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ABSTRACT 

The eyes move in order to place an intended object on the region of the retina 

with greatest visual acuity, called the fovea. Mcjvement of e,ycs are produced \ia the 

coordinated action of several muscle groups acting in response- to neurological signals. 

The focus of this thesis is to study a particualr ty])e of eye movement called smooth 

pursuit from the perspective of control tlic>ory. 

There are several types of eye movements reported in the resc>arch literature. 

Primarily among them are the (1) saccadic or fast eye movement subs\stem (2) 

pursuit or tracking subsystcnn (3) vergenc-e subsystem (4) vestibular subsystem. In 

contrast to the saccadic eye movement research, scant attention has been paid to the 

study of the remaining types from the viewpoint of control. Here a detailed description 

is given on how to design a controller for the pursuit eye movement using an occular 

motor plant model from recent research literature. This model represent capabilitic-s 

of muscle actuators of the eyes reasonably accurately from the viewpoint of their 

actuator and length limitations and other nonlinearities, but disregards details of 

cortical circuitry behind signal generation. Performance of the designed controller is 

demonstrated via simulations pertinent to pursuit of sinusoidal, ramp and parabolic 

signals. It is argued that the designed controller performs better than the actual 

occular motor plant for the reason that the aditional restrictions imposcnl by cortical 

circuitry are completely disregarded in the design. Overall, the- latency and peak 

velocity of the designed controller is shown to be within a factor of four of the actual 

occular motor controller during pursuit. 
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CHAPTER I 

INTRODUCTION 

The eyes move in order to place an intended object on the region of the retina 

with greatest visual ac-iiity. called fovea. Mo\(>meiit of eyes are produced via the 

coordinated ac;tion of sevc-ral musc;le groups ac-ting in response to neurological signals. 

The focus of this thc^sis is to study a particular t \pe of eye mo\-emeiit c-alled smooth 

pursuit from the perspective- of control theory. 

When looking back cn-er the past 15 years it is clear that eye movement research 

has been quite influential across several domains. Research e)ii tlic> reading process 

has benefited significantly from insights obtained from eye moveme-nt data (sen- e.g. . 

[19]) as well as rc>search on scene perception, visual search, and e)ther perceptual 

and cognitive processes. Today, the need to understand the occular motor control 

system stems from two important research areas: biomedical engine-e-ring and the 

design of systems capable of taking eye-gaze commands. Biomedical engineering is 

inching toward the point of artificially stimulating muscle groups in order to correct 

defects, wlieneuis designers of sophisticated equipment under visual commands arê  

fast reaching the point where the dynamics of eye mo\'ement is a primary factor in 

speeding up the response timers. 

There are several types of ewe movements reported in the re^searc-h literature. For 

example Troost [23] (see also [25, 26. 24. 21. 5] for additional detail) de>scTibe four 

subsystems of the supranuclear oc-cular motor control (i.e., distinction originate-s in the 

higher regions of thĉ  brain): (1) sacc-adic or fast cyv movement subsystemi. (2) pursuit 

or tracking subsystem, (3) vergence subsystem. (4) \-e>stibular sul)system. Saccades 

are rapid binocular eye movements which are under be)th \-oluntary and reflex control. 

The visual stimulus for a saccade is the displacement of the target objent. Typically 

saccades occur with a latency of 200 to 250 msec after an instantaneous displacement 

of the target. Saccades are ballistic (i.e.. under open-loop control, and cannot be 
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redirec-ted once the motion is initiated) and the peak velocity can range from 'M)"/sor 

to 700°/sec- with up te) 40° ampHtude. Eye movement during a saccade is relati\e'lv 

simple: an appropriate lateiic>- followed by a period of acc-eleration to peak velocity 

followed by dec-celeration of the- eyes onto the ne-w targe-t position. Corre>spondingly. 

the control action taken is alse) relatively simple. The se-cond type, the- pursuit 

eye movemc-nt, is evoked by the sle)w movement of a fixated target afte r̂ a latency 

of about 125 msec. Maximum ewe velocity c-an go up to 5()"/seH-. In contrast to 

saccadic e-ye> movement pursuit c\ve movement is smooth, and can be continuousl\-

modified in response to visual input (i.e., under feedback e-oiitre)l). Retinal velociix 

error is thought to be the input signal to the pursuit control s\stem. This sugge^stion 

is corroborated with physiological evidence that demonstrate that pursuit cannot 

be initiated voluntarily, i.e., without an actual target motion. Attempts to initiate 

pursuit voluntarily leads to a series of small saccades called the "cog-wheel" pursuit. 

The third type, the vestibular-occular eye movement, occur as a compensatory 

response to a head movement, and is elicited by the vestibular s>'steni. The latemc>-

can be up to 100 msec and the peak eye velocity can be as fast as 300°/se-c. In 

general, the eyes move in an opposite direction to the movement of the head, and the 

counterrotation, which may match exactly under well lit conditions, takes place as 

a smooth movement under continuous feedback control interrupted by intermittent 

saccades that recenter the eyes toward midposition in the orbit. It is thought that 

the head acceleration is the input signal during the feedback control (i.e., continuous) 

phase. The fourth type\ the Vergence eye movement, occur in response^ to motion 

toward or awa}' from the observer. The latenc>- is approximateh- 160 msec and the 

maximum velocity is al)Out 20°/sec. 

