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Abstract

The development of new technologies for mapping structural and functional
brain connectivity has led to the creation of comprehensive network maps
of neuronal circuits and systems. The architecture of these brain networks
can be examined and analyzed with a large variety of graph theory tools.
Methods for detecting modules, or network communities, are of particular
interest because they uncover major building blocks or subnetworks that are
particularly densely connected, often corresponding to specialized functional
components. A large number of methods for community detection have
become available and are now widely applied in network neuroscience. This
article first surveys a number of these methods, with an emphasis on their
advantages and shortcomings; then it summarizes major findings on the
existence of modules in both structural and functional brain networks and
briefly considers their potential functional roles in brain evolution, wiring
minimization, and the emergence of functional specialization and complex
dynamics.
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Network: a set of
elements (nodes) and
the pairwise
interactions (edges)
among those elements
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INTRODUCTION

Behavior and cognition are associated with neuronal activity in distributed networks of neuronal
populations and brain regions. These brain networks are linked by anatomical connections and
engage in complex patterns of neuronal communication and signaling. In recent years, the con-
vergence of two major scientific developments has prompted a new network-based perspective on
brain function (Bressler & Menon 2010, Bullmore & Sporns 2009, Park & Friston 2013, Sporns
2014, Sporns et al. 2004). On the one side, improved capabilities in brain imaging and record-
ing have provided new ways to measure the brain’s anatomical (structural) as well as dynamic
(functional) connections. These developments have given rise to the emerging field of brain con-
nectivity ( Jirsa & McIntosh 2007, Sporns 2011). On the other side, the availability of increasingly
complex data in the social, technological, and biological sciences has led to the development of
new tools and methods for representing and analyzing networks, giving rise to the new discipline
of network science (Börner et al. 2007). The network science of the brain, or network neuro-
science, is still a very recent endeavor, and new observational techniques and analytic methods
(Rubinov & Sporns 2010) are continually emerging. Here we provide a survey of the state of the
art in both methods and principal findings in a particularly active area of network neuroscience:
modular brain networks.

Structural and Functional Brain Networks

Data about relations between elements, for example, connections among brain regions, can be
summarized and represented as a set of nodes and edges forming a network (Figure 1a). The
construction of brain networks begins with the collection of observational data on how brain
regions, neuronal populations, or neurons are connected. A major distinction is that between
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Figure 1
Schematic diagram of a brain network introducing basic terminology. (a) Networks consist of nodes and edges. The node degree
corresponds to the number of edges that are attached to each node. (b) Networks can be decomposed into communities or modules.
Connections (edges) are either linking nodes within modules or between modules. Highly connected nodes are hubs, and they either
connect primarily with other nodes in the same community (provincial hub) or with nodes that belong to different communities
(connector hub).

Module:
a subnetwork of
densely interconnected
nodes that is
connected sparsely to
the rest of the network

Modularity: the
scoring of a partition
according to whether
the internal densities
of its modules are
greater or less than the
expected density

structural and functional networks. Structural networks correspond to a pattern of anatomical
connections, summarizing synaptic links between neurons or projections among brain regions.
Most relevant for studies of the human brain are large-scale networks of interregional pathways
that link cortical and subcortical gray matter regions, which taken together form the human
connectome (Sporns 2013, Sporns et al. 2005). In contrast, functional networks are assembled
from estimates of statistical dependencies between neuronal or regional time series data (Friston
2011). Although many different measures of functional connectivity exist (Smith et al. 2011), most
human neuroimaging studies currently employ Pearson cross-correlations of hemodynamic or
electrophysiological time courses. Unlike large-scale structural networks (which are thought to
be stable on shorter timescales of seconds to minutes), functional networks are highly variable,
exhibiting spontaneous dynamic changes during rest (Hutchison et al. 2013) as well as characteristic
modulations in different task conditions (Cole et al. 2014).

Network Analysis and Modularity

Modules are encountered across a broad range of networks. They may correspond to groups of
individuals in social networks, ensembles of interacting proteins, or coregulated genes in cellular
networks. In this article, the term module refers exclusively to building blocks in the organization
of brain networks; this usage of the term is distinct from concepts like modularity of mind in
cognitive theory (Fodor 1983). Modules in networks, generally speaking, correspond to clusters
of nodes that are densely connected, also called network communities (Figure 1b). Modules derive
from a decomposition of the network into subcomponents that are internally strongly coupled, but
externally only weakly coupled. This near-decomposability has long been regarded as a hallmark
of complex systems (Simon 1962). Importantly, modules can be detected in a purely data-driven
way, based only on the topology of the network, and understanding which nodes belong to which
modules can yield important insights into how networks function. Although network modules
seem to be easy to define, their detection presents significant obstacles and is subject to several
misinterpretations and biases.
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Community
structure: a partition
that induces the
division of a network
into modules, usually
such that no modules
overlap

Community
detection: a set of
tools used for
identifying a network’s
community structure
based on its topology

Modularity
maximization:
a set of community
detection methods
aimed at uncovering
partitions that
maximize the
modularity quality
function

Outline of Article

First, we survey various methods for detecting modules in brain networks, evaluate their advan-
tages and shortcomings, and discuss some practical issues. We then review the evidence for the
existence of modules in both structural and functional brain connectivity data sets. Finally, we
briefly consider the potential functional roles of modules from a variety of perspectives, including
brain evolution, wiring minimization, and the emergence of functional specialization and complex
dynamics.

METHODS FOR MODULE DETECTION

The notion of module detection refers to a collection of methods used to uncover a net-
work’s latent community structure. Most of the methods covered in this section use only the
information encoded in a network’s connectivity matrix to assess whether or not a network
has modules/communities, and, if so, to which module each node should be assigned (for an
encyclopedic review of many different approaches to module detection in networks, see Fortunato
2010). The terms community and module both refer to subnetworks that are embedded within a
larger network and will be used interchangeably. A related term is partition, which refers to any
division of network elements into communities. Although most module detection methods yield
nonoverlapping communities, in which each network node belongs to one and only one module,
it is possible in principle to partition a network into communities that overlap.

Modularity Maximization

A method for community detection that is widely applied in the detection of brain modules
is known as modularity maximization. This method aims to partition a network’s nodes into
K nonoverlapping communities, C1, . . . CK , so as to maximize the modularity quality function,
Q (Newman & Girvan 2004). Conceptually, a partition is considered high quality (and hence
achieves a greater Q score) if the communities it defines are more internally dense than would be
expected by chance. The partition that achieves the greatest value of Q, then, is taken to be a good
estimate of a network’s community structure. This intuition can be formalized as

Q = 1
2m

∑
i j

[ai j − pi j ]δ(σi , σ j ).

In this expression, ai j represents the number of links between nodes i and j. The term pi j stands
in for the expected number of links according to a null model, whose precise form is left up to
the user. The de facto null model is one that preserves each node’s degree but otherwise allows
connections to be formed at random. For an undirected network, this model gives an expected
weight of pi j = ki k j

2m , where ki = ∑
j

ai j is a node’s degree and 2m = ∑
i j

ai j is the total number of

connections in the network. The Kronecker delta function, δ(σi , σ j ), which is equal to unity when
nodes’ community assignments, denoted by σi ∈ {1, . . . , K }, are the same and is zero otherwise,
ensures that contributions to Q come only from the {i, j } where σi = σ j , i.e., from pairs of
nodes assigned to the same community. Whereas this description of Q is suitable for undirected
networks, the form of the quality function Q can be easily adapted to work for weighted and
directed networks (Leicht & Newman 2008).

The process of optimizing Q is known as modularity maximization and presents a challenge,
because it is computationally intractable to exhaustively search the space of all possible partitions,
even for small networks. To this end, many heuristics have been proposed to uncover partitions
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Partition
degeneracy:
the tendency for
community detection
algorithms to uncover
partitions of nearly
identical quality that
nonetheless induce
very different modules

with large Q scores, with the hope of approximating the partition corresponding to the global
maximum Q. These methods include divisive algorithms (Girvan & Newman 2002), spectral
decomposition (Newman 2004), extremal optimization (Duch & Arenas 2005), greedy algorithms
(Blondel et al. 2008, Clauset et al. 2004), and simulated annealing (Guimera & Amaral 2005),
among others.

