is required.

A coefficient of equivalence involves two similar forms admi-
nistered according to an alternate forms design (see Table 2.3). It is
estimated by correlating scores from each form. The particular
items chosen to create each form are the primary source of error
reflected in this coefficient. Similar forms will have a high correla-
tion, whereas dissimilar forms will have a low correlation.

A coefficient of stability and equivalence is obtained from the
test-retest with alternate forms design (see Table 2.4). The estimate
is affected by changes in the construct and (or) differences in test
forms. However, the two sources of error are confounded. All of
the error may be due to lack of stability, a lack of equivalence, or
both. There is no way to differentiate the two sources of error.
Therefore, the reliability estimate increases or decreases as stability
and (or) equivalence increases or decreases.

As noted previously, designs that involve two whole-test repli-
cations are very expensive to implement. Reliability methods based
on a single test administration are more common. These methods
involve designs that divide a single test into two or more parts.

Two Part-Test Replications

Four different reliability methods are applicable to the data collec-
tion design involving two part-test replications (see Table 2.5).
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The appropriateness of each method depends on the underlying
assumptions. Given a measurement procedure split into two parallel
parts, the Spearman-Brown formula (Brown, 1910; Spearman, 1910)
should be used to adjust the part-test reliability estimate to reflect a
whole-test reliability estimate. The Spearman-Brown formula is

Spearman-Brown 5
2rXX 0

1þ rXX 0
; ð4:1Þ

where rXX 0 is the correlation between the two half-tests (i.e., the
half-test score reliability). If the assumption of parallel measures is
not tenable, the half-test reliability may be adjusted to full-test
reliability using alternate methods.

Flanagan’s formula (Rulon, 1939) is useful when the half-tests
are assumed to be essentially t-equivalent. It is computed from the

observed score variance, s2X , and the sum of the part variances,

�k
j51s

2
Xj
,

Flanagan54

s2X �
X2
j51

s2Xj

s2X

0
BBBB@

1
CCCCA: ð4:2Þ

Flanagan’s coefficient will be less than or equal to the Spearman-
Brown estimate. However, the assumption of essential t-equiva-
lence is likely to be more tenable than the assumption of parallel
measures—a condition that supports the use of Flanagan’s esti-
mate over the Spearman-Brown estimate.

Raju (1970) generalized Flanagan’s estimate of reliability to
account for the situation inwhich each of the two parts is comprised
of a different number of items. The unequal length part-tests imply
that the parts are congeneric and not essentially t-equivalent or
parallel. His coefficient requires that the length of the two parts be
known. The Raju formula is given by
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Raju 5
1

l1l2

s2X �
X2
j51

s2Xj

s2X

0
BBBB@

1
CCCCA; ð4:3Þ

where l1 is the proportion of items on the first part-test (i.e.,
l15 k1=k), and l2 is the proportion of items on the second part-
test (i.e. l25 k2=k). The Flanagan and Raju estimates will depart to
the extent that the numbers of items differ between the two part-
tests. When the two part-tests contain the same number of items,
Raju’s formula is equivalent to Flanagan’s formula.

Raju’s formula uses known test length to relate true scores on
the two part-tests. However, there are situations in which this
relationship among true scores is better described by the unknown
but effective test length. By assuming that the two parts are clas-
sical congeneric, the Angoff-Feldt coefficient (Angoff, 1953; Feldt,
1975) is computed by substituting the effective test lengths,

l1 5 s2X þ ðs2X1
� s2X2

Þ
h i

=2s2X , and l2 51� l1, into Raju’s for-

mula (Equation 4.3).
A weakness of reliability methods based on a two part-test

design is the influence of partition choice on the reliability esti-
mate. There are many ways to divide a test into two parts, and each
partition will result in a different reliability estimate. Reliability
methods based on a multiple part-test design overcome this
weakness.

Multiple Part-Test Replications

Cronbach solved the problem of deciding which two-part split was
best for estimating reliability. He developed coefficient a (epony-
mously referred to as Cronbach’s a) and showed that it was the
average of all possible split-half Spearman-Brown reliability
estimates (Cronbach, 1951). Cronbach’s a is arguably the most
well-known reliability coefficient for a multiple part-test data
collection designs. It is suitable for binary and polytomous items
or a combination of the two item types. Coefficient a is given by
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Cronbach’s a 5
k

k� 1

� � s2X �
Xk
j51

s2Xj

s2X

0
BBBB@

1
CCCCA: ð4:4Þ

If the assumption of essential t-equivalence is tenable, Cronbach’s
a is an estimate of the reliability coefficient, but if scores are
congeneric, it is a lower bound to reliability.

A special case of Cronbach’s a is the Kuder-Richardson formula
20 (KR-20; Kuder & Richardson, 1937). If all of the items are
binary, Cronbach’s a and the KR-20 are the same. Indeed,
Equation 4.4 is properly referred to as the KR-20 when all of the
test items are binary.

A further simplification is achieved when the average item
covariance is used in lieu of the sum of item covariance. This
simplification is known as the Kuder-Richardson formula 21
(KR-21). It is an appropriate reliability method when items are
similar in difficulty. The KR-21 is given by

KR-215
k

k� 1

� �
mXðk� mXÞ

ksX

� �
; ð4:5Þ

where mX is the average observed score.
Guttman (1945) derived six lower bounds to reliability. His first

lower bound was the ratio of the total covariance to total variance.
His second lower bound is given by

Guttman’s l25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

k�1
s4X�

Xk

j51

s4Xj

" #vuut
s2X

0
BBBBBB@

1
CCCCCCA
þ

s2X�
Xk

j51

s2Xj

s2X

0
BBBB@

1
CCCCA;

ð4:6Þ
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and his third lower bound is equivalent to Cronbach’s a.
Guttman’s l2 also equals Cronbach’s a if all of the part-test
covariances are equal. Otherwise, Guttman’s l2 will be larger. As
such, Guttman’s l2 is a better lower bound to reliability than
Cronbach’s a, and for this reason it is preferred.

The assumption of t-equivalent measures is not appropriate in
many situations and, therefore, reliability is best estimated by
methods that assume that measures are congeneric. Raju’s b is an
extension of his two-part coefficient to multiple parts. It too
requires that the length of each congeneric part be known, and it
may be computed for any item type or combination of item types.
The coefficient is given by

Raju’s b 5
1

1�
Xk

j51
l2j

0
B@

1
CA

s2X �
Xk

j51

s2Xj

s2X

0
BBBB@

1
CCCCA; ð4:7Þ

where lj is the proportion of items on part j. This coefficient is

useful for tests composed of multiple item types, such as multiple-
choice, constructed-response, and extended-response. Items can
be grouped by type to form the part-tests. If it is reasonable to
assume that each part-test contributes to the composite propor-
tionally to the length of each part, Raju’s b is appropriate.
Otherwise, the Feldt-Gilmer or Feldt-Brennan classical congeneric
method is a better choice.

Raju’s b is a general form for reliability estimators. Many other
reliability methods are special cases of Raju’s b. They differ by defini-
tion of the effective test length parameters (i.e., the lj) as explained by
Haertel (2006). For example, if thenumberof parts equals thenumber
of test items (i.e., all lj 51=k), Raju’s b reduces to Cronbach’s a.

Kristof (1974) extended Raju’s b to part-tests of unknown
length. His coefficient provides a method for estimating reliability
for classical congeneric measures for any item type or combination
of item types. However, it is limited to a three-part division of the
test. Gilmer and Feldt (Gilmer & Feldt, 1983) proposed a
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coefficient for classical congeneric measures that does not limit the
number of part-tests. The Feldt-Gilmer coefficient is given by

Feldt-Gilmer5

Xk

j51
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� �2

�
Xk

j51
D2

j

0
B@

1
CA

s2X�
Xk
j¼1

s2Xj

s2X

0
BBBB@

1
CCCCA;

ð4:8Þ
where

Dj 5

Xh
g51

sXjXg
� sXjX‘

� s2Xj

Xh
g51

sX‘Xg
� sXjX‘

� s2X‘

:

Row ‘ is the row of the covariance matrix with the largest sum of
covariances. If j5 ‘, thenDj 51. When the number of part-tests is

three, the Feldt-Gilmer and Kristof coefficients are the same. The
Feldt-Gilmer coefficient requires numerous computations. An
easier-to-compute alternative is the Feldt-Brennan classical con-
generic coefficient.