There is much biological evidence to suggest that the smooth pursuit eye move--

ment and the saccadic e>'e movement are fundamentalh- diflferent neurological phe

nomena, among them are are the region of origin of control signals in the brain (se>e 

e.g. [22]) and the pathways (for example, it is reported in [23] that horizontal saccade-s 

originate in the cortex of the contralateral frontal lol)e, whereas pursuit originate- in 



the ipsilateral parieto-occipital visual association are-as). Differenee-s have- hee-n found 

re-garding the otlic-r types eye movements as well (see e.g.. [23]). 

Among the four types of eye movements described above there- have been e-xtensixr 

investigations aimed at understanding the saccadic e-ye movement from a variety- of 

viewpoints (see e.g., [15] and references therein. e)r the 60 odd papers listed and 

references therein in [12]). Thene have bee-n many rece-nt inve-stigations aimed at 

understanding the saccadic me)veme-nr of thc> eye from the viewpoint of control theory 

(see e.g.. [17, 16, 18, 9], etc.). ModeUng the eye as a control system im'olve-s taking inte) 

account the nature of the neural signals, dynamics of the e-ye- balls and the surrounding 

medium, and nonlinear dynamics of the muscles and their inhere>nt limitations on 

length and generation of force, resulting in a fairly complicated mathe-matical model. 

In spite of this, as had been indicated above, saccadic e,\e movement is fairly simple 

to analyze from the viewpoint of control theory. Primarily one only need to find 

amplitudes and durations of constant control signals during acceleration, coasting 

and deceleration periods. In contrast analysis of other t>i)es of e\-e movements are 

far more complex. Since some t}'pe of feedback control is imohed in all these- types 

one can safely assume that understanding pursuit control system is a prerequisite to 

understanding vestibulo-ocular and \'ergence eye movements as well. In this thesis the 

task of proposing a mathematical model in order to generate neural control signals to 

produce pursuit e}'e movement is undertaken. As far as we are aware this is the first 

such attempt which takes into consideration anatomically accurate models of relevant 

muscle groups. 

Modeling of the human ocular system and its dynamic properties has been ad

dressed by many scientists. In 1630. Descartes[10] developed one of the first models 

of eye movement based on the priciple of reciprocal innervation, a notion of paired 

muscular acti^•it^' in which a contraction of one muscle is associated with the relax

ation of another. Descartes' basic idea has been expanded and modified to include 

varying levels of detail and sophistication. In 1954. Westheimer (se>e- e.g.. ^7i) de-



veloped a linear second-order approximation of eye dynamie s during a sae e ade. His 

model worked well for up to 10 degree saccades but not for larger saccaele\s. Robin

son [2. 1. 3] advanced a more realistic representation of eye movement e-onsi^tin-^ of 

a linear fourth-order model that could simulate sae cades between 5 and 5() degrees, 

but the velocity profiles produced by this model were not physically realistic-. Both 

Westneimer and Robinson acknowledged the e\e movement mechanism to be- inher-

entlv nonUnear due to the geometry of the system and the nonlinear physiologieal 

behavior of certain components pertaining te) extraocular museie-. Another group of 

researchers proposed the Cook-Clark-Stark [8. 6] model which addresse-d the nonlinear 

relationships between force and velocity in the muscle and produced re-alistic position, 

velocity, and acceleration profiles. However, their model failed to incorporate ee-rtain 

force-length muscle characteristics which have recently gained prominence in the lit

erature of bio-mechanical modeling. Later this model was modified In the addition 

of force-length relationship of muscle. 

Perhaps the most realistic models of musculotendon actuators was proposed by 

Hill [14]. This model captures the nonlinear force-length relationship reasonal)ly well, 

and has been used extensively in [27. 13] in modeling leg movement during jumping, 

and in modeling the saccadic eye movement in [9. 16. 18, 17 . Here a Hill-type model 

is used to represent muscle dynamics, and address the problem of finding control laws 

that make the pupil movement follow a given trajectory- is addressed. 

This thesis is organized as follows. In Chapter II. a mathematical model describ

ing the occular motor control system is discussed. This model is taken from the M.S. 

thesis of A. McSpadden [17 . and relevant features captured in the model include 

length and actuation force limitations and other nonlinearities of muscles, mass, stiff

ness and damping in the e^e. and ampHtude and rate limitations of neural input 

signals. This model disregards details of the origin and the cortical pathways of the 

neural signal. In Chapter III. a mathematical anahsis of the pursuit eye movement 

is discussed with the aim of describing representative neural inputs generated in the 
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form of a fc-edback control law that would facihtate tracking a slowly moving target. 