Modularity Maximization in Signed Networks

In human neuroimaging, functional brain networks are commonly estimated from the signed
correlation matrix, ri j , of hemodynamic time series. This matrix is often converted to a sparse
positive-only matrix (amenable to standard graph analysis) by applying a threshold to retain coef-
ficients ri j ≥ τ . However, weak and negative correlations may reflect neurobiologically relevant
patterns, in which case the thresholding step can offer only a partial view of the topology. In
order to retain negative correlations and still use modularity maximization to define communities,
the definition of a community must be slightly reformulated. In the context of signed networks,
communities can be thought of as groups of nodes that are internally positively correlated but
externally anticorrelated. The standard modularity function can be adapted and made consistent
with this intuition by separately modeling the contributions of positive and negative correlations.
To calculate such a modularity, it is useful to first define the matrices r+

i j and r−
i j , which con-

tain only positive and negative correlation coefficients, respectively, and satisfy the expression
ri j = r+

i j − r−
i j . The positive (+) and negative (−) modularities are then given by

Q± = 1
2m±

∑
i j

[r±
i j − p±

i j ]δ(σi , σ j ).

These signed modularities can be scaled and combined to represent the total modularity of the
system (Gómez et al. 2009, Rubinov & Sporns 2011, Traag & Bruggeman 2009). The simplest
formulation is

Q = 2m+

2m+ + 2m− Q+ − 2m−

2m+ + 2m− Q−.

Here the positive modularity, Q+, which represents the excess of positive correlation coefficients
within modules, serves to increase the total modularity. The negative modularity, Q−, which
represents the excess of negative coefficients within modules, acts to decrease total modularity.

It is useful to note that, again, the precise form of the null model, p±
i j , was left unspecified.

Typically its value is given by the familiar expression p±
i j = k ±

i k±
j

2m± , though some authors have
proposed alternative models that may be more compatible with the Pearson correlation measure
(Bazzi et al. 2014, MacMahon & Garlaschelli 2015).

Methodological Issues and Extensions of Modularity Maximization

Despite its widespread use, modularity maximization (and in some cases the enterprise of com-
munity detection, more generally) encounters a number of shortcomings that limit its practical
applicability. Some of these shortcomings are mainly conceptual and relate to how one interprets
the estimated community structure obtained by modularity maximization. In other cases, they
represent fundamental limits of the measure itself.

Degenerate partitions. As a network’s size and its number of communities increase, the number
of partitions that achieve a near-maximal Q grows exponentially, leading to a degeneracy of
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Resolution limit:
a shortcoming of the
modularity function
that under certain
conditions prevents it
from detecting small
modules

Resolution
parameter:
a parameter that tunes
the size and number of
communities obtained
from modularity
maximization

high-quality partitions (Good et al. 2010). This degeneracy becomes especially problematic if
the partitions are dissimilar to one another. In that case it becomes difficult to choose a single
(“best”) representative partition. In fact, this is an issue shared by quality functions other than
Q, some of which will be discussed in later sections. The issue may be addressed by expressing
the optimal partition not as a single “best” partition but as a meaningful average across multiple
near-optimal partitions, and by treating nodes’ community affiliations as fuzzy variables (Bellec
et al. 2010, Rubinov & Sporns 2011) or characterizing them by probabilistic clustering (Hinne
et al. 2014), rather than as hard assignments. Some practical guidelines for obtaining a consensus
partition are discussed below.

Resolution limit and multiresolution modularity. Another methodological issue facing mod-
ularity maximization is that, under certain conditions, it may be impossible to detect communities
below a certain scale (size), even if those communities are otherwise well defined (e.g., inter-
nally maximally dense). This problem is called the resolution limit of modularity (Fortunato &
Barthelemy 2007) and arises from a trade-off between the number of communities into which a
network is partitioned and the Q value associated with those partitions. At some optimal number
of communities, this trade-off achieves a peak corresponding to the partition with the maximum
value of Q. The location of this peak, however, is a consequence of how Q is formally defined
and may not reflect the network’s true community structure. In practical terms, the resolution
limit implies that the communities obtained by simply maximizing modularity may contain several
smaller and better-defined communities.

To circumvent the resolution limit issue, a number of multiresolution techniques have been
proposed (Arenas et al. 2008, Reichardt & Bornholdt 2006). These techniques incorporate reso-
lution parameters into the Q measure that can be tuned to uncover communities of different sizes.
In the formulation of Reichardt & Bornholdt (2006), for example, the resolution parameter, γ ,
scales the importance of the null model:

Q (γ ) = 1
2m

∑
i j

[ai j − γ pi j ]δ(σi , σ j ).

When γ < 1, larger communities are resolved, whereas γ > 1 yields more communities containing
fewer nodes. It is important to note, however, that varying γ only makes it possible to detect
communities of different sizes; it does not solve the issue of the resolution limit (Lancichinetti &
Fortunato 2011). That is, for any value of γ , the resolution limit still exists, and at that level it
remains impossible to detect communities of certain sizes.

A number of methods to choose the resolution parameter have been proposed. Many modularity
maximization techniques contain a stochastic element, so that their output varies from run to run,
as is the case for the method of Blondel et al. (2008) or simulated annealing. This means that in
practice these algorithms should be run multiple times, thereby generating an ensemble of high-
quality partitions. One suggested method for choosing γ takes advantage of the variability within
a partition ensemble, reporting community structure at the value of γ at which partitions are most
similar to one another (Bassett et al. 2013). The similarity of two partitions can be computed, for
example, as the normalized mutual information, the Jaccard index, or the Rand index. However,
because the precise values of these similarity measures are often difficult to interpret, it is good
practice to use the z-scores, rather than the raw scores, of these measures (Traud et al. 2011).
Alternative approaches for choosing γ include cross-validation using metadata or domain-specific
knowledge. For example, Betzel et al. (2013) identified multiscale modules from brain structural
networks, reporting the resolution at which the structural modules were most similar to brain
functional connectivity. Alternatively, detailed comparison to an appropriately constructed null
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Multislice network:
a representation of a
network as a series of
slices, in which each
slice represents a
separate observation of
the network

Participation
coefficient: a measure
that quantifies how
evenly or unevenly a
node’s connections are
distributed across a set
of modules

model can be used to select the γ at which community structure deviates most from what would be
expected under the null model (Traag et al. 2014). In general, although many older studies of brain
networks have not explicitly considered the resolution limit inherent in Q, it is now increasingly
clear that exploring a range of γ values yields a more comprehensive view of a network’s modular
organization.

Multiresolution, multislice modularity. Brain networks are most often analyzed as single-slice
networks, or snapshots, providing a picture of how one single instance of a network is configured.
Although this approach may be appropriate in cases in which brain networks reflect static arrange-
ments of nodes and edges (as in many anatomical networks or longtime averages of resting-state
functional networks), it fails to capture situations in which the research objective is to compare
modularity in networks collected across multiple time points, many individual participants, or
different experimental conditions. A number of studies have begun to investigate multislice rep-
resentations of brain networks (Bassett et al. 2011, 2013, 2015; Cole et al. 2014) in which multiple
instances of a single network (a slice) form a multislice stack. If the connectivity in a single-slice
network is encoded in the matrix, ai j , the connectivity of a multislice network is given by ai j s ,
where the additional subscript, s, indexes slices.

Given a series of network slices, it might be interesting to characterize community structure
across slices. A naı̈ve way to accomplish this is to maximize the modularity of each slice indepen-
dently. This comparison, however, requires matching communities across slices, a process that
often leads to ambiguities. An alternative approach for finding communities in multislice networks
(Mucha et al. 2010) consists of introducing a coupling parameter that links corresponding nodes
across slices and then using a quality function that extends Q(γ ) multislice networks. The new
quality function reads

Q(γ, ω) = 1
2μ

∑
i j s r

[(ai j s − γs pi j s )δ(σi s , σ j s ) + δ(i, j ) · ω jrs ]δ(σi s , σ jr ).

The expression (ai j s − γs pi j s )δ(σi s , σ j s ), with the exception of the slice subscript, s, corresponds to
the summand in the single-slice version of multiscale modularity. The additional term, δ(i, j )·ω jrs ,
defines the strength of coupling of nodes between slices. The other delta function, δ(σi s , σ jr ),
ensures that the {i, j, r, s } that fall outside of communities are not counted in the total summation.