Feldt and Brennan (1989) described a formula for esti-
mating reliability under the assumption of classical congeneric
measures. It is appropriate for any item type or combination
of item types. Feldt’s classical congeneric reliability coefficient is
given by

Feldt-Brennan5
1

1�
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j51
sXjX=s
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X
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j51

s2Xj

s2X

0
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1
CCCCA; ð4:9Þ

where sXjX is the covariance between part j and the total test score.

This method is somewhat easier to compute than the Feldt-Gilmer
coefficient, but in some cases it overestimates reliability (Osburn,
2000).
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Other Methods for Estimating Reliability

Generalizability theory provides the only coefficient suitable for
situations that involve multiple sources of error. The generaliz-
ability coefficient (Equation 1.28) is the general form, but a wide
variety of error sources may be characterized by the error term in
this coefficient. Therefore, it should always be interpreted with
respect to the universe of generalization.

Two coefficients listed in Figure 4.1 but not described in
detail are those developed by Callendar and Osburn (1979)
and Jöreskog (1971). Both methods are iterative and cannot
be computed by a simple formula. The method by Callendar
and Oshburn tends to be robust to violation of unidimension-
ality (Osburn, 2000), but the confirmatory factor analysis
method of Jöreskog is more general and allows reliability to
be computed for parallel, t-equivalent, and congeneric mea-
sures that are unidimensional or multidimensional. Moreover,
Jöreskog’s method provides a statistical test of the assump-
tions underlying test scores.

Not listed in Figure 4.1 is stratified a. This coefficient is useful
when items may be grouped according to content area or subtest.
Stratified a is recommended if scores are believed to bemultidimen-
sional with simple structure or when composite scores are com-
puted for a test battery. Given a composite s5 1, . . . , t of subtests
(i.e., strata), this estimate is computed by first estimating reliability
and observed score variance for each subtest. These values are then
pooled together in a composite reliability estimate given by

Stratified a 51�

Xt

s51

s2Xs
ð1� asÞ

s2X
ð4:10Þ

where s2Xs
is the observed score variance and as is Cronbach’s a for

subtest s. The observed score variance for the entire composite is s2X .

Estimating Reliability for Absolute Decisions

A decision tree for selecting a reliability coefficient for absolute
decisions is presented in Figure 4.2. It involves decisions about
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(a) the number of sources of error and (b) the type of replication.
Most of the coefficients listed in the figure require the
assumption of randomly parallel measures. The exception is
Livingston’s coefficient, which requires an assumption of par-
allel measures.

An absolute decision involves the classification of examinees
according to an absolute standard, such as an achievement-
level cut score. It is possible and perfectly acceptable for all
examinees to have the same achievement level. Tests designed
for absolute decisions can consistently classify examinees even
when there is no true score variance. Reliability coefficients for
relative decision would all be low due to a lack of heterogeneity
among true scores. Therefore, absolute decisions require coef-
ficients that can be high even when there is little to no true
score variance.

Squared error loss and threshold loss methods are more appro-
priate indicators of reliability for absolute decisions. Decision
consistency methods, in particular, describe how consistently
examinees are classified upon replication of the measurement
procedure. The methods described below presume that the
l 5 0; . . . ; L cut scores, denoted by C0;Cl; . . . ;CL, are boundaries
for the b 50; . . . ;B achievement levels. Note that the lowest cut
score equals zero, C0 50, and the highest cut score equals the total
number of items plus one, CL 5 nþ 1:

Two Whole-Test Replications

Squared Error Loss Coefficients. Livingston (1972) proposed a
squared error loss method that is applicable to one or two
whole-test replications that are parallel. The idea behind his
coefficient is that reliability of a criterion-referenced test
increases as the group mean deviates from a cut score. This
deviation is expressed as mX � CX for form X. If the group
mean is at the cut score, Livingston’s coefficient reduces to an
alternate forms estimate of reliability. His coefficient remains
positive even if true score variance is small or zero, which may
happen in settings in which examinees are trained to a particular
standard. Given scores obtained from two parallel forms, X and
Y, Livingston’s coefficient is given by
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Livingston5
sXY þðmX�CXÞðmY�CYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½s2X þðmX�CXÞ2�½s2YþðmY�CY Þ2�

p : ð4:11Þ

As shown in the next section, a simpler version of this formula is
applicable to a data collection design that involves one whole-test
replication.

Threshold Loss Indices. Decision consistency indices are an alter-
native to squared error loss methods. These methods evaluate
how well examinees are classified into achievement levels defined
by one or more cut scores. A two-way table forms the basis of
decision consistency indices. Rows of this table represent the
proportion of examinees in each achievement level for one repli-
cation, and the columns represent the same information for the
second replication. Each cell in the table represents the joint
achievement levels for both replications. Entries in each cell are
the proportion of examinees classified into achievement levels on
both replications. Table 4.1 is an example of two replications that
have four achievement levels: Below Basic, Basic, Proficient, and
Advanced.

Hambleton and Novick (1973) recommended raw agreement
as a measure of decision consistency. Raw agreement indicates
the proportion of examinees who were classified in the same

Table 4.1

Example Notation for a Two-way Table of Achievement-level

Classification

Replication 2

Below Basic Basic Proficient Advanced

Replication 1

Below Basic p00 p01 p02 p03 p1�

Basic p10 p11 p12 p13 p2�

Proficient p20 p21 p22 p23 p3�

Advanced p30 p31 p32 p33 p4�

p�1 p�2 p�3 p�4 p��
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way on both replications. It is obtained by summing the pro-
portions on the diagonal from upper left to lower right.
Specifically,

PRaw 5
XB
b50

pbb: ð4:12Þ

In terms of table 4.1, PRaw 5 P00 þ P11 þ P22 þ P33: Raw
agreement has a simple interpretation. It is the proportion of
examinees consistently classified. For example, a raw agreement
of .8 indicates that 80% of examinees were classified consistently.
This coefficient is easy to compute, but it requires that the same
test be administered on two occasions (i.e., replication 1 and
replication 2).

A limitation of the raw agreement index is that a certain amount
of agreement is expected by chance. To overcome this limitation,
Swaminathan, Hambleton, and Algina (1975) recommended
Cohen’s k (Cohen, 1960) to describes the improvement in agree-
ment beyond chance. This coefficient is computed by comparing
the observed agreement to the agreement expected by chance.
Observed agreement is computed by Equation 4.12. Chance agree-
ment is computed by summing the product of margins,

PChance 5
XB
b50

pb�p�b: ð4:13Þ

In terms of table 4.1, PChance 5P0 �P� 0 þ P1�P�1 þ P2�P�2 þ P3�P�3:
Cohen’s k is then computed by,

k 5
PRaw � PChance
1� PChance

: ð4:14Þ

It is interpreted as the improvement in agreement over chance. For
example, k 5 .3 indicates that the observed agreement is a 30%
improvement over chance. Like the raw agreement index, Cohen’s
k requires two administrations of the same test. This practice is
usually cost prohibitive. Therefore, methods that rely on a single
test administration are more common.
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One Whole-Test Replication

Squared Error Loss Coefficients. Livingston’s squared error loss
method may also be computed for one whole-test replication. It
is computed by

Livingston 5
r2XTs

2
X þ ðmX � CX Þ2

s2X þ ðmX � CX Þ 2 ; ð4:15Þ

where an estimate of reliability is substituted for r2XT . This method
of computing Livingston’s coefficient is more likely to be encoun-
tered in practice than Equation 4.11, given that only one replica-
tion need be observed.

Brennan and Kane (1977) extended Livingston’s coefficient to
data collection designs that involve multiple sources of error. Their

coefficient is based on an absolute error term, s2ðDÞ, computed via
generalizability theory. Specifically, their coefficient is given by

FðCÞ 5 s2ðpÞ þ ðm � C Þ 2
s2ðpÞ þ ðm � C Þ2 þ s2ðDÞ : ð4:16Þ

An unbiased estimator of Equation 4.16 is obtained by substituting

ðX � C Þ 2 � ŝ2ðXÞ for ðm � C Þ2 (Feldt & Brennan, 1989). The

quantity ŝ2ðXÞ is an estimate of the variability of using X as an
estimator of m. Equation 4.16 achieves its lower limit and reduces
to the �-coefficient (Equation 1.29) when the cut score is equal to
the mean. The �-coefficient is a suitable alternative when a lower
bound is acceptable.

Threshold Loss Indices. Decision consistency indices from one
whole-test replication rely heavily on strong true score theory.
An observed replication is compared to a hypothetical replication
that is derived through distributional assumptions. Subkoviak
(1976) proposed a method based on the binomial error model,
and Huynh (1976a, 1976b) developed procedures based on the
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beta-binomial model. Subkoviak’s method is somewhat easier to
compute, but Huynh’s methods have a number of more desirable
properties, such as analytically derived standard errors
(Subkoviak, 1978).