To our knowledge this is the first such attempt, where the fundamental nature and 

limitations of muscles are represented accurately. No suggestion is made- that these 

signals are comparable to actual neural signals. It is left to the experimentalists to 

verify this aspect. However, the- fundame-ntal ideas behind the design can be modificMl 

if one were to start from experimc-ntal data and recover the neural control signals from 

them. In Chapter IV. some simulation results from Matlab are presented to illustrate 

the performance of the controller designed in Chapter HI. Tracking signals considered 

are two sinusoidal signals and a ramp signal. It is concluded that the performance of 

the controller is comparable to what has been reported in the rescvueh literature- on 

pursuit eye movement. The Matlab programs used are reproduced in an Appendix. 
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CHAPTER II 

THE OCCULAR MOTOR PLANT MODEL 

The-re have been many recent studies aimed at modeling the dynamics (»f the e\e-

movement (see e.g., [17].[11].[20].[9]). A common theme in all this work is to model 

the eye as a rigid bocl>- controlled b>- muscles attached to it. They differ in the wa\-

the muscles are modeled. It is our viewpoint that the nonlinear dynamics of muscles 

play a central role. In this regard, rece>nt models developed by [17; are the most 

relevant. 

In his M.S. thesis [17]. A. McSpadden derived a s\-stem of dynamical eciuatioiis to 

describe the eye movement in a horizontal plane. Attention is restricted to the medial 

rectus and lateral rectus muscles as actuators, and they were modeled using Hill's 

equations [14, 27]. The eye is modeled as a solid sphere with rotational innertia JQ. 

rotational viscocity BQ and linear spring constant A'^ around a vertial axis through its 

center. It is assumed that the medial rectus and lateral rectus muscles have identical 

characteristics, each having a mass M. A schematic model is presented in Figure 2.1. 

In [17], dynamical equations were derived to represent the model depicted in 

Figure 2.1. consisting of twelve coupled nonlinear differential equations with two 

neural control inputs. It was shown that a reasonably good approximation consisting 

of eight state \'ariables can be derived in the form. 

•r = /(.r) + ^i( .r)"i(0 + ^2(-r)»>(0 (2.1) 

where, x represent the state vector. / . gi and ^2 ^it" nonlinear vector fields to be 

described later, and ni and no represent the neural input signals to the medial rectus 

and lateral rectus muscles, respectively. 

The state vector of the occulomotor plant is .r = [^-^--Fn-^r2,/mi-^712-Oi. 02]' 
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where. 

9 = eyeangle 

9 = angular velocity of the eye 

Fti = tendon force of the medial rectus museU-

Ft2 = tendon force of the lateral rectus muscle 

fmi — length of the medial rectus muscle 

^m2 = length of the lateral rectus muscle 

fli = activation level of the medial rectus muscle 

do = activation level of the lateral rectus muscle. 

Of course, the state space is a proper subset of 5R̂  since several of the state vari

ables have to satisfy hard constraints. For the sake of simplicit>', onh' the following 

constraints are imposed here. 

• Tendon forces are not allowed to fall below a minimum threshold level or exceed 

a maximum threshold level. 

• Muscle lengths have to be between a lower and an upper limit. 

• Xeural activation levels of the medial rectus and lateral rectus muscles have to 

be between 0 and 1. 

Dynamics of the occulomotor plant given in (2.1) are quite complicated. Below 



we describe the vector fields / . gi. and ^2: 

/ ( ^ ) 

X2 

9i{^) = 

92{x) = 

[0 

1 

{XS - .T4 - BgX2 - KgXl)/jg 

Ktixs)[-.T2-{lS0/-)o{xs.x,.xj)] 

Kt(x4)[x2 - (180/7r)o(2-4.X6..rs)] 

0(x3.j-5..r7) 

o{x4.xe.X8) 

-xj/r 

-XS/T 

• .0.1.0] ' . 

• ,0 ,1] ' . 

(2.2) 

[0. 

Here, r represent a time constant reflecting the delay in com'erting neural signals to 

muscle activation signals, and A'̂  and o are nonlinear functions. 

Kt{T) = 

(t){x.y.z,w) = 

kteX + kti: 0 <x < Ftc 

Kg'- X ^ ^ tc: 

T- r x-Fpe{y) _ i ] 3 . ^ > ^ 

c < c. 

m a x L ^ F ^ a x F K y ) 

-Kt{x)z 

(2.3) 

(2.4) 

b' (y)+(180/7rr)Kt(x) 

The function parameters Apg. A/ and -tb in the expressions of o are given by. 

^(0 = < 

^ p e ( / ) = < 

f-^[e,rp(A;^e(180/7rr)(/ - /,„,): /,„, < / < /,,,. 

(180/7rr)A:p^; 

0; 

f-^[exp(A-,,e(180/7rr)(/-/,,,): 

A;p^(180/7Tr)(/-U) + i', 

' _ ' m c -

Otherwise. 

07i..s _^ ' _ i ' m c -

(2.5) 

n\c-

0; 

/ > / , . c . 

otherwi 

(2.6) 

se. 

