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Monolix, NONMEM, and WinBUGS-PKBUGS are among the available 
software packages for population-based modeling. The sparse-data of drug 
plasma concentration versus time (Cp-time) is prevalent in clinically based 
studies involving patients. It is not ethical in this case, to collect many and 
large volumes of blood samples. This study was aimed to simulate the 
capability of Monolix, NONMEM, and WinBUGS-PKBUGS to analyze very 
sparse Cp-time data after an intravenous bolus drug administration and to 
estimate the minimum number of Cp-time data required for an adequate 
analysis. Data of Cp-time were obtained based on simulation using the 
pharmacokinetic one-compartment open model following an intravenous 
bolus administration of 50 mg of a hypothetical drug. In this respect, six 
random values of k (rate constant of elimination) and Vd (volume of 
distribution) with mean and standard deviation values of 0.3±0.1/h and 
30±10 L, respectively, were used to create simulated Cp-time data of 6 
subjects. Simulated Cp-time data in each subject were randomly ranked to 
choose data based on the intended number of samples in each subject. 
Several sparse Cp-time data scenarios, starting from a minimal state, i.e., with 
a total of 6 Cp-time data (1 datum per subject) to a rich-data with 48 Cp data-
points (8 data per subject), were examined. The goodness-of-fit evaluations, 
as well as the similarity of individual values of k and Vd to the respective real 
values  (p>0.05), indicate that nonlinear-mixed-effect-model using Monolix, 
NONMEM, and WinBUGS-PKBUGS can appropriately describe sparse Cp-
time data even with only 2 data per subject. This fact is an important finding 
to support the demand of analytical tool for a limited number of Cp-time data 
such as obtained in the therapeutic drug monitoring event. 
Keywords: Monolix, NONMEM, WinBUGS-PKBUGS, sparse-data, therapeutic 
drug monitoring 
 

 
INTRODUCTION 

In 1972, Sheiner and colleague introduced 
the so-called nonlinear mixed effect model,   
starting the era of the population-based modeling 
approach. This approach assumes, a particular 
parameter or variable, for example, the rate 
constant of elimination, K, is considered 
determined by a population or fixed effect value 
and inter-individual variability, resulting in a 
different K parameter value in each subject. This 
approach directly focuses on the population data, 
allowing analyses of the sparse-data commonly 

faced in clinical studies involving patients (Sheiner 
et al., 1972). This approach also allows the 
correlation of a particular parameter such as 
clearance (CL), distribution volume (Vd) or 
elimination rate constant (K) to specific covariates 
such as sex, age, body weight, or serum creatinine  
in a quantitative manner (Jonsson and Karlsson, 
1998; Wählby et al., 2001). NONMEM is the first 
(Sheiner et al., 1972) and the gold standard (Frame, 
2006; Keizer et al., 2013) software in population-
based approach, allowing quantitative analyses of 
the clinical data such as in a therapeutic drug 
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monitoring (TDM) (Shaker et al., 2013). NONMEM 
provides fast, robust, accurate, and precise 
computation (Plan et al., 2012). The first-order 
conditional estimation (FOCE) with interaction is a 
commonly used estimation method in NONMEM 
(Wang, 2007).  

Several free or free-for-academic alternative 
tools for population modeling are available. 
Monolix is an example of the free-for-academic 
software, developed since 2003. The computation 
is based on SAEM (Stochastic Approximation            
Effect Model) algorithm using MATLAB library 
engine (Chan et al., 2011) developed based on a 
thorough statistical theory, providing a fast and 
efficient calculation (Lavielle and Mentré, 2007). 
Monolix, which is currently maintained by Lixoft 
company, provides an excellent graphical user 
interface, facilitating a more practical application 
(Lavielle, 2014).  

Another free tool in population 
pharmacokinetic-pharmacodynamic analyses is 
PKBUGS running under WinBUGS environment 
(Lunn et al., 2002). WinBUGS is a general Bayesian 
modeling framework that can be used to analyze 
several different purposes and applications, using 
Markov chain Monte Carlo (MCMC) techniques. 
Bayesian inference Using Gibbs Sampling (BUGS) 
project has been initiated by MRC Biostatistics Unit, 
at University of Cambridge, in collaboration with 
Imperial College School of Medicine at St Mary's, 
London (Lunn et al., 2002; Ntzoufras, 2011).  