Subkoviak’s raw agreement index describes the probability that
an examinee, indexed by a, is assigned to the same achievement
level on two randomly parallel measures (Subkoviak, 1976). His
coefficient is appropriate for binary scored items and observed
scores that fit a binomial error model. Each measure consists of n
items. Only one test administration is necessary. The second
randomly parallel measure is hypothetical. It may be computed
for one or more cut scores using the binomial error model
(Equation 1.8). Specifically, examinee a’s raw agreement is

Pa 5
XL
l51

Pl ðCl�1 � X < Cl Þ 2: ð4:17Þ

The sum on the right-hand side of Equation 4.17 is the total
probability of observing a score between two cut scores (lower
inclusive) for an examinee with domain score �a,

PlðCl�1 � X < ClÞ 5�Cl

x5Cl� 1

n
x

� �
�xa ð1 � �a Þn� x: Note that

C0 50 and CL 5nþ 1. Subkoviak recommended the Kelley
regression estimate (Equation 1.12) be substituted for the
domain score, but the maximum likelihood estimate is also fea-
sible (see Chapter 1). An overall raw agreement index is obtained
by averaging over all N examinees,

PSubkoviak 5
1

N

XN
a51

Pa: ð4:18Þ

A standard error for Subkoviak’s agreement index may be
obtained by the bootstrap procedure (see Efron & Tibshirani, 1993).

Huynh (1976a, 1976b) also developed methods involving one
observed whole-test replication and a second hypothetical replica-
tion. For his method, items comprising each replication are
assumed to be exchangeable observations from the domain of
items (hence, randomly parallel). True scores are assumed to
follow a two-parameter beta distribution, and the marginal

106 : RELIABILITY



distribution of observed scores for either replication is a beta-
binomial (Equation 1.9). Huynh showed that the joint distribu-
tion of both replications is the bivariate beta-binomial,

f ðx; yÞ 5
n
x

� �
n
y

� �
Bða; bÞ Bðaþ x þ y; 2nþ b� x � yÞ; ð4:19Þ

where the parameters a and b are given by Equations 1.10 and 1.11,
respectively. These parameters can be estimated using scores from
the observed replication. Huynh’s raw agreement index is com-
puted by summing Equation 4.19 over all pairs of x and y values
between two cut scores (lower inclusive) and then summing these
values over all achievement levels,

PHuynh 5
XL
l51

XCl�1

x;y5Cl� 1

f ðx; yÞ: ð4:20Þ

Chance agreement is computed from the marginal density,

PHuynh�Chance 5
XL
l51

XCl�1

x5Cl� 1

hðxÞ
" #2

; ð4:21Þ

where hðxÞ is given by Equation 1.9. Like Subkoviak’s method,
C0 50 and CL5nþ 1: Huynh’s k is computed from Equations
4.20 and 4.21,

Huynh’s k 5
PHuynh � PHuynh�Chance

1� PHuynh�Chance
: ð4:22Þ

This coefficient is interpreted in the same way as Cohen’s k, but it
can be computed from a single test administration.

Other Methods

Figure 4.2 lists several methods that were not described in detail.
These methods are viable and sometimes better alternatives than
the Livingston, Subkoviak, or Huynh methods. For example,
Hanson and Brennan (1990) proposed a method based on the
four-parameter beta-binomial distribution. The four-parameter
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beta-binomial distribution tends to fit scores better than the two-
parameter beta-binomial distribution. As such, the Hanson and
Brennan method tends to perform better than either Subkoviak’s
or Huynh’s method.

All of the strong true score theory indices make strong distribu-
tional assumptions about the scores. If these distributional
assumptions are not tenable, methods that use them are not
appropriate. Brennan andWan (2004) developed amethod similar
to Subkoviak’s procedure that makes no distributional assump-
tions. The items scores, or groups of item scores, must be inde-
pendently and identically distributed, but the distributional form
need not be specified. The unknown distribution of scores is
estimated by the bootstrap procedure (Efron & Tibshirani,
1993), and an agreement index is computed from this distribution.

Chapter Summary

A variety of methods exist for estimating score reliability. Selecting
an appropriate coefficient depends on the (a) type of decision,
(b) the number of sources of error, (c) the type of replication,
(d) the number of parts, and (e) the underlying assumptions.
Decision trees presented in this chapter facilitate the selection of
an appropriate coefficient, as well as an understanding of the
conditions that led to their development. However, it is not neces-
sary to select only one coefficient. Multiple coefficients should be
reported, if necessary, to describe all salient sources of error or if
there is uncertainty about the underlying assumptions.
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5
results

an undesirable trend in the social science literature is
the large amount of work that lacks adequate documentation of
reliability (Qualls &Moss, 1996; Thompson & Vacha-Haase, 2000;
Vacha-Haase, Kogan, & Thompson, 2000; Whittington, 1998).
Perhaps a lack of understanding about reliability is one reason
for this deficiency. Another reason may be that many articles and
texts on reliability focus on theory and estimation but lack an
explanation of how to document the results. The exception is the
Standards for Educational and Psychological Testing (Standards;
American Educational Research Association et al., 1999), which
provide thorough guidance on documenting reliability and other
technical characteristics of a measurement procedure. To facilitate
the proper documentation of reliability, a four-point outline
extrapolated from the Standards is provided below.

After discussing the outline, three example reliability reports
that cover a variety of real-world measurement procedures are
presented. The first example involves the Benchmark assessment
of English Language Arts (ELA). It builds on the ELA examples
discussed in previous chapters. The second example is based on the
South Carolina Palmetto Achievement Challenge Test (PACT) of
mathematics (see Huynh, Meyer, & Barton, 2000). This test was



part of the state’s high-stakes testing program from 1999 to 2008.
PACT scores are reported in a norm-referenced and criterion-
referenced manner. It is included as an example of documenting
coefficients that support relative and absolute decisions. The final
example is based on an observational measure referred to as the
MSCAN. No multiple-choice or objectively scored items are part
of this measure. Rather, observers view a classroom lesson and
assign a score. This measure is in development, and the analysis is
conducted to evaluate the reliability of scores and investigate
potential improvements in the amount of time needed to obtain
ratings. Taken together, the Benchmark, PACT, and MSCAN
examples cover a variety of measurement procedures and illustrate
the documentation of reliability.

Documentation of Score Reliability

Complete reliability documentation requires more than reporting
an estimate of reliability. It requires a description of the measure-
ment procedure, with specific mention of all major sources of error
and factors that affect reliability. This information provides context
for judging the quality of an analysis, interpreting the results, and
comparing reliability estimates from different measurement proce-
dures. Documentation of score reliability should (a) characterize the
examinee population and all major subpopulations, (b) describe the
measurement procedure and all major sources of error, (c) present
evidence in support of assumptions or discuss the consequences of
unsupported assumptions, and (d) provide estimates of reliability
and the standard error of measurement. These four points provide a
general structure for reporting the results of a reliability analysis.
Excluded from these four points are two practices that should not be
a part of any reliability documentation: reporting evaluative state-
ments about an estimate and justifying the consistency of scores
through reliability induction.

Reliability documentation should be free of evaluation or judg-
ment, thus allowing the reader to form an unbiased opinion of the
quality of the measurement procedure. Statements such as,
“Cronbach’s a was .8, indicating a high level of reliability,” should
be avoided. The reader should be free to judgewhether or not a value
of .8 is indeed high. One exception to this rule is when the analysis is
being conducted to improve the measurement procedure. A
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decision study designed to improve the efficiency of a measurement
procedure by reducing the number of items is an example. In this
case, results may be used to support recommended improvements
or revisions to the measurement procedure.

Information about score reliability should be provided for every
administration of a measurement procedure. This recommenda-
tion pertains to newmeasures and those with a long history of use.
Reporting a reliability coefficient computed from a previous
administration or the test manual as evidence of test reliability
for the current administration is inadequate and does not justify
the consistency of scores. Only in very specific circumstances is
such a reliability induction justified (Vacha-Haase et al., 2000). As
such, the best practice is to avoid it altogether and report reliability
for every administration of a measurement procedure. The tested
population may vary too much from one administration to
another to justify reliability induction.