One of the advantages of this method is that community labels are consistent across slices. In
other words, nodes assigned to some community C, irrespective of the slice in which they appear,
all reference the same community, which makes matching communities across slices unnecessary.
As with multiscale modularity, there is the issue of how one should choose the parameters {γ, ω}.
The choice is nontrivial and as yet there is no clear method for doing so. Bassett et al. (2013)
advocated making detailed comparisons to null models (e.g., coupling node i to j �= i across
slices) and focusing on the {γ, ω} pair corresponding to the maximum difference between some
measure—e.g., the quality of the partition Q(γ, ω)—taken on the real community structure and
the same measure taken on the communities obtained from the null model.

Participation coefficient. Once a network has been partitioned into modules, individual network
nodes can be classified based on how they are embedded within and between communities. Two
measures that have proven fruitful in this endeavor are a node’s participation coefficient and the
z-score of its within-community degree (Guimera & Amaral 2005). The participation coefficient,
pi , expresses the degree to which a node’s connections are distributed across communities. If its
value is close to unity, the node’s connections fall uniformly across all communities; if its value
is close to zero, most of its connections fall within a single community. The z-score of a node’s
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Random walk:
a traversal over a
network where each
step from one node to
another is randomly
chosen

within-community degree, zi , expresses the number of connections a node makes to other nodes in
the same community in terms of standard deviations above or below the mean. Positive z-scores
indicate that a node is highly connected to other members of the same community; negative
z-scores indicate the opposite.

Guimera & Amaral (2005) suggested that nodes’ functional roles could be gleaned from the
combination of pi and zi . The first distinction is between nodes that serve as hubs and those that
are considered part of the network’s periphery (nonhubs). Intuitively, hub nodes make dispropor-
tionately more connections to nodes within their own module compared to peripheral nodes, and
therefore correspond to nodes with the highest zi . Hub nodes can be further classified according
to the magnitude of their participation coefficient. As the value of pi increases from zero to unity,
a node’s connections are distributed more uniformly across modules. The smallest participation
coefficients identify provincial hubs whose connections are largely restricted to their own module.
At the opposite extreme are kinless hubs, with connections in virtually all modules. Intermedi-
ate participation coefficients highlight connector hubs, whose links fall between a few different
modules.

An appealing aspect of assigning roles to nodes based on module partitions is that this approach
can be applied to both structural and functional networks, and it can reveal which nodes are
especially important for maintaining intermodule communication. Alternative ways to express
the relations of nodes across multiple modules include the measurement of regional connection
diversity (analogous to the entropy of the node’s module-by-module connection strengths), which
can also be adapted for use with signed networks (Rubinov & Sporns 2011).

Alternatives to Modularity Maximization

Though modularity maximization is the most common method for identifying a network’s com-
munities, there are a multitude of alternative techniques. These alternatives present attractive
opportunities for network neuroscience; however, only a subset has so far been applied to brain
data. Here we review some of them.

Distance-based modules. One of the simplest methods for detecting modules in complex net-
works is to extend distance-based clustering techniques to be compatible with network data (Hastie
et al. 2009). This method assumes that network nodes can be embedded in a high-dimensional
space and that modules correspond to clusters near one another in that space. How distance in that
space is measured is flexible, though one common choice is to set the distance of node i to j equal
to di j = 1 − Ji j , where Ji j = |ai ∩ a j |

|ai ∪ a j | is the Jaccard index and ai is the connectivity profile of node
i (i.e., the set of all other nodes it is connected to). In this case, the greater the overlap in nodes’
connectivity profiles, the closer they will be to one another. Given the complete set of pairwise
distance relationships, modules can then be recovered using standard distance-based algorithms
such as k-means or hierarchical agglomerative clustering. Although this process is simple, and de-
terministic in the case of hierarchical clustering, its definition of a community as a spatial cluster
diverges from the intuition (inherent in modularity maximization) of communities as defined by
internally dense connectivity.

Infomap. Another interesting class of community detection methods is grounded in information
theory (Aldecoa & Marin 2011, Ronhovde & Nussinov 2009). The most commonly used is the
Infomap algorithm (Rosvall & Bergstrom 2008), which casts community detection in terms of the
path that a random walker traces as it hops from node to node, using connections as pathways to
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Block model:
model-based
community detection
method whose
parameters are
selected to maximize
the likelihood that the
model generated an
observed network

traverse the network. A random walk on a network defines a Markov chain whose states correspond
to the network’s nodes, where the transition probability from node i to j is given by πi→ j = ai j

ki
. If

a random walker makes L steps, the sequence of nodes it visits is given as X = {x1, . . . , xL}, where
xt ∈ {1, . . . , N} is the node the walker visits at step t of the walk.

The aim of Infomap is to describe an infinite-length walk as succinctly as possible. A naı̈ve
approach would be to assign each node a name, with the shortest names reserved for the nodes that
are visited most frequently. This strategy is usually suboptimal: Because each node needs a unique
name to unambiguously describe the walk, the description tends to be long. The random walk can
be described more succinctly by taking into account regularities in the process that generated X.
Networks with communities, for example, introduce biases in random walks. If a walker starts in
a community, it will likely dwell inside that community for many steps due to the preponderance
of within-community connections. A more efficient description of the random walk takes this bias
into account by using two separate lists of names: One list assigns communities unique names,
whereas the other list is a reusable set of names reserved for nodes within communities. Using
these lists along with an indicator that tells when the walker is entering a new community, one
can describe the random walk much more efficiently (Rosvall et al. 2009). This intuition forms
the basis of the Infomap algorithm. The same way modularity maximization uses Q to score the
quality of a partition, Infomap scores partitions by their description length; the optimal partition
is the one that can compress the description of a random walk by the greatest amount.

Block models. Community detection can also be recast as a statistical inference problem by
fitting what are known as block models to network data (Carrington et al. 2005, Hastings 2006).
A block model is an example of a network generative model, which makes assumptions about the
process underlying a network’s formation and estimates the likelihood that this process generated
the network. In the simplest case, block models assume that all connections are made independent
of one another, and that the probability of a connection forming between nodes i and j depends
only on the communities σi and σ j to which those nodes are assigned. Usually these community
assignments and the intercommunity connection probabilities θrs , where r and s are different
communities, are unknown and treated as free parameters. The aim of block modeling, then, is
to reverse engineer the generative model by estimating those parameters for which the likelihood
that the resulting block model generated a given network is maximized.

It may seem that the added complication of having to estimate θ in addition to nodes’ com-
munity assignments (not to mention the fact that the number of communities usually has to be
specified ahead of time) makes block modeling unattractive. However, block modeling actually
offers more flexibility than other community detection methods, because it can identify more
diverse architectures than the standard community definition of internally dense and externally
sparse groupings of nodes. These architectures include core-periphery and bipartite organizations.
As an example, consider the following intercommunity connection probability matrix:

θ =
[

0.8 0.2
0.2 0.8

]
.

If we generated synthetic networks using this matrix as a template, we would expect that virtually
any community detection method would be able to resolve the two communities, given that the
two communities are clearly defined through their internally dense connections.

Contrast this with another example of a network with a dense core and sparse periphery:

θ =
[

0.8 0.2
0.2 0.1

]
.
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Clique: a group of
fully connected nodes

Line graph: network
transformation in
which edges in the
original network are
linked to one another
if they share a node

Independent
component analysis:
a multivariate method
usually applied to
fMRI time series for
identifying maximally
independent spatial
maps (modules)

In this case, the first group is still community-like, but nodes in the second group are more likely
to make connections to nodes in the first group than to nodes in their own group. Approaches
such as modularity maximization or Infomap, if applied to synthetic networks generated using
this set of parameters, would fail to deliver anything resembling the matrix θ . A block model,
instead, easily detects this type of organization. In general, block models can be used to detect
more varied types of communities than most other methods because the definition of communities
is not prespecified, but rather inferred from the network data and encoded in the elements of θ .

Overlapping communities. All the community detection methods that have been reviewed to
this point partition networks into nonoverlapping communities. An alternative set of methods
returns overlapping communities, so that nodes can be affiliated with more than one subnetwork
simultaneously. Clique percolation is one of the earliest methods for identifying overlapping
communities (Palla et al. 2005). This method is based on the intuition that communities tend to
be comprised of cliques, that is, fully connected subgraphs. To identify communities, all cliques of
a fixed size k must first be enumerated, and a clique adjacency matrix is constructed. Two cliques
are considered adjacent if they share k − 1 nodes. Communities correspond to the connected
components of the clique adjacency matrix. Because nodes can participate in multiple cliques,
mapping the communities from the clique level back to the node level may result in nodes being
assigned to multiple communities.