F,(/) = l - ( 
U^opt ^ \2 

W 
f- (2.71 

Approximate values of the constants appearing in the functions above were estimated 

in [17] to be: 
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Table II. 1: Parameters and estimated values 

parameter 

r 

•h 

B, 

K, 

^pm 

M 

^ max 

^mp 

^opt 

''ms 

^mc 

k i^pm 

^ml 

^ mc 

W 

' max 

A:,s 

kti 

kte 

Hs 

he 

Ftc 

dc-scription 

radius of the eye 

rotational innertia of the e\e-

rotational viscocity of the eye 

rotational viscocity of the eye 

passive muscle- viscosity 

muscle mass 

maximum isometric muscle force 

primary muscle length 

optimal muscle length 

muscle slack length 

linear limit of passive muscle 

a shape parameter 

linear passive muscle elasticity 

minimum passi^'e muscle elasticity 

linear limit of muscle force 

a normalizing parameter 

maximum muscle velocity-

linear tendon elasticity 

minimum tendon elasticity 

a shape parameter for tendon force 

tendon slack length 

a shape parameter 

a shape parameter 

value 1 

1.24c7/? 

6 X 10-^gfs-/^ 

0.0158cy/,s/0 

0.79^V° 
O.OGcyf.s/̂  

0.748^ 

lOOgt 

4.0cm 

4.65c/// 

3.7c//? 

4.8c/n 

0.0387/0 

0.9gt/^ 

Q.126gt/0 

20gt 

0.5 

56897.S 

•2.bgtr 

l.ogtr 

0.0333/° 

0.2r/// 

0.532c/// 

30^/ 

These parameter values will be used in carrying out simulations reported in sention 

3.3 in the next chapter. 
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Figure 2.1: Occulomotor Plant 
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CHAPTER III 

AXALYSIS OF THE SMOOTH TRACKIXG PROBLEM 

In this chapter, the pursuit eye movement control, i.e.. control problem of visually 

tracking a slcjwly moving signal, is discussed. Attention is confined to the horizontal 

eye movement and the medial rectus and lateral rectus muscle-s are treated as aetua-

tors. It is evident that in most situations the dynamics of the- signal to be- trac-ked are 

unknown a priori. Therefore, the treatment begins with no assumptions on dynamics 

of the signal to be tracked. For control theoretic reasons, it becomes ne-ce-ssar\- to 

make some assumptions on the level of smoothness of the signal to be- tracked. Hene-

it is assumed that this signal is three times differentiable. Rc-call from the- discussion 

in the introduction that according to Troost [23] the input signal to the occular mo

tor control system during vestbulo-occular movement is the accleration of the head. 

Since the objective of the continuous control system during this phase is to keep the 

fovea fixed to a target (see the introduction) this input can be tre-ate-d as the second 

derivative of the tracking signal. Thus, there is already physiological evidence to sug

gest that up to the second derivative of the tracking signal is invohcYl in the occular 

motor control system. It is suggested here that further physiological research may 

needed to be carried out in order to verify whether or not the third derivative is also 

involved. 

3.1 Tracking with a priori unknown dynamics 

Here the problem of the eye tracking signal 9r(f) is disc-iissed where no assumi)ti()ns 

are made regarding the details of the dynamics of 9r{f). The only assumption made 

is that at time t the brain is aware of the value of 9r and its first three dc>rivative-s. 

A physical example that would fit this description would be the motion of a fly. As 

had been stated in 4.2.1 it is assumed that the head is at rest at all time-s. The aim 

is to generate representative neural signals that will ensure that the eye angle 9{t) 
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will track the reference- signal 9r{f) asymptotically. Le-t us rewrite- tlie dynamie-s ui' 

the first two equations in (2.1) as 

Xi = X2, 

^2 = - 4 ^ . M - ^ . r , + | ( . r 3 - . , , ) . (3.1) 
Jg Jg Jg 

where Xi = 9, X2 = 9, ./-.̂  and x.i are the tencle)n forces of the medial and lateral 

rectus muscles. The aim here is to ensure that .7-i(/) - 9r{t) -^ 0 exponentially fast. 

Let us temporarily treat (xs - x.^) as a control input v(f) to 3.1. so that it has 

the appearance of a second-order Unear control system. It is also stable sinc-e its 

eigenvalues are at -51.0, -3109.0 corresponding to the assumed valuers of Jg. Kg and Eg. 

(These figures suggest a fairly high amount of damping and stiflness. and pli\siologicaI 

reasons behind them are not clear from the literature) Therefore, the tracking problem 

can be solved if one were to take 

v{t) = Kg9r + Bg9r + Jg9r, (3.2) 

for in this case, if the tracking error is defined as 

(61,62) = {xi-9r,X2-9r). (3.3) 

then the error dynamics satisfy 

ei = 62 (3.4) 

62 = 7^61 -^C2, ( 3 . 0 ) 
'^9 '^9 

and this system has eigenvalues at (-51.0. -3109.0). 

Note that the third and fourth equations of (2.1) are. 

/ NT . 1 8 0 , - , 
.rs = ht[Xi)[-X2-{^)lmA 

/ ( / 
180 • 

i-4 = A't(.r4)[i-2 In.- (3.6) 
TT/" 

Since the fimction A'/(.) is bounded from below. (3.6) can be solved for /„ji and 

/,„,, for any desired expression for x^ and .1-4. The strategy here is as follows. As it 
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was argued earlier, (./•.5(/) - Xi(/)) is needed to be ee^ntroUed se) that it will conve-rge 

to the right hand side of (3.2) fast. This can be achieved by le-ttinj 1^. 