Recently, we have reported the capability of 
a population-based approach to analyze limited 
data in the per-oral administration scenario 
(Nugroho et al., 2017). However, it is not yet clear 
to what extent of sparse-condition can be 
adequately described, mainly using several 
different administration routes. This research was 
aimed to analyze very sparse Cp-time data after an 
intravenous bolus drug administration and to 
estimate the minimum number of Cp-time data 
required for an adequate analysis. 

 

MATERIAL AND METHODS 
Preparation of Data simulation  

We simulated the data of Cp versus time after 
intravenous-bolus administration of 50mg of a 
hypothetical compound using Microsoft® Excel® 
365 (running on Windows 10 machine) (Liengme, 
2015) based on the one-compartment open model 
with intravenous bolus injection for Cp (Welling, 
1986) as presented in Equation 1. 
 

𝐶𝑝 =
𝐷𝑜𝑠𝑒

𝑉𝑑
. 𝑒−𝐾𝑡  .……………………………………(1) 

This step resulted in the creation of the rich-
data of Cp, i.e., 48 data point of 6 subjects at eight 
time points post dosing (at 0.25; 0.5; 1; 2; 3; 4; 6 and 
8h). Each individual-parameter of K and Vd was 
randomly selected based on the mean and standard 
of deviation of 0.3±0.1/h and 30±10L (Figure 1 A). 
Furthermore, the sparse-data were originated 
based on a random selection of the rich-data by 
choosing 2 and 1 data/datum per subject. This step 
resulted in 12 data points and 6 data points from 6 
subjects (Figure 1 B and C). 

 
Data analysis 

Monolix (stand alone, version 2018R2, 
running on Windows 10 machine), WinBUGS 
(version 1.3 and 1.4) – PKBUGS (version 1.0), and 
NONMEM (version 7.4, using Gfortran compiler, 
directed using PLTTools lite version 6) (Frame, 
2006) were used to model the rich-data and the 
sparse-data. The structural model to describe the 
simulated Cp data by intravenous bolus 
administration was based on the one-
compartmental open model, as presented in 
Equation 1. Moreover, the inter-individual 
variability is determined by an exponential error 
model (equation 2).  
 

Pi = θ. exp (ƞi) ………………………………………….(2) 
 

Term θ is the population value, or the fixed effect 
parameter of P. Pi is the individual estimate value, 
and ηi is the inter-individual variation, assumed to 
be independently and normally distributed with 
mean zero and variance ω2. The interindividual 
variability was applied for K and Vd. The residual 
error is described by the additive error model 
(equation 3). 
 

Fpij = Foij+ ε1 ………………………………………………..(3) 
 

Term Fpij is the prediction of the jth evaluated 
functions (Cp). Foij is the measured value of the 
evaluated function (Cp), and ε represents the 
residual deviation of the predicted from the 
observed value and is assumed to be independent 
and distributed with mean zero and variance σ2. 
The analysis of the population parameters θ, ω2, 
and σ2 was performed using the SAEM algorithm 
(Monolix), MCMC (WinBUGS-PKBUGS), and the 
first-order conditional estimation (FOCE) with 
interaction method (NONMEM).  

In Monolix, analyses were performed using 
the structural one compartment intravenous bolus 
model with K and Vd parameters provided in Monolix 
library. No covariate was applied while the 
covariance implemented the default diagonal pattern. 
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Data were assumed to follow a log-normal 
distribution. The calculation was performed using 
0.3/h and 30L as initial estimates of K and Vd, 
respectively. The initial estimates of the random 
error (eta) were 0.1, and 0.1 for K and Vd, 
respectively. Additive error model was calculated, 
with the initial values of sigma of 0.001.  

Modeling in NONMEM was performed using 
the provided one-compartment oral model 
(ADVAN 1 trans 1) with K and Vd parameters 
provided in NONMEM PK library. No covariate was 
applied while the covariance implemented the 
default diagonal pattern. The calculation was 

performed using 0.3/h and 30L as initial estimates 
of K and Vd, respectively. The initial estimates of 
the random error (eta) were 0.1 and 0.1 for both K 
and Vd. Additional residual error model was used, 
with the initial values of 0.1.  

Analyses in WinBUGS were performed using 
the structural one compartment intravenous bolus 
model with clearance (Cl) and Vd parameters 
provided in PKBUGS add-in. No covariate                     
was applied. The calculation was performed         
using 15 L/h and 30L as initial estimates of Cl and 
Vd, respectively. The initial estimates of the 
random   error   (eta)  were  10% for both Cl and Vd.  