Characterize the Examinee Population

Reliability coefficients are affected by the examinee population. This
result is evident in the expression for the reliability coefficient
(Equation 1.3); true score variance is in the numerator and true
score variance plus error is in the denominator. For a fixed amount
of error variance, reliability will be large for a population with large
true score variance (i.e., a heterogeneous population), but small for
a population with small true score variance (i.e., a homogeneous
population). Interpretation of reliability cannot be divorced from
the examinee population. Therefore, documentation should char-
acterize the examinee population through demographics and test
score descriptive statistics, such as themean and standard deviation.

Reporting overall demographics and descriptive statistics for a
sample of examinees is appropriate when examinees represent a
well-defined population. However, examinees often represent
important subpopulations, such as gender and race. If these sub-
populations differ with respect to reliability, an overall estimate of
reliability may be positively or negatively biased (Waller, 2008).
Therefore, demographics and descriptive statistics should be
reported for each subpopulation, along with group-specific esti-
mates of reliability and the standard error of measurement. This
practice is specifically addressed in Standard 2.11, which states that
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a reliability estimate, standard error of measurement, and condi-
tional standard error of measurement should be reported for any
subpopulations for which these statistics may differ.

Describe the Measurement Procedure and All Major Sources of
Error

Documentation should describe the measurement procedure in
enough detail to justify the chosen methods and identify limita-
tions of the reliability analysis. As noted in Chapter 1, measure-
ment involves more than the test itself. It involves the entire testing
situation and the process that produces test scores. Some features
of the measurement procedure are fixed through standardization,
but many others are not and may contribute to random measure-
ment error. All major sources of error should be documented
whether or not the magnitude of the error was evaluated in the
analysis. In this manner, the selected methods can be justified and
limitations of the analysis can be identified. Features of the mea-
surement procedure that require special attention are the data
collection design and method of item scoring.

Chapter 2 discussed data collection designs at length. This
information is relevant for documenting reliability because it is
through the data collection design that major sources of error are
isolated. A description of the data collection design is a description
of the source (or sources) of error reflected in the reliability
estimate. It bears on the interpretation of an estimate and the
comparability of different estimates. A test-retest design is not
interpreted in the same manner as an alternate forms design.
More importantly, a test-retest reliability estimate is not compar-
able to an alternate forms reliability estimate. The two coefficients
reflect different sources of error. In a similar fashion, standard
errors of measurement from the two designs are not comparable.
Each reflects a different source of error. Standard 2.5 specifically
addresses the issue of measurement error sources and the compar-
ability of reliability coefficients and the comparability of standard
errors of measurement. A final benefit of describing the data
collection design is that sources of error included in a description
of the measurement procedure but not listed as part of the data
collection design suggest a limitation of the analysis.
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A description of a measurement procedure that involves sub-
jective scoring, such as raters judging the quality of a musical
audition or observers assessing the quality of classroom lesson,
requires special attention. Rater training and monitoring are an
important part of the measurement procedure (Johnson, Penny, &
Gordon, 2009). These processes should be described to reveal
sources of error that may or may not be included in a data
collection design. In many large-scale assessment situations, rater
data are not collected in a way that conforms to a fully crossed or
partially nested design, thus making a rigorous generalizability
theory analysis difficult. Nevertheless, rater training and moni-
toring should be reported to identify limitations of the analysis.
Standard 2.10 specifically addresses documentation of scores that
involve subjective judgment. Item scoring for objectively scored
items must also be documented.

A description of the item type (i.e., item scoring) is relevant to the
chosenmethod of estimating reliability and the tenability of assump-
tions underlying the nature of measurement procedure replications.
Some methods of estimating reliability, such as the KR-20, are
restricted binary items. Other methods, such as Cronbach’s a, are
suitable for binary and polytomous items. A description of the item
type is necessary to justify the selected coefficient. It also helps
identify any violation of the underlying assumptions.

A test comprised of binary items is not likely to meet the
assumption of parallel measures unless the items are very similar
in difficulty. Likewise, a test composed of binary and polytomous
items is more likely to meet the assumption of congeneric mea-
sures than any other assumption. This result is due to the different
scale of each item. A split of the test that has binary items on one
part and polytomous items on another may result in parts that
have different average observed scores and different observed score
variances. True scores cannot be expected to be the same in such a
case as well. Describing the item types is a way to provide evidence
in support of the underlying assumptions and justify a selected
method of estimating reliability.

Present Evidence in Support of Assumptions

Chapter 3 contains a description of various assumptions and the
consequences for violating them. Empirical evidence, or lack
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thereof, should be provided in reliability documentation. This
information is necessary for understanding the value of a reliability
coefficient. For example, if the assumptions of unidimensionality,
uncorrelated errors, and congeneric measures are supported, then
Cronbach’s amay be interpreted as a lower bound. However, if the
assumption of uncorrelated error is violated, Cronbach’s a is most
likely an upper bound. A seemingly small difference in the under-
lying assumptions results in a completely contrary interpretation
of a reliability estimate. Therefore, evidence of the tenability of
underlying assumption should be documented. Evidence in the
form of a formal statistical test is preferred, but in many cases such
a test is not possible.

The assumptions of unidimensionality and uncorrelated errors
are the most difficult to handle. Large sample sizes and sophisti-
cated statistical methods are needed to perform a rigorous statis-
tical test of these assumptions. A small sample or lack of statistical
training may preclude a rigorous statistical test of unidimension-
ality and uncorrelated errors. However, some evidence may be
brought to bear on these assumptions by describing the construct,
content, and measurement procedure. Perusal of part-test covar-
iance matrices may also provide additional empirical evidence.
When evidence for the assumptions is not based on a formal
statistical test, the limitations of the evidence should be described
along with the consequences of violating them. In this way, a
reader is properly cautioned.

The assumption of parallel, t-equivalent, and congeneric mea-
sures should also be formally tested if possible. However, an easier
solution is to report reliability coefficients for each type of assump-
tion. For example, Guttman’s l2 and the Feldt-Gilmer coefficient
can be reported to cover the assumptions of t-equivalent and
congeneric measures. This practice addresses any bias due to the
nature of measurement procedure replications, as long as the
assumptions of unidimensionality and uncorrelated errors are
substantiated.

Provide Estimates of Reliability and the Standard Error of
Measurement

Once the measurement procedure has been described and the
factors that affect reliability have been addressed, estimates of
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reliability and the standard error of measurement should be docu-
mented. Reporting a single estimate of reliability and the standard
error of measurement is rarely, if ever, adequate. If using a classical
test theory approach, multiple coefficients should be reported to
address multiple sources of error. Alternatively, a coefficient from
a single generalizability theory design that accommodates all major
sources of error can be reported. Multiple sources of error, how-
ever, are not the only reason to report multiple coefficients.
According to Standard 2.1, reliability and the standard error of
measurement should be reported for each type of score (e.g., raw
score, scale score, subscale score) reported for a measurement
procedure. If an analysis involves multiple methods of estimating
reliability, then each method of estimating reliability, standard
error of measurement, and conditional standard error of measure-
ment should be described clearly, and each should be interpreted
with respect to the type of error described by each statistic (see
Standard 2.4). For tests that involve cut scores, decision consis-
tency or squared error loss estimates of reliability should be
reported (see Standard 2.15).

In addition to reporting a traditional standard error of mea-
surement for each source of error and each reported scale, a
conditional standard error of measurement should be reported.
Standard 2.14 recommends that conditional standard errors of
measurement should be reported across the range of true scores,
with particular mention of the standard error at any cut score that
is part of a measurement procedure.

An important caveat to any reported estimate of reliability is the
influence of sampling error. Reliability and the standard error of
measurement describe the influence of sampling items or some
other source of measurement error. Estimates, however, are also
influenced by the sampling of examinees. A group of examinees
represents just one possible sample from a given population. Like
other statistics, reliability is subject to (examinee) random sam-
pling variability. For example, the Benchmark ELA assessment
targets the population of eight graders in South Carolina. Eighth
graders participating in the assessment during 2006 and eighth
graders participating during 2007 represent two different samples
from the population. Reliability estimates will vary for these two
groups simply because of sampling variability. More confidence in
the value of a reliability coefficient may be obtained through an
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interval estimate that accounts for sampling variability.
Confidence intervals for the KR-20 and Cronbach’s a may be
computed with the analytically derived sampling distributions
(see Feldt, 1965; Feldt, Woodruff, & Salih, 1987), and confidence
intervals for other coefficients may be computed by the bootstrap
method (see Efron & Tibshirani, 1993). Reliability confidence
intervals should be reported whenever possible (Fan &
Thompson, 2001).