.7';5 - x.x = - a ( x 3 - .r4) + v{f) + rw(/). (3.7) 

where, a'ls -A suflftciently large positive- constant {(\ is chosen to be ecjual to 10 in the 

simulations to follow), and v{i) is given in (3.2). 

Define, 

= Jg^Orif) + {Bg + aJg)^Mt) + (A, -f nBg)^Mt) + c^Kg9r{f).{3.9) 

7(t) = v{t) - av(t) (3.8) 

.L-e^(t) + (B, + aJ,)^er{t) + (A, + n B , ) ^ i 

Here the aim is to choose /^^ and /^2 such that the difference in the- right hand 

sides of (3.6) is equal to the right hand side of 3.7. Solutions to this problem are 

clearly non-unique. This non-uniqueness has to be exploited to find physiologically 

realistic solutions. The relevant physiological constraints translate to the following: 

1. muscle activations are in the range [0,1]. 

2. for small values of muscle activation the equation (3.6) cannot be inve-rted to 

solve for /^.. 

Additionally, physiological evidence has been reported to point out that the tendon 

forces never fall below a certain mimimum value. 

In view of the above an arbitrary minimum value for the muscle^ te^ndon forces is 

fixed here (set at 10 gt in the simulations to follow). This bound is imposed indirectly 

via (3.6) by setting, 

.i-3 = -axs + 7 i (0 

i-^ = -axi^-;2{f.) (3.10) 

where ^i and 72 are always kept above a times the minimum tendon force. Due to 

the high bandwidth of (3.10) this ensures that ./•3(/) and .r4(/) will seidom fall below 

the desired minimum value. 
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L('t Fmin — minimum muscle tendon force allowed. Now. the follejwin^ limitatieiii^ 

on 7i and 72 are- imposed: 

a) lz{t) > (oA,„,^). z = 1.2. 

b) 7 i (0 - 72(0 = 7 ( 0 . where -/(t) is given in (3.9). 

To meet these require-ments c-hoose 7,(/) as. 

7.(0 =U" ' " "^ ' ^ ' ^ ' ' ' ^ • ^ - " (3.11) 
f^F,r^^r^, lf7(t) < 0. 

,^. , nA„,„,, if 7(t) > 0 ^ ^ 
72(^) = <; (3.12) 

aFmin -lit). if7(t) < 0. 

Finally, from (3.6) and (3.10), it follows that, 

1 TTT 

1 TTT" 

where ji(t) and 72(t) are as in (3.11), 7(/) is as in (3.9). and a is a reasonably large 

positive constant (choosen to be equal to 10 in the simulations). 

Now, the muscle activations ai{t) and 0-2(0 ^^^ found by inverting (2.1). Of 

course these inversions will be valid only if the acti\-ations will fall in the range 

[0,1]. Activations falling outside of the range will indicate either the attempte-d eye-

movement fall outside the physiologically feasible range, or that the feedback solution 

found here is inferior to the one employed physiologically. Simulations below illustrate 

that as long as the attempted eye movement is reasonable the proposed feedback law 

meet physiological constraints. 

Assuming that the constraints are met. the muscle activatiejiis can be presented 
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as, 

„l(0 = Mt)-F,,(l„n{t)) 

* max 

where, /mi(0 and lm2{t) are givcm in (3.14). 

Observe that (3.15) describe muscle activation as a state feedback control law. It 

utilizes the first three derivatives of the rc4erenc-e> signal. The neural inputs can be> 

computed as, 

n^{t) = a,(t) + T(i,{t). i = 1, 2. (3.1()) 

This completes the process of computing representative neural signals te) the me

dial rectus and lateral rectus muscles during the pursuit of the reference signal 9y(f). 

3.2 Tracking with a priori known dynamics 

Here, the case of following a signal which is generated as the output of a s\steni 

with known dynamics, e.g., a rolling ball, is considered. The kc\v assumption made is 

that the brain has an internal representation of the dynamics to be tracked. Ihis is 

assumed to be of the form, 

Co = 5(cj) (3.1) 

9r = /i(-0, (3.2) 

where Lj{t) e Sf?"̂ , 9r{t) G 5?'̂ . and 5 is a smooth function. By thê  same reasoning as in 

the previous section, 9r and its first three derivatives are needed in order to compute 
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a feedback control law. In tn ins of the known dynamics TIHM' can lie written a^. 

Or = hicc) {3.3) 

j^fr = L.h(^) (.3.4) 

^ 0 , = L;h{^) (.3.5) 

^^0r = L'M^-). (3.0) 

These signals can be used in place of the explicitly compute-d derivati\e-s here. 

In order to illustrate this idea eoiisiden- the simple example of tracking a ball rolling 

horizontally. Its dynamics have the form. 

xi = X2 (3 .7) 

X2 = -X2. (3.^) 

where Xi is the horizontal position of the ball, and .r2 is the velocit\- of the ball. 