Another set of methods for detecting overlapping communities involves transforming a network
into its corresponding line graph. Nodes in a line graph represent connections in the original
network. Line graph nodes are connected to one another if the corresponding connections share
a node in the original network. For example, if {h, i} and {i, j } are edges in some network, they
would be linked in that network’s line graph because they are both incident on node i, whereas
{h, i} and { j, k} would not. There exist several similar approaches for using a network’s line graph
to obtain overlapping communities. The simplest approach is the one advocated by Evans &
Lambiotte (2009), which assigns weights to the connections via a normalization step and then
applies nonoverlapping community detection methods (e.g., modularity maximization) to the
resulting line graph’s connectivity matrix. When the resulting edge communities are mapped
back to nodes, nodes may have multiple community affiliations.

A second approach for clustering a network’s line graph, proposed by Ahn et al. (2010), weights
line graph connections according to their similarity ( Jaccard index). Line graph nodes are aggre-
gated into communities using agglomerative hierarchical clustering, and the hierarchical tree is
cut at a level that maximizes the partition density quality function, which is the average density of
connections within communities, weighted by the size of each community. Interestingly, partition
density does not suffer from a resolution limit.

Independent component analysis. In the neuroimaging literature, an important technique
for uncovering communities from functional data is independent component analysis (ICA)
(Beckmann & Smith 2005, McIntosh & Mišić 2013). ICA assumes that voxels’ time series are linear
combinations of a smaller set of archetypical time series. Unlike the similar technique of princi-
pal component analysis, in which the archetypes are both spatially and temporally independent,
ICA yields archetypes that are maximally independent in one or the other domain. If one specifies
spatial independence, the result is a loading of voxels onto minimally overlapping spatial archetyp-
ical patterns, which can be interpreted as communities. Interestingly, the patterns obtained from
clustering or performing community detection on functional magnetic resonance imaging (fMRI)
functional connectivity networks are often quite similar to those obtained with ICA (Bellec et al.
2010, Power et al. 2011, Yeo et al. 2011). In contrast to network-based approaches to modularity,
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ICA requires the user to select a desired number of components (i.e., a model order) and provides no
information about how these components are related (e.g., through between-module connections).

Practical Issues in Module Detection

To this point we have discussed a number of popular community detection methods, emphasizing
those that have been applied to brain data. In doing so, we necessarily omitted many methods
that may yet prove useful in network neuroscience, including several based on random walks
(Delvenne et al. 2010, Pons & Latapy 2005), belief propagation (Zhang & Moore 2014), and
phase synchronization (Boccaletti et al. 2007). This section is concerned with practical issues
related to community detection (see example in Figure 2), specifically the choice of method for
module detection, and with the significance and robustness of module partitions.

Choice of method. The choice of method for detecting communities first depends on how net-
work communities are conceptualized. Are communities taken to be groups of tightly connected
nodes? Do they represent groups with similar connectivity profiles? Can nodes belong to more
than one community? Another factor influencing the choice of method is the nature of the neuro-
biological data and the empirical question that is being explored. For example, signed correlation
matrices derived from functional connectivity may require approaches that can deal with signed
connections (unless only positive connections are deemed of interest). Similarly, a research ques-
tion dealing with the time evolution of networks strongly suggests multislice approaches. These
conceptual data- and research-driven considerations motivate the use of certain methods while
excluding others and should be carefully examined before beginning community detection.

An important factor for choosing a method is how well community detection algorithms per-
form in identifying planted communities in synthetic benchmark networks. A benchmark network
usually contains multiple clusters of nodes that can be made more or less community-like by tun-
ing a parameter that controls the ratio of within-cluster to between-cluster connections. The best
benchmark networks also incorporate as many properties of real-world networks as possible, for
example, heterogeneous degree distributions and communities of different sizes (Lancichinetti
et al. 2008). Several recent studies have undertaken the task of benchmarking community de-
tection methods, including many of those surveyed here (Danon et al. 2005, Lancichinetti et al.
2009). Interestingly, these studies report a stratification of community detection methods, with
some clearly outperforming others in terms of both computational complexity and the ability to
successfully identify communities in benchmark networks. The more recent study (Lancichinetti
et al. 2009) found that Infomap, a modularity maximization algorithm (Blondel et al. 2008) and a
multiresolution algorithm that maximizes a quality function similar to Q (Rondhove & Nussinov
2009), performed the best across all test cases. (The algorithm by Blondel et al. returns a hier-
archy of communities; the lowest level of hierarchy—i.e., the smallest communities—was used
to benchmark the algorithm.) It should be noted that the benchmark networks used in these
tests lacked some important features typically found in real-world networks (e.g., hierarchical
communities).

Consensus communities. Given that different methods have sometimes complementary
strengths or weaknesses, it may be advantageous to combine the outputs of multiple methods
(or multiple runs of a single method to address degeneracy of module partitions) to obtain aver-
age or consensus communities. One approach for doing so is to generate and iteratively cluster a
network’s association matrix through a process called consensus clustering. Given an ensemble of
partitions acquired from several community detection methods (or multiple runs), the association
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Figure 2
Illustration of multiscale modularity maximization for a structural (diffusion spectrum imaging) brain network (a). The size and
brightness of connections indicate the number of subjects for which a connection is present and the log-transformed weight of that
connection, respectively. For this network and for 20 random networks (rewired to preserve degree sequence), we maximized
modularity using the Louvain algorithm (Blondel et al. 2008) and varied the resolution parameter from γ ∈ [0.5, 2.0] in increments of
0.05. As a function of γ , we obtained the mean modularity for the empirical and randomized networks, Qempirical and Qrandom. To
report community structure, we chose the scale of γ at which the quality of empirical partitions exceeded that of random partitions by
the greatest amount (b). At this scale (γ = 0.7) we further examined 100 partitions of the empirical network (c), which revealed that
nodes’ community assignments were inconsistent. To resolve this variability, we performed consensus clustering, following Bassett
et al. (2013) and Lancichinetti & Fortunato (2012). We constructed the association matrix (d ) counting the number of times that node
pairs were assigned to the same community. We generated many realizations of null partition ensembles by randomly permuting the
columns of the partition ensemble matrix (e) and constructed null association matrices ( f ). We thresholded the empirical association
matrix ( g), retaining only elements greater than the maximum value of any null association matrix. We then reclustered the thresholded
matrix to obtain consensus communities (h). Finally, we visualized community structure by reordering the connectivity matrix so that
nodes in the same community would be next to one another (i ).

624 Sporns · Betzel

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

01
6.

67
:6

13
-6

40
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

18
0.

24
1.

16
9.

15
3 

on
 0

6/
23

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PS67CH25-Sporns ARI 14 November 2015 13:9

matrix is an n × n matrix whose element ti j counts the number of times that nodes i and j are
assigned to the same community across the full ensemble. To obtain consensus communities, one
can simply recluster the consensus matrix using the same community detection algorithms that
generated the original ensemble of partitions. To amplify the contribution of node pairs that are
consistently assigned to the same community while silencing those that are not, researchers often
impose a threshold on the consensus matrix prior to reclustering, setting any elements ti j < τ

equal to zero. Lancichinetti & Fortunato (2012) advocated exploring a range of thresholds, because
smaller or larger values of τ may produce correspondingly larger or smaller consensus communi-
ties. Alternatively, one can choose τ in a data-driven way by comparison with a postoptimization
null model. Bassett et al. (2013) suggested setting the threshold equal to the maximum value of a
randomized association matrix, tr

i j , constructed by permuting the node order of each partition in
the ensemble and generating an association matrix from the randomized partitions. In any case, the
partitions obtained after reclustering the thresholded consensus matrix are usually more similar to
one another than are the partitions used as input, and they often converge into a single consensus
partition. Another approach that does not require thresholding involves finding the partition that
maximizes the modularity Q = ∑

i j
[ti j − tr

i j ]δ(σi , σ j ), where tr
i j is the mean association weight across

an ensemble of randomized association matrices. As an alternative to consensus clustering, one
can also calculate, for every partition in an ensemble, its mean similarity with respect to all other
partitions and choose as the consensus partition the one with greatest average similarity (Doron
et al. 2012).