Table I. The comparison of the individual parameter of K and Vd of the rich-data, the sparse-data with 12 
data-points (2 data per subject) and the sparse-data with 6 data-points (one datum per subject) estimated 
by Monolix, NONMEM, and WinBUGS-PKBUGS (data are presented as mean ± standard of deviation).  

 

Data 
K (per hour) Vd (L) 

Monolix NONMEM WinBUGS-PKBUGS Monolix NONMEM WinBUGS-PKBUGS 
rich-data 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 30.0 ±11.0 30.0 ±11.0 30.0 ±11.0 

*sparse-12 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.0 29.2 ± 9.4 29.1 ± 9.4 28.9 ± 8.9 

**sparse- 6 0.5 ± 0.1# 0.4 ± 0.0# 0.4 ± 0.1# 14.9 ± 0.3# 18.4 ± 7.0# 16.7 ± 1.4# 
 

* Sparse-data with 12 data-points (2 data per subject); ** Sparse-data with 6 data-points (1 datum per subject); # Mean 
parameter values were significantly different from the respective reference ones (p<0.05) 

 

 
 

Figure 1.  Data of the rich-data (panel A) and the sparse-data with 12 data-points (2 data per subject) (panel 
B) and the sparse-data with 6 data-points (1 datum per subject) (panel C) of plasma concentration (Cp) 
versus time profile of a 50mg theoretical compound delivered by an intravenous bolus injection, simulated 
in 6 subjects (1: filled-circle, 2: open-triangle, 3: star, 4: open-square, 5: filled-diamond, 6: filled-square). 
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Parameter K was estimated based on the 
estimation of Cl and Vd values. While PKBUGS is 
running in WinBUGS 1.3, to obtain more flexible 
MCMC, the final model was exported to WinBUGS 
1.4 platform using “Print model” menu.  

The adequacy of modeling in all cases was 
analyzed based on the goodness-of-fit evaluations. 
These evaluations consisted of 1) the individual 
fitting with the individual and population model 
prediction curves; 2) the correlation of DV, namely 
the dependent variable (the “observed” Cp) versus 
population model prediction of Cp and the 

individual model prediction of Cp. Such evaluations 
are considered crucial to judge the adequacy of 
specific modeling analyses (Mohammed et al.,  
2012; Owen and Fiedler-Kelly, 2014; Zheng et al., 
2014). 

The post-hoc individual parameter values of 
K and Vd obtained from the analyses of the sparse-
data using Monolix, WinBUGS-PKBUGS, and 
NONMEM were compared to the respective 
individual values of the parameters. Due to a 
normal distribution of all data tested based on   
Shapiro-Wilkes     method    using    OpenStat   2014 

 
 

Figure 2. The goodness-of-fit evaluation of the rich-data of Cp in Monolix (A), NONMEM (B) and WINBUGS-
PKBUGS (C) i.e., 1) the typical examples of individual fitting (subject number 1) of the “observed” Cp data 
(DV) with the individual (solid-curve) and population model (dotted-curve) predictions (left panels), and 
2) the correlation of DV  versus population model prediction (open-triangle) and  the individual model 
prediction of Cp (closed-circle) (right panels). 
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(Miller, 2012),  the  comparison of the mean         
values of K and Vd of the sparse-data to the               
rich-data values were performed based on the 
paired t-test method using Microsoft® Excel®         
365. 
 

RESULTS AND DISCUSSION 
Although each population-based modeling 

software package has a different of complex 
calculation algorithms,  the goodness-of-fit  

evaluations demonstrate that all the packages, i.e., 
Monolix, NONMEM, and WinBUGS-PKBUGS    properly  

analyze the rich-data as well as the sparse-data 
with 12 or even 6 data-points. In all cases, a proper 
population fitting of the Cp data is indicated by the 
absence of a specific pattern or shape such as 
sigmoid, or shoe shapes. Moreover, the individual 
prediction indicates an ideal situation, where most 
of the DV and individual-prediction of Cp coincide 
on   the line   of    identity.  The  analyses  in Monolix,  
 

NONMEM   and   WinBUGS-PKBUGS, are presented 
in Figure  2 (the rich-data of Cp), Figure 3 (the 
sparse – 12 data points), and Figure 4 (the sparse - 
6 data points).  