For the sake of simplicity it is assumed that the mass of the ball and the applicable 

coefl&ccient of viscous friction are both equal to units. The eye keeps track of the 

location of the ball. Therefore, the output to be tracked is the angular position of 

the ball, which can be written as. 9r{t) = arctan(.ri /J) . where 3 and is the distance-

from the eye to the line of motion of the ball. 

Thus, the reference angle and its derivatives can be written as. 

9r = arctan(.ri/J) 

I 3X2 

dt ' j- '+.r^; 

d- _ 3x2(3-^x1 + 2x2X2) 

These expressions can be used in (3.9) in deriving the control laws given in (3.15). 
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3.3 Simulations 

In this section, the performance of the- feedback contre)l law derived in (3.15) is 

illustrated via simulations. An 8^^-order model derived in [17 is use-d here, which is 

reproduced in (2.1) alongside with the values of the relewmr parameters in Chapter 

II. Simulations were done in Matlab5 using ODE45 routine-s. These routine-s employ 

2nd- and 4th-order Runge-Kutta method with adai)ti\'e step size control. The rcdc^vant 

Matlab program is included in the appendix. 

In the simulations latency is interpreted as the time to "catch up" with the signal 

to be tracked reasonable well. Since no delays are explicitly me)deled in the occu

lar motor plant (see Chapter II) simulations will not produce an explicit late-ncy in 

response time. Most likely in reality there will be such a latency occuring due to 

cortical signal processing delays. It would be satisfactory for us in the siinulatiems if 

the "time to catch up" is shorter that the maximum latency reported in Troost [2.3! 

of 125 msec during pursuit. 

3.3.1 Tracking the movement of a sinusoidal signal 

The problem of tracking the sinusoidal signal 9r{t) = 20 sin{27^t) for a 1.8 second 

time interval is considered. It is assumed that the eye initially start at 10° angular 

position. Simulation results are shown in Figure 3.1 

First, the simulation demonstrate that the designed controller acomplishes pursuit 

eye movement very well. Figure 3.1.a shows that the tracking error is practically equal 

to zero after about 40 msec. Tendon forces (Figure 3.1.b), muscle^ lengths (Figure 

3.1.c) and activation signals (Figure 3.1.d) are well within the designed limits. 

It is seen in Figure 3.1.a that in about 40 msec the eye catches up with the 

signal to be trackcxl. This is well within the maximum latency of 125 mscH- re-porte-el 

by Troost in [23]. The peak eye velocity is around 200°/sec which is more than the 

reported maximum value of 50°/sec. Note that the occular motor systemi is capable of 



ge-nerating such spec-ds during sac-cadic- eye moveme'nt. Therefe^re. this peak velocity 

doesn't inherently violate physical Umits of the s\ste>in. We would like to e)fler the 

following inte-rpretation in this regard. In the control design ne) attempt was made to 

exactly match the- actual neural signals since they are not known te) us. The control 

design presented only describe the capabihties of the museular-occular-motor s\->tem. 

It is very like-ly that the cortex has its own bandwidth limitations, and the reported 

velocity limits are- due to those-. If one would like to obtain a be>tte-r fit he could play 

with the parameter a in the controller, and with placing eigenvalue-s in 3.5 close-r te) 

the imaginary axis. 

3.3.2 Tracking the movement of a ramp signal 

The problem of tracking the ramp signal 9r{t) = lot for a two se-e-ond time interval 

is considered. It is assumed that the eye initially start at 10° angular i)ositioii. 

Simulation results are shown in Figure 3.2 

Simulation results show that the controller works \'er>- well while resj^ecting ten

don force, muscle length and activation level limits. The latency is about 40 mse-c-

and the peak eye velocity is about 250°/msec. Again, these results slie)w that tliê  

performance of the controller is slightly superior to the plnsiologically observed per

formance reported in Troost [23]. The explanation offered in the same as in the 

previous example. 

3.3.3 Tracking the movement of a ramp signal 

It turns out that the parameter a in the designed control law play an important 

role in keeping the activation signals within revisonable bounds. Here the problem 

considered in section 3.3.2, i.e., tracking a ramp signal of amplitude 30° in two sece)nels. 

is revisited. The parameter o is set to 2 (instead of 10 as in other examples). Angular 

variables and the activation signals are plotted in Figure 3.3. 
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Clejuly the results shown are unace-eptable due to e-xc-essixe- ae-tivation le\-els le'-

(luired. This ae-complishc-s our objective which was to show that the parameter o 

used in the control design eaiincjt be too lejw. 

3.3.4 Tracking the movement of a quadratic signal 

The problem of tracking the signal 9r(t) = bf for a two-see-ond time interval 

is considered. It is assumed that the> eye- initially start at 10° angular i)e)sition. 

Simulation results are shown in Figure 3.4. 

Simulation results show that the designed controUe-r works well, but its perfor

mance is superior to physiologically observed results. Explanation given in se-ction 

3.3.1 is applicable here as well. 
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CHAPTER IV 

CONCLUDING REMARKS 

The objective of this the-i- is to -tudy the pursuit eve movement from the per

spective of control theory. To be .specific, a repre-' ntative control law was ele'-i-ined 

to accomplish pursuit eye movement utilizing an oculomotor plant model developed 

in [17 and via simulations it was demonstrated that the control law can accom])li-h 

this task. Plant model utilized take into consideration anatomically realistic model-

of muscular actuators, but ignore ' orrial detal-. 