Statistical significance and robustness. Once a network’s community structure has been es-
timated, there remain some challenging technical and theoretical questions. For instance, how
“good” do the communities have to be before we can confidently say that a system is modular? It
is important to remember that most module detection methods will converge on module partitions
even for random networks.

There are multiple ways of addressing this question. One approach consists of comparing
the quality of the community structure estimated from the empirical network with the same
measure made on an ensemble of totally random networks (e.g., preserving the degree sequence
of the original network, but otherwise randomizing the placement of connections). For example,
comparison of the estimate Q for the empirical network to 〈Qrandom〉 and 〈Q2

random〉 − Q2
random

obtained from an ensemble of random networks can yield a z-score, Qz = Q−〈Qrandom〉√
〈Q2

random〉−Q2
random

. There

are some issues with this approach, as certain classes of networks can be more modular than
chance without possessing any true community structure (e.g., lattice networks), whereas there
are networks with a clear community structure but whose overall Q is not statistically different than
chance (Karrer et al. 2008). Nonetheless, Qz can provide some general indication as to whether a
system is, indeed, modular.

Another approach, known as robustness testing, entails adding a small amount of noise to
the community detection process to induce change in a network’s community structure (Gfeller
et al. 2005, Karrer et al. 2008, Wu & Huberman 2004). Intuitively, the estimates of community
structure for networks with well-defined communities will be similar both pre- and postpertur-
bation, whereas networks with ill-defined or brittle communities are more likely to experience
larger changes in their estimated community structure or in the quality of communities following
the perturbation. The perturbations can be subtle—e.g., rewiring a small fraction of connections,
adding noise to the network’s edge weights, shuffling edge weights, changing by a small amount
the scale of a resolution parameter, or using an altogether different quality function. This ap-
proach has a number of downsides. For instance, it requires that the community detection process
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be repeated multiple times for each perturbation tested, which may be time consuming. It also
introduces several free parameters, such as the number of edges to be rewired, the nature of the
noise added to the edge weights, or the amount of variation in the resolution parameter. Despite
these issues, robustness testing represents a powerful method for teasing apart the aspects of a
network’s community structure that are fragile in the presence of noise.

The approaches described above entail comparing estimates of a network’s community struc-
ture to estimates made on a null (or noisy) model in an effort to determine whether those commu-
nities are statistically significant or robust to perturbations. Another set of methods attempts to
detect ab initio only the most statistically significant communities. One such method is OSLOM
(Order Statistics Local Optimization Method) (Lancichinetti et al. 2011), which scores commu-
nities based on how likely it is to find a community with similar properties in a random network
with no community structure (Lancichinetti et al. 2010). OSLOM identifies significant commu-
nities using a growing-pruning model in which a community’s statistical significance is assessed
after both adding new nodes and pruning existing ones. Because communities are detected using
only local information, this method does not suffer from a resolution limit, and it also allows for
communities to overlap. OSLOM is also unique in that it can detect no communities in the event
that no possible grouping results in a statistically significant community. This is the outcome one
would expect if OSLOM were given a totally random network as its input. OSLOM also makes
another unique contribution, in that it detects communities using only the local properties of a
network. Other approaches, like modularity maximization, pursue global optimization strategies;
this entails that, if new nodes were added to a given network, the overall community structure
would likely change, whereas with OSLOM this is typically not the case.

EVIDENCE FOR MODULES IN BRAIN NETWORKS

The focus of the previous section was on the methods and technical challenges associated with
detecting communities in complex networks. We now turn to a brief review of the empirical
evidence for modularity in brain networks.

Brain Networks in Model Organisms

Significant evidence for modularity in neural systems comes from the anatomical neural networks
of model organisms such as the nematode Caenorhabditis elegans and various mammalian species.
Brain networks of model organisms are generally mapped using various techniques, including
reconstruction from serially sectioned electron micrographs (White et al. 1986) or the aggregation
of data from anatomical tract-tracing experiments (Kötter et al. 2004, Markov et al. 2014, Oh et al.
2014, Scannell et al. 1995, Stephan et al. 2001).

The neuronal network of C. elegans contains more than 300 neurons and several thousand
electrical and chemical synapses. Since its reconstruction in the early 1980s (White et al.
1986), this network has been the subject of many graph-theoretical analyses (Varshney et al.
2011), including several that have attempted to elucidate its division into communities. These
studies have employed a wide range of methods for uncovering C. elegans’ community structure,
including modularity maximization (Bassett et al. 2010, Sohn et al. 2011, Towlson et al. 2013),
simulated annealing (Sohn et al. 2011), divisive algorithms (Towlson et al. 2013), and spectral
decomposition ( Jarrell et al. 2012, Pan et al. 2010, Sohn et al. 2011) as well as stochastic block
models (Pavlovic et al. 2014), Infomap, and link-clustering ( Jarrell et al. 2012). Despite the
varied approaches to community detection, the results of these analyses largely converge in that
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the resulting communities resemble, at some level, the functional organization of the C. elegans’
nervous system. For example, Jarrell et al. (2012) analyzed the subnetwork of neural circuitry
and musculature involved in mating. Among the communities uncovered in this analysis were
groups of sensory neurons and interneurons for detecting the mate’s vulva and initiating a motor
response, along with another group of mostly motor neurons associated with locomotion. Analyses
of the complete C. elegans network have reported similar results, with communities revealing
known functional groups (Pan et al. 2010, Sohn et al. 2011) or novel network properties, such
as cores (Pavlovic et al. 2014), the roles of hub nodes (Towlson et al. 2013), and the hierarchical
organization of communities nested within communities (Bassett et al. 2010, Sohn et al. 2011).

Similarly, meta-analytic cortical networks for both the cat and the macaque (Felleman & van
Essen 1991, Scannell et al. 1995) have been described as modular by Hilgetag et al. (2000). These
early analyses predated the Q quality function, so the authors developed their own module detec-
tion approach called optimal set analysis (OSA). When applied to the cat cortical network, OSA
returned four prominent clusters corresponding to visual, auditory, frontolimbic, and somatosen-
sory areas. Corresponding clusters were detected in the macaque cortex, with the visual cluster
subdivided into dorsal and ventral streams. Using the cat data set, Zamora-Lopez et al. (2010)
discovered that a small number of hub regions extend connections across community boundaries
to other hub regions, forming a higher-level community situated on top of the four communities
detected by Hilgetag et al. (2000). Confirming these earlier findings, de Reus & van den Heuvel
(2013) have described specific patterns of directed connections that interlink hubs and network
communities in cat cortex.

More recently, using a different macaque data set, researchers have detected a slightly differ-
ent set of communities using modularity maximization and taking the partition with the highest
Q (Harriger et al. 2012, Modha & Singh, 2010). These communities were largely the same as
in Hilgetag et al. (2000), though the frontolimbic community was now fractured into two com-
munities. Using yet another (incomplete) macaque data set, Goulas et al. (2015) maximized Q
(again treating the partition with the highest Q as the optimal partition), which returned five
communities, corresponding roughly to parieto-motor, occipito-temporal, temporal, frontal, and
somato-motor communities. Anatomical modules that map onto functionally related network
nodes have also been identified in the Drosophila (Shi et al. 2015), mouse (Wang et al. 2012), and
rat (Bota et al. 2015) brain. In general these studies, together with community analyses of the cel-
lular network of C. elegans, support the notion that brain networks are organized into communities
whose boundaries largely agree with known functional subdivisions.

Despite their generally converging results, these efforts also have shortcomings. Nearly all of
these references optimized single-scale modularity to uncover communities, reporting only the
partition corresponding to the observed maximum Q. Given the resolution limit associated with
Q and the near-degeneracy of solutions, future studies would benefit from performing detailed
comparisons against null models, expressing communities not as hard assignments but as fuzzy
assignments over an ensemble of partitions, or testing the robustness of the observed communities
to network perturbations.

It is interesting to note that most of the studies discussed here report communities whose
members (neurons or brain regions) are spatially contiguous. In other words, nodes assigned
to communities are not only densely connected, but also spatially proximal to one another. On
the one hand, spatial contiguity is consistent with the hypothesis that neural systems attempt
to reduce total metabolic and material cost by preferentially forming short-range connections, a
well-documented aspect of the C. elegans nervous system (Chen et al. 2006, Cherniak et al. 2004,
Nicosia et al. 2013). Indeed, the spatial compactness of anatomical communities may reflect an
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Wiring cost: the
material and metabolic
expenditure associated
with supporting an
organism’s neural
wiring

evolutionary drive to place functionally related neural elements near one another, thereby reducing
the total cost of wiring. On the other hand, a system that strictly minimizes wiring cost will tend
to form a geometric lattice, which can give the impression of comprising communities because
it possesses a greater Q score than chance, although in fact it has no true community structure
(Henderson & Robinson 2013, Samu et al. 2014). If this is the case, then observed communities
may be a reflection of spatial clustering and not functional relatedness of neurons.