Benchmark ELA Assessment

Sample Results Section

Eighth grade students participating in the Benchmark Assessment
of ELA were 49% male and 45% female (see Table 5.1). The white
(28%) and black (59%) groups comprised the majority of the
sample by race. Other race groups represented about 8% of the
sample. Demographics were missing for about 5% of the sample.
Students scored about 30 points on average, of a maximum pos-
sible score of 64 points, but the average score ranged by about 9
points across groups. The standard deviation was comparable
across all groups.

A confirmatory factor analysis of tetrachoric correlations sup-
ported the assumption of unidimensionality (details not shown).
The assumption of uncorrelated errors was not specifically tested.

Table 5.1

English Language Arts (ELA) Benchmark Group

Descriptive Statistics

Group N Mean S.D. KR-21

All 6,649 29.96 11.65 .8966

Male 3,280 31.48 11.29 .8884

Female 3,016 28.67 11.85 .9014

White 1,884 35.94 11.92 .9032

Black 3,915 27.26 10.31 .8663

Note: Demographics weremissing for about 5% of the examinees.

116 : RELIABILITY



However, a preliminary analysis included testlets, the most likely
sources of correlated errors, to evaluate the influence of this facet
on the results.

A person by items within testlet within occasion design,
p� ði : t : oÞ, resulted in little variance due to testlet.
Moreover, a person by items within testlet p� ði : tÞ design
produced results similar to those listed in Table 5.2 for the
person by items nested within occasion p� ði : oÞ design.
Taken together, these results suggest that the testlet and occa-
sion effect are not unique and that a design that includes
testlet or occasion (but not both) would suffice. Therefore,
the analysis focused on the p� ði : oÞ design.

Variance components from the generalizability study are listed
in Table 5.2. Person variance accounted for 11% of the total
variance. In contrast, occasion represented a negligible amount
of a variance, and items within occasion accounted for only 5% of
the variance. The largest source of error variance was the residual.
Across groups, person variance ranged from 8% to 12% of the total
variance (see Table 5.3). Variance due to the residual was consis-
tently the largest amount of error variance, and variance due to
items nested within occasions was the second largest source of
error variance across all groups.

A goal of the analysis was to improve the efficiency of the
measurement procedure without sacrificing score reliability.

Table 5.2

Generalizability Study Variance Components for the ELA

Benchmark

Component Variance Percent

of Total

Persons, p 0.0272 11

Occasions,O 0.0000 0

Items : Occasions, I : O 0.0137 5

Persons � Occasions, pO 0.0072 3

Persons � Items :Occasions,pðI : OÞ 0.2017 81

Total 0.2498 100
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Generalizability coefficients and standard errors of measurement
(i.e., relative error) were estimated for 12 different data collection
designs. Each design improves efficiency by reducing occasions,
items within occasions, or both (see Table 5.4). Results for each
alternative design should be compared to results for the observed
data collection design (Design 1).

Reducing the total number of items from 64 to 56 by elim-
inating one item per testlet reduced reliability from .8015 to .7910.
If content coverage is not adversely affected, efficiency could be
gained by using Design 2 instead of Design 1.

Fixing the occasion increases reliability. Indeed, fixing occasion
and reducing the total number of items to 48 by eliminating two
items per testlet results in a reliability estimate that is larger than
the estimate for the observed design. However, such a drastic
reduction of items would likely affect test content and result in a
test that does not accurately represent the table of specifications.
Fixing the occasion facet would also require that every school
administer the test on the same two occasions. Unfortunately,
such a standardization would likely result in fewer schools volun-
teering for the Benchmark program.

Consolidating the assessment to one occasion does not appear
to be a sensible approach. Generalizability coefficients are no
better than .7251 for all designs that involve a single random
occasion. If all participating schools administered the assessment
on the same day, test occasion would be fixed, and reliability

Table 5.3

Generalizability Study Results for the ELA Benchmark by Group

(Percents in Parentheses)

Component Male Female White Black

p 0.0253 (10) 0.0283 (11) 0.0289 (12) 0.0198 (8)

O 0.000 (0) 0.0000 (0) 0.0000 (0) 0.0000 (0)

I : O 0.0169 (7) 0.0114 (5) 0.0178 (7) 0.0130 (5)

pO 0.0069 (3) 0.0073 (3) 0.0076 (3) 0.0069 (3)

pðI : OÞ 0.2013 (80) 0.2015 (81) 0.1910 (78) 0.2063 (84)

Total 0.2504 (100) 0.2485 (100) 0.2453 (100) 0.2460 (100)
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would be .89 or higher. However, the same problems with fixing
occasions would persist for these single-occasion designs.

Decision study results for each group exhibited a similar pattern to
the results for the entire sample (Table 5.5). Estimates tended to be
higher for females than males and higher for white examinees than
black examinees. Results for the male, female, and white group were
comparable and consistently higher than results for the black group.

Given the influence of occasion, the conditional standard error
of measurement was computed separately for each day of testing
(Fig. 5.1). Testing on day 2 had a slightly lower conditional
standard error of measurement than testing on day 1.

Table 5.4

Decision Study Results for the ELA Benchmark Using Relative

Error

Design Items

(n0
i )

Occasions

(n0
o )

Occasions Generalizability

Coefficient

SEMa

1 32 2 Random .8015 0.0833

2 28 2 Random .7910 0.0847

3 24 2 Random .7775 0.0882

4 32 2 Fixed .9070 0.0561

5 28 2 Fixed .8952 0.0600

6 24 2 Fixed .8798 0.0648

7 64 1 Random .7251 0.1015

8 56 1 Random .7164 0.1037

9 48 1 Random .7053 0.1066

10 64 1 Fixed .9159 0.0561

11 56 1 Fixed .9050 0.0600

12 48 1 Fixed .8909 0.0648

aStandard error of measurement of average scores

Note: These results are very similar to results from an analysis that included a

testlet facet. Results from the more parsimonious model are provided for

simplicity and brevity.
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Palmetto Achievement Challenge Test of Mathematics

The South Carolina PACT of mathematics measures achievement
of rigorous academic standards in grades three through eight. It is
aligned with the state’s mathematics curriculum (see South
Carolina Department of Education, 1998a) that involves standards
for Numbers and Operations, Algebra, Geometry, Measurement,
and Data Analysis and Probability (see South Carolina
Department of Education, 1998b). The test is also aligned with
standards for the National Assessment of Educational Progress,
National Council of Teachers of Mathematics, and Third
International Mathematics and Science Standards. A purpose of
the PACT was to increase academic performance of all students
and, ultimately, raise high school graduation rates (Huynh et al.,
2000). It was also used for accountability purposes and mandates

Table 5.5

Decision Study Generalizability Coefficients (

’r2) for the ELA

Benchmark by Group using Relative Error

Male Female White Black

Design Er2 SEM Er2 SEM Er2 SEM Er2 SEM

1 .7933 0.0066 .8061 0.0068 .8104 0.0068 .7484 0.0067

2 .7823 0.0070 .7959 0.0073 .8008 0.0072 .7356 0.0071

3 .7681 0.0076 .7827 0.0079 .7884 0.0078 .7192 0.0078

4 .9013 0.0031 .9102 0.0032 .9164 0.0030 .8784 0.0032

5 .8888 0.0036 .8987 0.0036 .9056 0.0034 .8634 0.0037

6 .8726 0.0042 .8838 0.0042 .8916 0.0040 .8442 0.0043

7 .7161 0.0100 0.0105 .7301 .7327 0.0106 .6623 0.0101

8 .7071 0.0105 0.0109 .7217 .7249 0.0110 .6522 0.0106

9 .6954 0.0111 0.0115 .7109 .7147 0.0116 .6393 0.0112

10 .9109 0.0031 0.0032 .9187 .9244 0.0030 .8924 0.0032

11 .8995 0.0036 0.0036 .9081 .9146 0.0034 .8789 0.0037

12 .8846 0.0042 0.0042 .8944 .9017 0.0040 .8615 0.0043
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established by the state and in The No Child Left Behind Act of
2001 (2002).

Achievement levels are demarked by three cut scores that
were established through a bookmark standard setting proce-
dure (see Cizek & Bunch, 2007). Individual scores and achieve-
ment levels are reported for examinees. PACT assessments
involve four achievement levels: Below Basic, Basic, Proficient,
and Advanced. Each level is defined by a performance level
description that lists the knowledge and skills that examinees
do and do not exhibit. For example, at the basic level a student
can likely “find the mode by using either a stem-and-leaf plot
or a group of numbers” (South Carolina Department of
Education, 2005, p. 14), but the same student likely cannot
“find the correct ordered pair for a point on the coordinate
plane” (South Carolina Department of Education, 2005, p. 14).
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Figure 5.1. Conditional Standard Error of Measurement for Benchmark

Assessment
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Additional achievement-level descriptors further define perfor-
mance at the Basic level but they are not listed here.