Hitherto pursuit eye movement has not been studied with the -aiiie' viuui as the 

saccadic eye movement, and no reasonable data seem to be available to even com

pare the performance of the designed controller with physiological observations. \ex. 

sketchy details on latency and peak velocity during pursuit reported by Troo-r etc. 

(>ee e.g [23 ) seem to indicate that the designed controller perform- -lightly better 

than the physiological controller, and the most likely reason i- that the cortical cir

cuitry impose additional restrictions on the speed of tracking. 

The key ideas behind the design of the pursuit controller here can be extended to 

study vergence and vestibulo-occular control eye moxe-me-nt.- as well. It is our hope 

to carry this out in the future. It is also hoped that the validity of the general nature 

and the performance will be checked via jjln-siological e-xperiments in the future. 
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APPENDIX: MATLAB PROGRAMS 

y.Fimction theta.ref_vec allows the user to specify the 

"/.reference signal to be tracked and its first three derivatives. 

°/,In the example below a sinusoidal signal is specified. 

y.User should edit theta(l) ,• • •,theta(4) below in order 

'/oto describe a different reference signal. 

function theta = theta_ref_vec(t) 

omega = 1.0; 

p = 2.0*3.1415926535; 

amplitude = 20.0; 

theta(l) = amplitude*sin(p*t); '/.reference signal (eye angle theta_ref(t) 

theta(2)= p*amplitude*cos(p*t); 7. (derivative of reference signal (dot. 

thetaO) = -p*p*amplitude*sin(p*t); 7. dot_dot_theta_ref (t) 

theta(4) = -p*p*p*cos(p*t); 7. dot_dot_dot_theta_ref (t) 

7.This main routine specifies parameter values of the oculomotor plant 

7.model given in Table 2.1, specify initil conditions, 

7. specify the time interval, call ode45 to do the simulation 

7.(note: internal routines call the control design algorithm here) 

7.and process and store data to a form suitable for plotting, 

global Bpm 

Bpm = 0.06; 

global Bg 

Bg = 0.0158; 
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global Kg 

Kg = 0.79; 

global Jg 

Jg = 0.000005; 

global M 

M= 0.748; 

global r 

r = 1.24; 

global 1ms 

1ms = 3.7; 

global Imc 

Imc = 4.8; 

global kme 

kme= 0.0387; 

global kml 

kml = 0.126; 

global kpm 

kpm = 0.9; 

global Fmc 

Fmc = 20.0; 

global Fmax 

Fmax = 100.0; 

global Ftc 

Ftc = 30.0; 

global lopt 

lopt = 4.65; 

global w 

w = 0.5; 

global kte 
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kte = 0.0333; 

global kti 

kti = 1.5; 

global ks 

ks = 2.5; 

global tau 

tau = 0.002; 

global Itc 

Itc =0.532; 

global Its 

Its =0.2; 

global Vmax 

Vmax = 5689.0; 

global alpha 

alpha = 10.0; 

7.initial state 

xO =[10.0, 0, 20, 20, 4.0,4.0]; 

7.xO = [0,0,4,0,4,0,2.2,2.2,0.0,0.0]; 

7.xO= [5.0,0,4,0,4,0,2.31141,2.31141,0,0] ; 

7.initial time for the simulation 

to = 0.0; 

7.final time for the simulation 

tf = 1.8; 

7.call ode45 routine to cary out the simulation. 

[t,x] = ode45('model_red_track',[tO:0.01:tf],xO); 

7«calculate activation forces from what has been computed already 

pp = post_process_act_calc(t,x); 

x(:,7) = pp(:,l); 

x(:,8) = pp(:,2); 
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x(:,9) = pp(:,3); 

x(:,10) = pp(:,4); 

fid = fopen('output','w'); 

7.Store computed data in the file output. 

fprintf(fid,'7.8.3f 7.8.3f 7.8.3f 7.8.3f 7.8.3f 7.8.3f 7.8.3f 7.8.3f 7.8.3f 7.8.3f 

n',x); 

fclose(fid); 

7.Function Kt correspont to the equation (2.3) in the 

7.occulomotor plant model described in Chapter 2. 

function zz = Kt(x7) 

global kte; 

global kti; 

global ks; 

global Itc; 

global Its; 

global r; 

Ftc = (ktl/kte) * ( exp( (180.0/(pi*r))*kte*(ltc-lts) ) -1.0 ); 

switch x7 

case x7 <0 

zz = 0.0; 

case x7 > Ftc 

zz = ks; 

otherwise 

zz = kte*x7 + kti; 

end 
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7. Function Fpe corresponds to the equation (2.6) m the 

7.occulomotor plant model described in Chapter 2. 