Thus, a network’s spatial embedding can confound the interpretation of its communities. In
effect, it introduces ambiguity about the process under which the communities were generated:
Does the density of internal connections reflect spatial or functional relationships? If one is using
modularity maximization for community detection, this issue can in part be addressed by modifying
the connectivity null mode, pi j , so that the expected density of connections depends on distance
(Expert et al. 2011). Maximizing such a quality function returns communities whose internal
density of connections exceeds what is expected given not only the nodes’ degrees but also the
internode distances within those communities.

So far, the majority of network studies in animal models have focused on anatomical connec-
tivity. The availability of large-scale cellular-resolution recording methods will soon provide data
sets that are amenable to the detection of functional modules in dynamic brain activity. For ex-
ample, clusters of highly correlated brain regions can be derived from optical recordings of neural
activity (Ahrens et al. 2013) or from spike time series on multielectrode arrays (Shimono & Beggs
2015). In general, network-based module detection methods are important tools for dimension
reduction and compact descriptions of functional neuronal assemblies in animal recordings.

Human Brain Networks

Unlike the anatomical networks discussed in the previous section, networks of the human brain
are estimated noninvasively, usually using MRI technology. The indirect manner in which these
data are acquired raises questions about the sensitivity and reliability with which human brain
networks can be mapped, issues that are extensively covered in the extant neuroimaging litera-
ture. Nonetheless, the fact that neuroimaging can be performed in vivo on cognitively engaged
individuals makes these methods indispensable for investigating how human brain networks relate
to brain function and behavior. Here we briefly review what has been learned to date about the
modular organization of the human brain. We will leave aside an extremely active research area
focusing on disturbances of modular organization in the context of clinical disorders (Alexander-
Bloch et al. 2012, Fornito et al. 2015), because even a cursory overview of this topic is far beyond
the scope of the present article.

Anatomical networks. Despite considerable methodological differences, human brain networks
share many of the same properties with those of model organisms, including community structure.
The study by Hagmann et al. (2008), one of the first to note this, used spectral decomposition
to maximize Q, which yielded six spatially contiguous communities: two positioned medially over
the posterior cingulate cortex and precuneus and two pairs of bilaterally symmetric communities
centered on the frontal and temporoparietal cortex. Highly connected brain regions situated
along the midline formed links to multiple communities and served as connector hubs, whereas
regions within the more lateral communities maintained most of their connections within their
own community, thus forming provincial hubs. These results were expanded upon in recent work
showing that hub regions, in particular those that are densely interconnected as part of the human
brain’s anatomical rich club, are located at the interface of many functional resting state networks
and may play an important role in regulating information flow (van den Heuvel & Sporns 2011,
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2013). As in analyses of modules in model organisms, findings from human studies again indicate
a close correspondence of membership in structural modules with functional relations expressed
across different domains of behavior and cognition.

As noted above, Q suffers from a resolution limit, the effects of which can be partially mitigated
by exploring the range of communities encountered upon varying a resolution parameter. Two
recent papers examined the multiscale organization of human anatomical networks by varying
the resolution parameter in the multiscale modularity generalization (Lohse et al. 2014) and by
recasting community detection in terms of a random walker moving over the network at different
timescales (Betzel et al. 2013). Both studies reveal interesting community-level organization at
multiple scales. Lohse et al. (2014) found that community radius, a measure of the spatial com-
pactness of communities, increased the community size, a relationship that would be absent in a
network with inefficient spatial embedding. Furthermore, they demonstrated that the way specific
variables fluctuated as a function of the resolution parameter was useful for identifying whether a
subject was diagnosed with schizophrenia or was part of a control population. Betzel et al. (2013)
detected communities by maximizing the partition stability quality function (Delvenne et al. 2010)
and looked for the resolution parameter for which the relationship between the structural com-
munities was most predictive of brain functional connectivity. Interestingly, the scale at which this
relationship peaked was far from the default scale, further motivating the exploration of multiscale
community structure.

Functional networks. Community detection can be readily applied to brain functional networks,
though some care must be taken in matching the community detection method to the method
used for estimating functional connections. For example, if a functional network is estimated
using full (Pearson) or partial correlation as the measure of connectivity, then there may be many
connections with negative weights. Very few community detection methods, other than the signed
variant of Q, are capable of dealing with negative edge weights. Although most studies remove
negative correlations (by thresholding) from the analysis, it should be noted that this step may
inadvertently discard neurobiologically relevant information. Alternative non-negative measures
of functional connectivity like coherence or mutual information allow the use of any community
detection method that can handle weighted connections.

Numerous studies have shown that the brain is organized into clusters or modules of function-
ally interconnected regions (Meunier et al. 2009b) with reproducible boundaries and that resolve
subject-specific aspects of the brain’s intrinsic functional organization (Laumann et al. 2015). One
of the best examples of community structure in brain functional networks (Power et al. 2011)
extracted communities from resting-state fMRI data and, using a map of task-based activations,
mapped these communities to cognitive/behavioral function. An outstanding feature of this study
is its use of multiple methods for detecting communities (Infomap and modularity maximization).
Comparison of these methods showed significant agreement but also small differences in partitions
obtained using Infomap versus those obtained using modularity maximization. Analysis of the re-
lation between network communities and cognitive/behavioral function revealed some interesting
features of communities obtained from functional brain networks that were not usually present in
structural brain networks. In functional networks, connections correspond to statistical relation-
ships between brain regions rather than physical linkages, and therefore carry no direct metabolic
or material cost. Thus, there is no obvious penalty to forming strong long-distance functional
connections. Accordingly, many of the communities observed in brain functional networks are
spatially distributed. For example, Power et al. (2011) identify large communities corresponding to
the default mode network and to the frontoparietal control, dorsal attention, and ventral attention
networks, each of which are made up of multiple spatially remote components.
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FUNCTIONAL MODULES ACROSS THE HUMAN LIFESPAN

Modules in functional brain networks are thought to represent groups of brain regions that are collectively involved
in one or more cognitive domains. A number of recent studies have presented evidence suggesting that the brain
becomes increasingly less modular (i.e., less segregated) with age. Meunier et al. (2009a) compared groups of
younger and older adults, using single-scale modularity maximization to discover modules for both groups. The
older group formed fewer modules containing groups of brain regions that, in the younger group, had formed distinct
modules. Corroborating these results, Geerligs et al. (2015) compared populations of young and old participants,
reporting a decrease in modularity, Q, driven by decreased internal connectivity within control, default mode,
and somatomotor modules along with increased intermodule connections. Two recent studies have tracked the
modularity of functional brain networks continuously with age. Chan et al. (2014) used communities defined in an
earlier study (Power et al. 2011) and reported an overall decrease in segregation with age, an effect driven by both
association and sensorimotor systems. Concurrently, and using a different definition of communities (Yeo et al.
2011), Betzel et al. (2014) reported decreased modularity with age in modules associated with cognitive control and
attention.

Another study, rather than directly measuring functional connectivity, relied on a meta-analytic
approach for building brain coactivation maps (Crossley et al. 2013). In this case, the authors
used the thousands of images detailing the foci of task-based brain activations available in the
database BrainMap (Laird et al. 2005), along with the conditions under which those activations
were reported. Regions that became active under similar task conditions across a range of tasks
were considered adjacent to one another in a coactivation network. This network is different from
most functional networks in that the connections represent coactivation rather than correlations
among time courses, and in that the data are derived from task-evoked rather than resting brain
activity. Modularity maximization yielded four communities corresponding to four behavioral
domains: emotion, perception, action, and mixed. A parallel analysis carried out on a resting-state
functional connectivity network revealed similar communities, confirming earlier work on the
similarity of task-evoked and resting brain networks (Smith et al. 2009).