PACT mathematics assessments were administered on a single
day in May. The 2006 sixth grade mathematics assessment con-
tained 54 multiple-choice items scored 0 or 1, one constructed-
response item scored from 0 to 2, and one constructed-response
item scored from 0 to 4. Constructed-response items were scored
by raters trained to score with an accuracy of 80% or higher. The
reported score for a constructed-response item is the score
assigned by the first rater. The highest possible raw score is 60.

Sample Results Section

The PACT sample consisted of 10,000 examinees randomly
selected from a total of 52,673 students listed the grade six PACT
mathematics data file. Male students were more prevalent (51%)
than female students (49%). White (55%) and black (39%) stu-
dents comprised the majority of the sample. Other race categories
and students not reporting race represented about 6% of exam-
inees. Across groups, average test performance varied by about 8
points (see Table 5.6) or about half of a standard deviation.
Standard deviations ranged by about 1.7 points across groups.

A confirmatory factor analysis of tetrachoric and polychoric
correlations supported the assumption if unidimensionality
(details not shown). Error score correlations were not investigated.
The only feature of the test design that may result in correlated
errors was the use of raters to score the constructed response items.

Table 5.6

PACT Group Descriptive Statistics

Group N Mean S.D. KR-21

All 10,000 33.6269 11.3685 .9006

Male 5,149 33.0515 11.7609 .9078

Female 4,851 34.2377 10.9046 .8912

White 5,480 37.2124 10.8123 .8940

Black 3,900 28.7256 10.0772 .8670
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This possibility was not explored, and caution is warranted when
interpreting the results. The assumptions of essential t-equiva-
lence and congeneric scores were also not tested directly.
Therefore, two reliability coefficients were reported for the PACT
mathematics scores. Guttman’s l2 and the Feldt-Gilmer coeffi-
cients were selected to address the assumptions of t-equivalence
and congeneric scores, respectively.

Reliability estimates listed in Table 5.7 for each type of coeffi-
cient are comparable. Indeed, the 95% confidence intervals sug-
gest that results for the two coefficients are indistinguishable.
Guttman’s l2 estimates ranged from .8774 to .9146 across groups,
and Feldt-Gilmer reliability estimates ranged from .8853 to .9153
across groups. The lowest estimates were observed for the black
group.

Subkoviak andHuynh decision consistency indices are reported
in Table 5.8. (Both methods are reported for illustration purposes.

Table 5.7

PACT Reliability Estimates, 95% Confidence Interval, and SEM

95% Conf. Int.

Group Method Value Lower Upper SEM

All Guttman’s l2 .9083 .9061 .9105 3.4426

Feldt-Gilmer .9096 .9073 .9118 3.4181

Male Guttman’s l2 .9146 .9116 .9173 3.4369

Feldt-Gilmer .9159 .9131 .9186 3.4107

Female Guttman’s l2 .9010 .8974 .9045 3.4311

Feldt-Gilmer .9021 .8986 .9057 3.4119

White Guttman’s l2 .9032 .8999 .9065 3.3640

Feldt-Gilmer .9045 .9011 .9077 3.3413

Black Guttman’s l2 .8774 .8726 .8823 3.5825

Feldt-Gilmer .8790 .8739 .8838 3.5054

Note: Confidence intervals computed by the bootstrap percentile method with

1,000 bootstrap replications.
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In practice, only one method need be reported given the similarity
of underlying assumptions.) Across all groups, percent agreement
for the Huynh and Subkoviak methods was about 70%. Huynh’s k
indicated about a 55% improvement over chance for all groups.
The lowest decision consistency estimates were observed for the
female group, and the highest were observed for the black group.

Conditional standard errors of measurement at each cut score
are listed in Table 5.9. The largest amount of error occurs at the cut
score between Below Basic and Basic. The standard error decreases

Table 5.8

PACT Decision Consistency Estimates and 95% Confidence

Intervals

95% Conf. Int.

Group Method Value Lower Upper

All Subkoviak’s Agreement .7027 .6992 .7061

Huynh’s Agreement .6960 .6940 .6980

Huynh’s k .5655 .5610 .5700

Male Subkoviak’s Agreement .7128 .7079 .7179

Huynh’s Agreement .7035 .7006 .7064

Huynh’s k .5790 .5729 .5851

Female Subkoviak’s Agreement .6920 .6871 .6966

Huynh’s Agreement .6878 .6851 .6905

Huynh’s k .5492 .5425 .5559

White Subkoviak’s Agreement .6871 .6825 .6919

Huynh’s Agreement .6835 .6806 .6864

Huynh’s k .5538 .5477 .5599

Black Subkoviak’s Agreement .7210 .7158 .7265

Huynh’s Agreement .7165 .7134 .7196

Huynh’s k .5460 .5391 .5529

Note: Confidence intervals for Subkoviak statistics computed by the bootstrap

percentile method with 1,000 bootstrap replications.
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as the cut score value increases. Conditional standard errors of
measurement for the entire range of true scores are illustrated in
Figure 5.2.

The Responsive Classroom Efficacy Study and MSCAN

The Responsive Classroom Efficacy Study is a randomized con-
trolled trial conducted by a research team at the University of
Virginia. The purpose of the study is to examine the impact of
the Responsive Classroom Approach on student achievement and
classroom quality. The study involves 24 schools randomized into
either an intervention or control condition. Students are followed
longitudinally from the spring of second grade to the spring of fifth
grade. The study not only focuses on student achievement out-
comes, but also attends to the mechanisms by which the
Responsive Classroom Approach potentially affects student
achievement. Thus, one of the primary aims of the study is to
examine the extent to which the Responsive Classroom
Approach impacts classroom quality, defined in terms of the
interactions between teachers and children.

The research team initially began by relying exclusively on the
CLASS measure (Pianta, La Paro, & Hamre, 2007) to assess
quality, but soon learned that they needed an instrument to
assess quality that took into consideration specific instructional
techniques within mathematics education. They developed the

Table 5.9

PACT Conditional Standard Error of Measurement at the Cut

Scores

Group Below Basic/Basic Basic/Proficient Proficient/

Advanced

All 3.8198 3.7190 3.2123

Male 3.8351 3.7339 3.2251

Female 3.7865 3.6865 3.1842

White 3.7855 3.6856 3.1834

Black 3.8110 3.7104 3.2048
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MSCAN as an adaptation of a set of constructs used by Borko,
Stecher, and Kuffner (2007) in their SCOOPmeasure. Specifically,
the MSCAN involves observation of a single elementary classroom
mathematics lesson recorded on video tape. Raters grade the
lesson on eight items, and each item is scored on a 1- to 7-point
scale. Each lesson lasts between 45 and 75 minutes, but only 30
minutes are viewed for the ratings. Raters are experienced math
educators who undergo a period of training before officially
reporting scores.

A holistic scoring guide describes how features of the lesson
translate into scores for each item. For example, the item
Connectedness to Concepts receives a low score (e.g., 1 or 2) if
the “Lesson uses elements of mathematics that can be memorized
without requiring an understanding of the larger concepts.” A high
score is award to this item (e.g. 6 or 7) if
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The lesson focuses on central concepts or “big ideas” and
promotes generalization from specific instances to larger
concepts or relationships. Students compare processes done
with manipulatives to processes done in another method.

New raters are trained to use the scoring guide by experienced
raters through participation in the rating process. However, new
rater scores are not counted toward the final lesson score until they
demonstrate proficiency with the scoring guide.

The MSCAN is currently in development, and the efficiency of
the measurement procedure is in need of refinement. As it is
currently implemented, items (I) and raters (R) represent two
major sources of error for the MSCAN, and these facets are fully
crossed with lesson (l). Specifically, data are collected through a
l� R� I design. This fully crossed design is time consuming. For
example, it requires about 38 hours for three raters to score ten
lessons. There are two ways to reduce the amount of time needed to
score theMSAN. Reducing the number of raters is the easiest way to
improve temporal efficiency. Using two raters to judge ten lessons
would require about 25 hours, and this amount of work represents a
reduction of 13 rating hours. The second way to improve efficiency
is to use more raters and have each tape scored by a unique set of
raters. This alternative design nests raters within lesson, I � ðR : lÞ.
Ten tapes scored by three raters could be completed in about 13
hours with this design, but a tenfold increase in the number of raters
would be needed. The additional cost of rater trainingmay preclude
the use of the I � ðR : lÞ design, but a reliability estimate is needed
to make an informed opinion.