function yy = Fpe(z) 

global Imc; 

global 1ms; 

global kpm; 

global kml; 

global kme; 

global Fmc; 

global r; 

switch z 

case (z < 1ms) 

yy = 0.0; 

case (z > Imc) 

yy = kpm*180.0/(pi * r) * (z - Ic) + Fmc; 

otherwise 

yy = (kml/kme) * (exp ( kme * (180.0 / (pi * r))* (z - li 

end 

7. Function Fl corresponds to equation (2.7) in the 

7.occulomotor plant model described in Chapter 2. 

function z = Fl(lm) 

global lopt; 

global w; 

Imbar = Im/lopt; 

zz = 1.0 - (lmbar-l)*(lmbar-l)/(w*w); 

z = max(0,zz); 
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7.Function F_t_diff computes v(t) in equation (3.2) and its 

7.derivative. These are used in equation (3.9) in the 

7.control design. 

function ftdiff = F_t_diff(t) 

global Jg; 

global Bg; 

global Kg; 

xx=theta_ref_vec(t); 

ftdiff(1) = Jg*xx(3) + Bg*xx(2)+Kg*xx(l); 

ftdiff(2) = Jg*xx(4) + Bg*xx(3)+Kg*xx(2); 

7.Function lm_vec computes /̂ ^ and /̂ 2 

7»used in the control design in equations (3.14). 

function lm_vec = lm_dot_l_2(t,x2,x3,x4,r,Jg,Bg,Kg,alpha,kte,kti,ks,Itc,Its) 

global r; 

global Jg; 

global Bg; 

global Kg; 

global alpha; 

global kte; 

global kti; 

global ks; 

global Itc; 

global It; 
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minimum = 200; 

epsl = -0.0001; 

vv = F_t_diff(t); 

gamma_diff = + alpha*vv(l) + vv(2); 

if ( gamma_diff > epsl) 

gamma_l = minimum+gamma_diff; 

gamma_2 = minimum; 

else 

gamma_l = minimum; 

gamma_2 = minimum-gamma_diff; 

end 

kt_l = Kt(x3); 

kt_2= Kt(x4); 

cl=(pi*r/180.0); 

lm_vec(l) = cl* ( (-gamma_l + alpha*x3)/kt_l - x2); 

lm_vec(2) = cl* ( (-gamma_2 + alpha*x4)/kt_2 +x2); 

7.Function model computes the first six 

7.elements in the right hand side of the oculomotor plant 

7o model given in equation (2.1). 

function xd = model(t,x) 

global Bpm; 

global Bg; 

global Kg; 

global Jg; 

34 



global M; 

global r; 

global 1ms; 

global Imc; 

global kme; 

global kml; 

global kpm; 

global Fmc; 

global Fmax; 

global lopt; 

global w; 

global kte; 

global kti; 

global ks; 

global tau; 

global Itc; 

global Its; 

global Vmax; 

global alpha; 

Imm.dot = lm_dot_l_2(t,x(2),x(3),x(4)); 

xd(l) = x(2); 

xd(2) = (x(3) - x(4) - Bg*x(2) -Kg * x(l))/Jg; 

xd(3) = Kt(x(3)) *(-x(2) - (180.0/(pi*r))*lmm_dot(l) ); 

xd(4) =Kt(x(4)) *(x(2) - (180.0/(pi*r))*lmm_dot(2) ); 

xd(5) = lmm_dot(l); 

xd(6) = lmm_dot(2); 

xd = xd'; 
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7.Function post_process_act_calc computes 

7.activation forces from what has been computed already 

function pp = post_process_act_calc(t,x) 

global Imc 

global 1ms 

global kpm 

global kml 

global kme 

global Fmc 

global Fmax; 

global r; 

global Jg; 

global Bg; 

global Kg; 

global alpha; 

global kte; 

global kti; 

global ks; 

global Itc; 

global Its; 

global Vmax; 

global w; 

global lopt; 

maximum = 10000; 
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epsl = 0.0001; 

n = size(x,1); 

for i=l:n 

pi =x(i,3) - Fpe(x(i,5)); 

p2 =x(i,4) - Fpe(x(i,6)); 

theta_r = theta_ref_vec(t(i)); 

lm_vec = lm_dot_l_2(t(i),x(i,2),x(i,3),x(i,4)); 

fll= Fl(x(i,5)); 

fl2 = Fl(x(i,6)); 

denl= Fmax*fll*(l+lm_vec(l)/Vmax)~(l/3); 

den2=Fmax*fl2*(l+lm_vec(2)/Vmax)~(l/3); 

pp(i,l) =maximum; 

pp(i,2) = maximum; 

pp(i,3) = x(i,l) - theta_r(l); 

pp(i,4) = theta_r(l); 

if(abs(denl)>epsl) 

pp(i,l) = pl/denl; 

end 

if(abs(den2) > epsl) 

pp(i,2) = p2/den2; 

end 

end 

7, Plot muscle activation forces 

plot(t,x(:,7),t,x(:,8)) 



7. P lo t eye a n g l e s . 

p l o t ( t , x ( : , l ) , t , x ( : , 9 ) , t , x ( : , 1 0 ) ) 

7. P lo t tendon forces 

p l o t ( t , x ( : , l ) , t , x ( : , 9 ) , t , x ( : , 1 0 ) ) 
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