These studies demonstrate that module detection is important for mapping the basic func-
tional organization of resting and task-evoked connectivity. Going beyond these relatively static
descriptions of functional brain modules, modularity can also reveal characteristic changes in func-
tional networks in the course of changes in an individual’s cognitive state (Andric & Hasson 2015,
Godwin et al. 2015) or with aging (see sidebar Functional Modules Across the Human Lifespan).
Such changes in network architecture have also been documented over the course of a motor learn-
ing paradigm (Bassett et al. 2011, 2013). In the first of these studies (Bassett et al. 2011), subjects
were asked to respond to particular visual stimuli with a specific motor action. The researchers
repeated this analysis three times over the course of three days. Subjects were also scanned during
the task, which allowed the authors to extract hemodynamic time courses from different brain
regions and to construct functional brain networks. Each scan session was divided into a series
of nonoverlapping blocks, and for each block a functional brain network was constructed. Rather
than estimating community structure for each block independently, the authors made use of the
multiscale, multislice variant of Q, which allowed them to track the affiliation of brain regions to
specific modules over the course of time. Using a novel measure called flexibility, which counts the
number of times that a node changes its module affiliation from one slice to the next, the authors
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Evolvability:
the capacity of a
system to generate
useful variation that
promotes adaptive
evolution through
natural selection

discovered that with practice, flexibility varied. From the first experimental session to the second,
flexibility increased on average, whereas the opposite was true moving from the second to the
third session. Interestingly, flexibility was also predictive of the overall learning rate. In general,
subjects whose community structures were more flexible over time (brain regions moved between
modules) learned at a greater rate than those whose flexibility was low (brain region community
assignments were relatively static across time).

In a second study (Bassett et al. 2013) using a similar learning paradigm, the authors investigated
which brain regions were flexible and which were not. What they found was a relatively inflexible
set of core regions, comprised mostly of visual and sensorimotor areas, which formed cohesive
modules that were relatively fixed over time. Higher-order association areas tended to be more
promiscuous, in the sense that they changed their module allegiance more often. These observa-
tions support the notion that the brain exhibits a kind of core-periphery organization. Importantly,
static estimates of community structure are incapable of revealing this type of organization, which
can only be revealed by examining the time evolution of communities.

FUNCTIONAL ROLES OF MODULES

Modularity is a general hallmark of complex biological systems. Potential functional roles of
modules have been considered across multiple different biological domains, from evolution and
development to metabolism and information processing. Here we outline potential roles for mod-
ular brain networks in promoting evolvability, conserving wiring cost, and in creating specialized
information and complex dynamics.

Evolution and Development

An important idea in evolutionary theory is that modularity in the organization of biological
systems confers significant advantages in an evolutionary setting, by supporting adaptability and
robustness and thus increasing the system’s evolvability (Kirschner & Gerhart 1998). From an
evolutionary perspective, uniformly strong interdependence of biological processes may be un-
desirable, because changes to single components would tend to have widespread (and generally
maladaptive) consequences. Keeping the system largely compartmentalized would limit the inter-
dependence of processes that are part of different modules and thus promote greater resilience in
the context of continuous genetic and developmental changes. Modularity has also been demon-
strated to promote adaptation and increase flexibility in response to a changing environment
(Kashtan & Alon 2005, Kashtan et al. 2007). In the face of unpredictable endogenous or exoge-
nous changes, swapping or rearranging maladaptive modules is less costly than redesigning the
entire system. In a similar vein, Ellefsen et al. (2015) demonstrated that modular brain networks
can help prevent catastrophic forgetting, that is, the loss of a previously learned skill upon learning
a new one.

A second benefit of modular organization is increased robustness in response to sudden pertur-
bations. In modular system architectures, the effects of local perturbations remain largely confined
to the module within which they originate (and this is used for detecting modules with methods
like Infomap). In a sense, modules allow a system to buffer the effects of randomly introduced
fluctuations. These fluctuations may be internally generated (e.g., stochastic noise in neural ac-
tivity) or externally triggered (e.g., as a result of environmental stimulation). In genetics, such
external fluctuations could relate to the effects of cryptic genetic variation, which uncovers novel
phenotypes under conditions of environmental change (Gibson & Dworkin 2004), thus potentially
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Hierarchical
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module into
submodules, of
submodules into
sub-submodules, and
so on

Criticality: state
situated between
complete randomness
and order, a hallmark
of which is the absence
of a characteristic
scale of description

promoting increased robustness. Taken together, there are many reasons to view modularity as
essential for the generation of stable heritable variation and for the emergence of new solutions
to unanticipated changes in the environment.

Conservation of Wiring Cost

The evolutionary and developmental benefits of modular organization beg the question of how
or why modularity itself evolved. Clune et al. (2013) have argued that the adaptive advantages of
modularity, for example, in yielding a more flexible system design, may not be sufficiently strong
or direct to explain the modularity currently observed in biological organisms. Instead, they argue
that modularity has evolved as a by-product of strong selection pressure on reducing the cost of
connections in networks. Indeed, the notion that wiring cost is a major constraint on the layout of
(structural) brain networks has a long history in neuroscience. Wiring cost has many dimensions,
from the physical volume occupied by the wiring, to the processing cost imposed by conduction
delays, to the metabolic cost of supporting neuronal processes and synapses (Bullmore & Sporns
2012). Modular architectures can help conserve wiring cost if modules are spatially compact, as
indeed appears to be the case for modules in most, if not all, structural brain networks. The role
of cost conservation in generating modular brain architectures has also been demonstrated in an
analysis of the anatomical networks of C. elegans and the macaque cerebral cortex (Chen et al.
2013). In addition to the spatial layout of nodes, specific functional constraints, for example, on
the network’s processing efficiency, were found to be important as well, supporting the idea that
brain network topology is shaped by a trade-off between spatial and functional factors (Bullmore
& Sporns 2012).

Information and Complex Dynamics

Another driving force for the emergence of modular organization in brain networks may be related
to neural processing that is specialized and unfolds on multiple timescales. In molecular regulatory
pathways, modularity has been shown to promote specialization (Espinosa-Soto & Wagner
2010), and it has been suggested that the persistence of modular organization cross-linked by
long-distance weak ties is crucial for preserving functional specialization in brain networks (Gallos
et al. 2012). Modular organization of brain networks shapes how information is distributed and
processed: Regions that are functionally close and tend to share information are members of the
same cluster or module. Modular networks allow for richer patterns of distribution of information
than systems that are nonmodular. In a computational modeling study, Yamaguti & Tsuda
(2015) have shown that evolutionary algorithms that aim to maximize bidirectional information
transmission between neuronal populations favor the emergence of modular structures.

Modularity has a major role in constraining the dynamics of neural activity as well. For ex-
ample, modular networks give rise to more complex dynamics than random networks (Sporns
et al. 2000), and they promote metastability (Wildie & Shanahan 2012) and synchronizability
(Arenas et al. 2006) as well as the separation of timescales (Pan & Sinha 2009). These effects are
particularly evident in networks that exhibit hierarchical modularity, i.e., are characterized by the
existence of modules-within-modules across multiple spatial scales (Kaiser et al. 2010). Network
models suggest that hierarchical modularity is an important structural ingredient for enabling the
dynamic regime of criticality (Rubinov et al. 2011), which is characterized by spontaneous and
persistent fluctuations, long transients following perturbations, and high information transfer.
The importance of modular brain networks for shaping brain dynamics is a strong motivation for
ongoing empirical work examining changes in modularity associated with disturbances of brain
function in clinical disorders (Fornito et al. 2015).
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CONCLUSION

In this article, we provided an overview of methods for detecting modules in brain network data
as well as a brief survey of studies that have examined modules in the structural and functional
connectivity of animal and human brains and have illuminated their many potential functional
roles. Module detection requires appropriate use of network and statistical tools and should avoid
known confusions and biases, while including an assessment of the statistical significance and
robustness of network partitions. Despite great heterogeneity in methods and statistical practices,
virtually all studies across all species support the existence of modules in both structural and
functional brain networks. Theoretical work points to the importance of modules for promoting
stability and flexibility, conserving wiring cost, and enabling complex neuronal dynamics. As
analytic methods mature and richer brain network data become available, the topic of modular
brain networks will likely continue to evolve for many years to come.

SUMMARY POINTS

1. Modularity is a key characteristic of structural and functional brain networks across
species and scales.

2. The most widely applied method for module detection, modularity maximization, is
subject to several biases and limitations that can and should be addressed through mod-
ifications in optimization and statistical techniques.

3. Important extensions to modularity maximization include the application of multislice
approaches that can detect variations of modular organization across subjects or time
points.