Sample Results Section

A total of ten randomly selected lessons were observed indepen-
dently by three raters. The average MSCAN score was 24.401, and
the standard deviation was 7.6023. Demographics were not avail-
able at the time of the analysis, and the small sample size precluded
a statistical test of unidimensionality. Therefore, caution is war-
ranted when interpreting the results as they may differ by
subgroup.

Lesson accounted for the largest portion of variance (33%), but
only by a small margin (Table 5.10). Variance for the lesson by
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item interaction accounted for nearly as much variance (32%).
This interaction suggests that error due to items is not consistent
across lessons and the magnitude of this interaction is quite vari-
able. Item error may be large for one lesson but small for another
lesson. Rater and the rater-by-item interaction accounted for very
little variance.

Table 5.11 lists the decision study results for four different data
collection designs. The generalizability coefficient for the observed
design was 0.838. Reducing the number of raters by one reduced

Table 5.11

Decision Study Results for the MSCAN

Design Raters (n0
r ) Generalizability

Coefficient

SEM

l � R � I 3 0.8380 0.3825

2 0.8123 0.4182

I � ðR : lÞ 3 0.8286 0.3956

2 0.7992 0.4360

Table 5.10

Generalizability Study Results for the MSCAN

Component Variance (Standard

Error)

Percent of

Total

Lesson, l 0.7567 33

Items, I 0.2401 11

Raters, R 0.0155 1

Lesson� Items, lI 0.7141 32

Lesson�Raters, lR 0.1202 5

Raters� Items, RI 0.0104 0

Lesson�Raters� Items, lRI 0.4080 18

Total 2.2650 100
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the generalizability coefficient to .8123. Each nested designs had a
lower reliability than the corresponding (in terms of number of
raters) crossed design.

Chapter Summary

Proper documentation of score reliability involves a large number
of considerations that are detailed in the Standards. To facilitate
the application of the Standards, a four-point outline was devel-
oped in this chapter. Documentation of score reliability should (a)
characterize the examinee population and all major subpopula-
tions, (b) describe the measurement procedure and all major
sources of error, (c) present evidence in support of assumptions
or discuss the consequences of unsupported assumptions, and (d)
provide estimates of reliability and the standard error of measure-
ment. Three example applications of the outline were then pro-
vided to demonstrate its applicability to a variety of measurement
procedures.

Reliability documentation is only one part of a comprehensive
technical document. Evidence of validity and test fairness should
be included in a comprehensive document. For example, the
proportion of items representing each part of a table of specifica-
tions would provide evidence of content validity, and a differential
item functioning analysis would provide statistical evidence about
test fairness. Even though reliability documentation was the focus
of this chapter, comprehensive technical documentation should
address validity, test fairness, and reliability. Becker and Pomplun
(2006) describe an outline for information that should be included
in a comprehensive technical document.
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6
discussion and

recommended readings

a reliability analysis should be reported without
judgment or evaluation. No statement should be made as to
whether estimates of reliability estimate and standard error are
good, acceptable, or bad. Estimates should speak for themselves,
and a reader should be free to judge their value. Discussion of a
reliability analysis should primarily focus on limitations of the
analysis, such as unevaluated sources of error, untested assump-
tions, or weaknesses of the selected methods. Any additional
discussion depends on the purpose of the analysis.

A reliability analysis conducted for an established measurement
procedure or a test for which no changes are planned requires little
else in the discussion. However, discussion of an analysis con-
ducted for a measure in development should also include the
recommended improvements and the empirical basis of the
recommendations. For example, results from a decision study
may be cited for recommending an increase (or reduction) in the
number of raters judging a measurement procedure. The key to
properly discussing recommendations is to use the analysis to
provide empirical support for the recommended changes. For
example, citing a generalizability coefficient that increases from
.75 to .86 by adding an additional rater provides support for the



recommendation of adding an additional rater. Citing the
empirical basis for the recommendation adds credibility. A dis-
cussion section is an opportunity to make thoughtful recommen-
dations for a measurement procedure in development. It is not a
chance to capriciously modify a measurement procedure.

Example discussion sections for the Benchmark assessment of
English Language Arts (ELA), Palmetto Achievement Challenge
Test (PACT) of mathematics, and the MSCAN are provided in the
next three sections. Final comments and recommended readings
conclude the chapter.

English Language Arts Benchmark Assessment

The complexity of the Benchmark data collection design necessi-
tated the use of generalizability theory instead of classical test
theory. Results indicate that an efficiency may be gained by redu-
cing the total number of items from 64 to 56 (eliminate one item
per testlet). This change lowers score reliability from .8015 to .791.
Provided that the test specifications and test content are not
affected, this change is recommended. However, the alternative
data collection design should be pilot-tested prior to its opera-
tional use.

A limitation of the analysis is the lack of confidence intervals for
the generalizability coefficients. However, the standard errors of
the variance components suggested that the variance components
were estimated precisely. Standard errors for the variance compo-
nents were not listed in the results section, but the largest standard
error was 0.0024 and the second largest was 0.0006.

Some Interesting Points About the Analysis

The Benchmark assessment of ELA was included as an example
because it provides insight into a number of important aspects of
reliability. One aspect was described in Chapter 2; splitting a test
into two parts can be done in different ways, and each split can
result in different underlying assumptions (e.g., parallel or con-
generic). Another aspect is the importance of carefully considering
the data collection design when choosing a method for estimating
reliability (see Table 5. 3). A design that involves items and ignores
occasion results in a larger reliability estimate. For example,
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Cronbach’s a is 0.9054 for the Benchmark assessment. This value is
close to the estimate of 0.9159 for Design 10, which is a measure of
internal consistency expressed in terms of generalizability theory.
As Brennan (2001a) noted, measures of internal consistency can
actually cause the reliability estimate to be an upper bound to
reliability due to a hidden occasion facet. His observation is cer-
tainly true for the Benchmark Assessment. The estimate that
includes an occasion facet (0.8015) is lower than the estimate
that hides it (0.9159 and 0.9054). Obtaining the right estimate of
reliability requires careful consideration of the data collection
design. Ignoring important sources of error can lead to different
conclusions about the consistency of test scores. Another aspect of
the Benchmark analysis, or any analysis using generalizability
theory, concerns the variability of variance components.

Reliability estimates obtained from data collection designs that
differ from the observed design provide a suggestion of what
reliability may be like for scores collected under the alternative
design. Decision study results use variance components that are
notorious for having large sampling variability. It is unlikely that
results for one decision study will be exactly the same as results
from another decision study (Gao & Brennan, 2001) using the
same design. Consequently, the actual reliability estimate obtained
from an alternative data collection design implemented as an
observed design may not even be close to the suggested reliability
estimate from a previous decision study. To the extent that sam-
pling variability is the reason for a notable difference between the
suggested and actual estimate and not a change in the population,
greater confidence in the results from a decision study can be
obtained by using a large sample size. However, the most cautious
approach is to pilot an alternative data collection design as the
observed design prior to implementing it as the operational
design.

To understand this point more clearly, consider the results from
the Benchmark assessment. Table 5.4 suggests that the general-
izability coefficient will be .79 if Design 2 becomes the observed
data collection design (i.e., becomes the operational design) upon
the next administration of the measurement procedure. However,
actual implementation of Design 2may result in an estimate that is
only in the ballpark of .79 due to (examinee) sampling variability.
The actual estimate may be close to .79 or nowhere near it. The size
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of the ballpark really depends on the size of the examinee sample.
Therefore, a conservative practice would pilot-test Design 2 as an
observed design prior to making a whole-scale change to it. This
practice would hopefully avoid the influence of chance on opera-
tional procedures.

Palmetto Achievement Challenge Test of Mathematics

A limitation of the PACT analysis was the exclusion of rater error
and the treatment of constructed-response items. Two con-
structed-response items were scored by at least one rater.
Operational costs and time constraints precluded the use of mul-
tiple raters for all examinees. A second rater scored constructed-
response items for only 10% of the sample. Raters are an important
source of error, but the influence of this source of error for the
entire sample was not testable. As a result, the actual reliability may
be lower than the reported values.

Subkoviak and Huynh decision consistency indices require
binary items, but the PACT assessment included two con-
structed-response items. These items were included in the decision
consistency analysis and computation of the conditional standard
error of measurement by using the maximum possible score rather
than the total number of items (see Huynh et al., 2000). This
technique is reasonable given the small number of constructed-
response items, but it is a possible limitation of the analysis.