 
 

Figure 3. The goodness-of-fit evaluation of the sparse-data with 2 data per subject of Cp in Monolix (A), 
NONMEM (B) and WINBUGS-PKBUGS (C) i.e. 1) the typical examples of individual fitting (subject number 
1) of the “observed” Cp data (DV) with the individual (solid -curve) and population model (dotted-curve) 
predictions (left panels), and 2) The correlation of DV  versus population model prediction (open-triangle) 
and  the individual model prediction of Cp (closed-circle) (right panels). 
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Furthermore, we analyzed the individual 
pharmacokinetic  parameter  values  of K and Vd of 
the sparse-data to the respective reference K and 
Vd values used to simulate the Cp data, based on a 
paired t-test (Table I). In all comparisons, the K and 
Vd values estimated by using Monolix, NONMEM 
and WinBUGS-PKBUGS of the sparse-data with 12 
data-points are similar to the respective reference 
values (p>0.05). Moreover, although the fitting 
analyses are adequate with all software packages, 
the estimated K and Vd values of the sparse-data 
with 6 data-points are significantly different from 
the reference values (p<0.05). The average 
percentage ratios of K values of the sparse 6 data-

points to the reference values are in the range of 
188% (Monolix), 184% (NONMEM) and 161% 
(WinBUGS-PKBUGS). Similarly, such percentage 
ratios of Vd values are in the range of 56% 
(Monolix), 69% (NONMEM), and 62% (WinBUGS-
PKBUGS). 

Those facts demonstrate that sparse-data 
obtained with a limited number of subjects (6)   and 
a limited number of samples (2) per subject, can be 
appropriately fitted in all cases. In agreement with 
our previous report with the sparse per-oral Cp 
data (Nugroho et al., 2017), the conditions again 
highlight the power of population modeling to 
analyze the sparse-data.  This finding is important, 

 
 

Figure 4. The goodness-of-fit evaluation of the sparse-data with 1 datum per subject of Cp in Monolix (A), 
NONMEM (B) and WINBUGS-PKBUGS (C) i.e. 1) the typical examples of individual fitting (subject number 
1) of the “observed” Cp data (DV) with the individual (solid-curve) and population model (dotted-curve) 
predictions (left panels), and 2) the correlation of DV  versus population model prediction (open-triangle) 
and  the individual model prediction of Cp (closed-circle) (right panels). 
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concerning the possibility of an accurate analysis 
with minimal data obtained in clinical studies 
involving patients such as in the case of a 
therapeutic drug monitoring of certain drugs. In 
such instances, sparse-data are collected from 
patients (Parke and Charles, 1998; Shaker et al., 
2013). The conventional approach with a two-stage 
approach cannot analyze such conditions as this 
classical method requires a rich-data situation 
(Nugroho et al., 2017). 

We could consider that, with the case of an 
intravenous bolus injection of a compound 
following a one-compartmental open model, the 
minimum data-points of population modeling 
analyses is 12. However, we should realize that it 
could be related to the less complexity of the model, 
with only 2 model parameters (K and Vd), and 
without the involvement of any covariate for the 
analyses. In modeling cases involving more 
parameters, with or without any covariates, the 
calculation is more complicated (Mould and Upton, 
2013), and the minimum number of samples might 
be different. It is important to find such guidance in 
estimating the minimum samples required for 
those cases, including per-oral administration of a 
compound following a multi-compartment open 
model. This information will be helpful in the 
preparation of an in vivo studies in patients. The 
appropriate scenarios can be proposed to ascertain 
a valid analysis of the limited data 

Furthermore, the fact that Monolix, 
NONMEM, and WinBUGS-PKBUGS demonstrated 
similar power in population modeling is also 
essential, especially for the future of the extensive 
application of population-modeling in Indonesia 
and other developing countries. It is related to the 
limited budget allocation support in most 
institutions to buy an annual and relatively 
expensive license cost of the commercial software 
package. Monolix is free for any educational use, 
while WinBUGS-PKBUGS is an entirely free-
software package for everyone willing to perform a 
population-based approach based on Bayesian 
Statistics implementing an MCMC method (Lunn et 
al., 2002). 

 

CONCLUSION 
Population-based approach appropriately 

describes the sparse-data in an intravenous bolus 
injection scenarios. Such capability is essential to 
achieve the ideal therapeutic outcome based on 
therapeutic drug monitoring. Monolix (free-for-
academic) and WinBUGS-PKBUGS (completely 
free) software packages have comparable 

performances to NONMEM, the gold standard of 
population based software. The possibility to use a 
completely free software package can facilitate a 
more extensive application of population modeling 
to facilitate an optimum therapeutic outcome in 
Indonesia. 
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