4. Alternative approaches like clique percolation, block modeling, and detection of over-
lapping communities offer attractive opportunities for more detailed analyses of brain
networks.

5. Anatomical modules generally reflect functional associations among neurons and brain
regions.

6. Structural modules are often spatially compact, whereas functional modules can be more
widely distributed and fluctuate in relation to cognitive states.

7. Modular organization may confer increased robustness and more flexible learning, help to
conserve wiring cost, and promote functional specialization and complex brain dynamics.

FUTURE ISSUES

1. Sophisticated applications of community detection methods to brain data sets will un-
cover network modules with increasing emphasis on their significance and robustness.

2. Overcoming the resolution limit will allow mapping network modules across several
scales and spatial resolutions.

3. Significant attention will be devoted to untangling the contributions of spatial embedding
and functional specialization to the definition of network communities.
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4. Multislice functional network approaches will reveal characteristic changes in modular
architecture across time, for example, in the course of task performance and learning.

5. Module detection methods applied to cellular-resolution data from high-density func-
tional recordings and/or microscale reconstructions of neuronal circuits will be instru-
mental for defining anatomical and functional microcircuits.
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Betzel RF, Griffa A, Avena-Koenigsberger A, Goñi J, Hagmann P, et al. 2013. Multi-scale community organi-
zation of the human structural connectome and its relationship with resting-state functional connectivity.
Netw. Sci. 1(3):353–73

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. 2008. Fast unfolding of communities in large networks.
J. Stat. Mech. Theor. Exp. 2008(10):P10008

Boccaletti S, Ivanchenko M, Latora V, Pluchino A, Rapisarda A. 2007. Detecting network modularity by
dynamical clustering. Phys. Rev. E 75(4):045102

Börner K, Sanyal S, Vespignani A. 2007. Network science. Annu. Rev. Inform. Sci. Technol. 41(1):537–607
Bota M, Sporns O, Swanson LW. 2015. Architecture of the cerebral cortical association connectome under-

lying cognition. PNAS 112(16):E2093–101
Bressler SL, Menon V. 2010. Large-scale brain networks in cognition: emerging methods and principles.

Trends Cogn. Sci. 14(6):277–90
Bullmore ET, Sporns O. 2009. Complex brain networks: graph theoretical analysis of structural and functional

systems. Nat. Rev. Neurosci. 10(3):186–93
Bullmore ET, Sporns O. 2012. The economy of brain network organization. Nat. Rev. Neurosci. 13(5):336–49
Carrington PJ, Scott J, Wasserman S, eds. 2005. Models and Methods in Social Network Analysis. New York:

Cambridge Univ. Press
Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. 2014. Decreased segregation of brain systems across

the healthy adult lifespan. PNAS 111(46):E4997–5006
Chen BL, Hall DH, Chklovskii DB. 2006. Wiring optimization can relate neuronal structure and function.

PNAS 103(12):7423–28
Chen Y, Wang S, Hilgetag CC, Zhou C. 2013. Trade-off between multiple constraints enables simultaneous

formation of modules and hubs in neural systems. PLOS Comp. Biol. 9(3):e1002937
Cherniak C, Mokhtarzada Z, Rodriguez-Esteban R, Changizi K. 2004. Global optimization of cerebral cortex

layout. PNAS 101(4):1081–86
Clauset A, Newman MEJ, Moore C. 2004. Finding community structure in very large networks. Phys. Rev.

E 70(6):066111
Clune J, Mouret JB, Lipson H. 2013. The evolutionary origins of modularity. Proc. R. Soc.

B 280(1755):20122863
Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. 2014. Intrinsic and task-evoked architectures of

the human brain. Neuron 83(1):238–51
Crossley NA, Mechelli A, Vertes PE, Winton-Brown TT, Patel AX, et al. 2013. Cognitive relevance of the

community structure of the human brain functional coactivation network. PNAS 110(28):11583–88
Danon L, Dı́az-Guilera A, Duch J, Arenas A. 2005. Comparing community structure identification. J. Stat.

Mech. Theor. Exp. 9:P09008
de Reus MA, van den Heuvel MP. 2013. Rich club organization and intermodule communication in the cat

connectome. J. Neurosci. 33(32):12929–39
Delvenne JC, Yaliraki SN, Barahona M. 2010. Stability of graph communities across time scales. PNAS

107(29):12755–60
Doron KW, Bassett DS, Gazzaniga MS. 2012. Dynamic network coordination of interhemispheric coordina-

tion. PNAS 109(46):18661–68
Duch J, Arenas A. 2005. Community detection in complex networks using extremal optimization. Phys. Rev.

E 72(2):027104
Ellefsen KO, Mouret JB, Clune J. 2015. Neural modularity helps organisms evolve to learn new skills without

forgetting old skills. PLOS Comp. Biol. 11(4):e1004128
Espinosa-Soto C, Wagner A. 2010. Specialization can drive the evolution of modularity. PLOS Comp. Biol.

6(3):e1000719

www.annualreviews.org • Modular Brain Networks 635

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

01
6.

67
:6

13
-6

40
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

18
0.

24
1.

16
9.

15
3 

on
 0

6/
23

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PS67CH25-Sporns ARI 14 November 2015 13:9

Evans TS, Lambiotte R. 2009. Line graphs, link partitions, and overlapping communities. Phys. Rev.
E 80(1):016105

Expert P, Evans TS, Blondel VD, Lambiotte R. 2011. Uncovering space-independent communities in spatial
networks. PNAS 108(19):7663–68

Felleman DJ, van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb.
Cortex 1(1):1–47

Fodor JA. 1983. The Modularity of Mind: An Essay on Faculty Psychology. Cambridge, MA: MIT Press
Fornito A, Zalesky A, Breakspear M. 2015. The connectomics of brain disorders. Nat. Rev. Neurosci. 16(3):159–

72
An encyclopedic
reference on
community detection
algorithms.

Fortunato S. 2010. Community detection in graphs. Phys. Rep. 486(3):75–174
Fortunato S, Barthelemy M. 2007. Resolution limit in community detection. PNAS 104(1):36–41
Friston KJ. 2011. Functional and effective connectivity: a review. Brain Connect. 1(1):13–36
Gallos LK, Makse HA, Sigman M. 2012. A small world of weak ties provides optimal global integrations of

self-similar modules in functional brain networks. PNAS 109(8):2825–30
Geerligs L, Renken RJ, Saliasi E, Maruits NM, Lorist MM. 2015. A brain-wide study of age-related changes

in functional connectivity. Cereb. Cortex. 25(7):1987–99
Gfeller D, Chappelier JC, De Los Rios P. 2005. Finding instabilities in the community structure of complex

networks. Phys. Rev. E 72(5):056135
Gibson G, Dworkin I. 2004. Uncovering cryptic genetic variation. Nat. Rev. Genet. 5(9):681–90
Girvan M, Newman MEJ. 2002. Community structure in social and biological networks. PNAS 99(12):7821–

26
Godwin G, Barry RL, Marois R. 2015. Breakdown of the brain’s functional network modularity with awareness.

PNAS 112(12):3799–804
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RELATED RESOURCES

Andrea Lancichinetti Personal Site
C++ code for performing consensus clustering, generating synthetic benchmark graphs, and

assessing the statistical significance (c- and b-scores) of communities obtained from any com-
munity detection method https://sites.google.com/site/andrealancichinetti/software

Brain Connectivity Toolbox
MATLAB toolbox of many useful graph theoretic functions, including single-slice, multiscale

modularity maximization http://www.brain-connectivity-toolbox.net/

BrainMap
Searchable repository of activation foci coordinates from functional neuroimaging studies

http://brainmap.org/

CFinder
JAVA code for running clique percolation; analysis can be performed using GUI or command line

http://www.cfinder.org/

Infomap
C++ code for running Infomap (can be performed locally or using online applet); also fea-

tures useful tool for visualizing communities and their evolution (alluvial flow generator)
http://www.mapequation.org/
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Louvain algorithm
C++ code (with MATLAB MEX files) for performing modularity maximization using the Louvain

algorithm https://sites.google.com/site/findcommunities/

Network Community Toolbox
MATLAB toolbox for performing community detection, obtaining consensus communities, and

assessing the statistical significance of communities http://commdetect.weebly.com/

OSLOM
C++ code for finding statistically significant overlapping communities http://www.oslom.org/
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