The Responsive Classroom Efficacy Study and MSCAN

A fully crossed design with two raters or a nested design with three
raters per lesson is a feasible alternative to the operational MSCAN
design. Reliability for the observed MSCAN data collection design
was about .84. Reducing the number of raters by one reduces
reliability to .81; nesting raters within items results in a general-
izability coefficient of about .83. Either alternative design is accep-
table, but the nested design requires the additional cost of training
more raters. If this cost is too high, then the fully crossed design
with two raters is recommended. Given the small sample size, an
alternative design should be pilot-tested before it is implemented
operationally.
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A limitation of the MSCAN analysis was the lack of demo-
graphic information. Reliability could not be examined for various
groups. However, the small sample size might preclude such an
analysis even if data were available on gender and race.

A second limitation was that dimensionality and error score
correlations were not formally tested. The sample size was too
small to conduct these tests. Caution is warranted, given that a
violation of these assumptions may positively or negatively bias
the reliability estimates.

A final limitation was the lack of confidence intervals for var-
iance components. Standard errors were computed but not
reported. The magnitudes of the standard errors (details not
reported) suggest that the decision study results should be inter-
preted with caution. Variance components may notably differ
from one administration to another with samples of only ten
lessons. Therefore, the alternative designs should be pilot-tested
before being used operationally.

Recommended Readings

There are several “must read” books on classical test theory.
A good place to start is Gulliksen’s Theory of Mental Tests
(1950). This book is very readable but limited to parallel measures.
It also predates some important developments, such as seminal
work on strong true score theory. A more comprehensive and
technical treatment is the classic Statistical Theories of Mental
Test Scores by Lord and Novick (1968). This book is not only
“the bible” on classical test theory but also a guide to modern
test theories, such as item response theory. A more readable
introduction to classical test theory is Traub’s Reliability for the
Social Sciences: Theory and Applications (1994). Recommended
textbooks that cover classical test theory in addition to other
topics are Introduction to Measurement Theory by Allen and Yen
(1979) and Introduction to Classical and Modern Test Theory by
Crocker and Algina (1986). Both of these texts include informa-
tion on strong true score theory, but the latter also describes
generalizability theory.

Cronbach and his colleagues published The Dependability of
Behavioral Measurement: Theory of Generalizability for Scores and
Profiles (1972) as a comprehensive guide for their work on the
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topic. Brennan’s (2001b) text represents a more recent treatise on
generalizability theory. Many recent developments and persisting
challenges are also described in his book. A very readable intro-
duction is Shavelson andWebb’sGeneralizability Theory: A Primer
(1991). Their book is not only a good starting point for people
interested in the subject but also a handy reference for designs
commonly encountered in practice. Generalizability theory and
other works on reliability are discussed in several comprehensive
book chapters.

A chapter on reliability has been included in the book
Educational Measurement, in all four editions. The chapter by
Feldt and Brennan (1989) in the third edition and the chapter by
Haertel (2006) in the fourth edition are thorough expositions on
reliability. Each chapter describes reliability from the perspective
of classical test theory, strong true score theory, and generaliz-
ability theory. Other topics, such as the reliability of difference
scores, are also discussed. Each chapter represents the state of the
art in its time.

Although textbooks provide context to work first presented in
scholarly journals, reading original references has the benefit of
seeing the author’s own words and understanding their own
thoughts. Journal articles are an unfiltered source of information
on technical developments in the field. All of the references
included in this textbook, as well as works cited in Educational
Measurement, are highly recommended reads.
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Note: The letters f and t following locators refer to figures and tables
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random, 71t
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for p � (I :O), 66t
for part-tests, 59t
real-world measurement procedure,

51–53
for test-retest with alternate forms,

58t
decision accuracy, 26, 27, 27f
decision consistency, 25–26, 26f, 27,

103, 105
decision study, 40–48
decisions, types of, 45–46
decrease, of reliability, 5
definition, of reliability, 9, 20
degree of part-test similarity, 79
dimensionality, 73
unidimensionality, violation of,

75–76

144 : RELIABILITY



DIMTEST, 75
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domain score, 25, 28–29
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effective test length parameter, 80
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curriculum standards, 52t
data collection designs for, 70–72
decision study generalizability

coefficients for, 120t
decision study results for, 118t
generalizability study results for, 118t
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error score, 14, 16
correlations, 76
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distribution, 16, 19f
variance, 18
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essential τ-equivalence, violation of,
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essentially τ-equivalent measures, of

classical test theory, 83–84
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measurement, 114–16

estimating reliability for absolute
decisions. See absolute decision
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examinee population, characterizing,

111
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distribution, 16
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variance, 15
exchangeability, 90

F
facets in generalizability theory, 34
Feldt-Gilmer coefficient, 100, 123
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coefficient, 100
fixed universes, 36
Flanagan’s formula, 96
fully crossed designs, 35
fully nested designs, 35

G
generalizability coefficient, 46
generalizability study, 33–39
generalizability theory, 50, 72
and classification decisions, 88–89
distributional assumptions,
88–89

randomly parallel measures, 88
common data collection designs in,

65–69
classical test theory designs,
69–70

common data collection designs,
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for ELA benchmark assessment,
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decision study, 40–48
generalizability study, 33–39
and replication, 12

Guttman’s λ2, 99, 123

H
hidden facet, 69

I
independent samples t-test, 4–5
index of dependability, 47
internal consistency, 75, 77
estimates, 63
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item exchangeability, 90
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random, 37
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Jöreskog’s method, 101
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Kelley’s equation, 21, 31
Kuder-Richardson formula 20
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Kuder-Richardson formula 21
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latent traits, 3
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M
maximum possible score, 87
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amount of, 6
high-stakes consequences, 6
impact of, 4
and other statistics, 4
sources of, 34
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description of, 112–13
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randomly parallel measures,
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decision study results for, 128t
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multidimensional measurement
procedure, 74

multi-part division design, 70
multiple part-test divisions, 62–63
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conditional distribution of, 29
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and sampling examinees, 12–14
residual effect, 37
Responsive Classroom Efficacy Study,

125, 133–34
results, 109
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Test of mathematics, 120

sample results section, 122–25
Responsive Classroom Efficacy

Study, 125
score reliability (see score reliability)

S
sampling examinees, 12
sampling the measurement procedure,

10–12
score reliability, 110, 129
estimates of reliability and the

standard error of
measurement, 114–16

examinee population,
characterizing, 111

measurement procedure,
description of, 112–13

present evidence in support of
assumptions, 113–14

single-facet design, 34
South Carolina Benchmark Testing

Program, 51
South Carolina PACT of mathematics,

120
South Carolina Palmetto Achievement

Challenge Test (PACT) of
mathematics, 109–10

Spearman-Brown formula, 96
split-halves, 59–60
squared error loss coefficients
one whole-test replication, 105
two whole-test replications, 102–3

squared error loss method, 24
standard error, 44
standard error of measurement

(SEM), 19, 22
and estimates of reliability, 114–16

Standards for Educational and
Psychological Testing, 109

Standard 2.1, 115
Standard 2.4, 115
Standard 2.5, 112
Standard 2.10, 113
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Standards for Educational and
Psychological Testing
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Standard 2.11, 111–12
Standard 2.14, 115

stratified α, 76, 101
strong true score theory, 27–28, 31,

88, 108
and replication, 12

Subkoviak’s raw agreement index, 106

T
τ-equivalent measures, of classical test

theory, 84–85
testlets, 78
test norms, 23
test-retest, 69–70

with alternate forms, 57–58, 70
coefficient, 53–56
data collection designs for, 54t
estimate, 112

test score reliability, 3–4
importance, 4–7

test score validation, 4
test speededness, 77
test statistics, 4
threshold loss indices

one whole-test replication, 105–7
two whole-test replications, 103–4

threshold loss methods, 24
true score, 14, 15, 16
true score variance, 18, 22
two-facet design, 34

two part-test divisions/partitions,
60–62

descriptive statistics for, 87t
two part-test replications, 95–97
two-sample t-test, 5f
two whole-test replications, 102–4
squared error loss coefficients, 102–3
threshold loss indices, 103–4

U
uncorrelated errors, violation of,

77–79
unidimensionality, violation of, 75–76
unidimensional measurement

procedure, 74
universe of admissible observations, 34
universe of generalization, 40, 41, 42
universe score variance, 43
for mixed designs, 68t

V
variance
of error score, 18
of observed scores, 18
of true score, 18

W
whole-test replications, 53–58, 95
alternate forms reliability

coefficient, 56–57
test-retest reliability coefficient,

53–56
test-retest with alternate forms, 57–58
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