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ABSTRACT

The eyes move in order to place an intended object on the region of the retina
with greatest visual acuity, called the fovea. Movement of eves are produced via the
coordinated action of several muscle groups acting in response to neurological signals.
The focus of this thesis is to study a particualr tvpe of eve movement called smooth

pursuit from the perspective of control theory.

There are several types of eyve movements reported in the rescarch literature.
Primarily among them are the (1) saccadic or fast eye movement subsvstem (2)
pursuit or tracking subsystem (3) vergence subsystem (1) vestibular subsystem. In
contrast to the saccadic eye movement research, scant attention has been paid to the
study of the remaining types from the viewpoint of control. Here a detailed description
is given on how to design a controller for the pursuit eve movement using an occular
motor plant model from recent research literature. This model represent capabilities
of muscle actuators of the eyes reasonably accurately from the viewpoint of their
actuator and length limitations and other nonlinearities, but disregards details of
cortical circuitry behind signal generation. Performance of the designed controller is
demonstrated via simulations pertinent to pursuit of sinusoidal. ramp and parabolic
signals. It is argued that the designed controller performs better than the actual
occular motor plant for the reason that the aditional restrictions imposed by cortical
circuitry are completely disregarded in the design. Overall, the latency and peak
velocity of the designed controller is shown to be within a factor of four of the actual

occular motor controller during pursuit.
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CHAPTER 1
INTRODUCTION

The eyes move in order to place an infended object on the region of the retina
with greatest visual acuity. called fovea. Movement of eves are produced via the
coordinated action of several muscle groups acting in response to neurological signals.
The focus of this thesis is to study a particular tvpe of eve movement called smooth

pursuit from the perspective of control theory.

When looking back over the past 15 vears it is clear that eve movement research
has been quite influential across several domains. Research on the reading process
has benefited significantly from insights obtained from eye movement data (see e.g. .
[19]) as well as research on scene perception, visual search, and other perceptual
and cognitive processes. Today, the need to understand the occular motor control
system stems from two important research areas: biomedical engincering and the
design of systems capable of taking eve-gaze commands. Biomedical engineering is
inching toward the point of artificially stimulating muscle groups in order to correct
defects, whereas designers of sophisticated equipment under visual commands are
fast reaching the point where the dynamics of cve movement is a primary factor in

speeding up the response times.

There are several tvpes of eve movements reported in the research literature. For
example Troost [23] (see also [25, 26, 24. 21. 5] for additional detail) describe four
subsvstems of the supranuclear occular motor control (i.e., distinction originates in the
higher regions of the brain): (1) saccadic or fast eve movement subsystem. (2) pursuit
or tracking subsystem, (3) vergence subsystem. (4) vestibular subsvstem. Saccades
are rapid binocular eve movements which are under both voluntary and reflex control.
The visual stimulus for a saccade is the displacement of the target object. Typically
saccades oceur with a latency of 200 to 250 msec after an instantaneous displacement

of the target. Saccades are ballistic (i.e.. under open-loop control. and cannot be


file:///-oluntary

redirected once the motion is initiated) and the peak velocity can range from 307 /sec
to 700°/sec with up to 40° amplitude. Eve movement during a saccade is relatively
sunple: an appropriate latency followed by a period of acceleration to peak velocity
followed by decceleration of the eves onto the new target position. Correspondingly.
the control action taken is also relatively simple. The second tvpe. the pursuit
eve movement, 1s evoked by the slow movement of a fixated target after a latency
of about 125 msec. Maximum eve velocity can go up to 50"/sec. In contrast to
saccadic eve movement pursuit eve movement is simnooth. and can be continuously
modified in response to visual input (i.e., under feedback control). Retinal velocity
error is thought to be the input signal to the pursuit control svstem. This suggestion
1s corroborated with physiological evidence that demonstrate that pursuit cannot
be initiated voluntarily, i.e., without an actual target motion. Attempts to initiate
pursuit voluntarily leads to a series of small saccades called the “cog-wheel™ pursuit.
The third type. the vestibular-occular eve movement. occur as a compensatory
response to a head movement, and is elicited by the vestibular svstem. The latency
can be up to 100 msec and the peak eve velocity can be as fast as 300°/sec. In
general, the eves move in an opposite direction to the movement of the head. and the
counterrotation, which may match exactly under well lit conditions. takes place as
a smooth movement under continuous feedback control interrupted by intermittent
saccades that recenter the eves toward midposition in the orbit. It is thought that
the head acceleration is the input signal during the feedback control (i.e., continuous)
phase. The fourth type. the Vergence eve movement. occur in response to motion
toward or awav from the observer. The latency is approximately 160 msec and the
maximum velocity is about 20°/scc.

There is much biological evidence to suggest that the smooth pursuit eve move-
ment and the saccadic eve movement are fundamentally different neurological phe-
nomena. among them are are the region of origin of control signals in the brain (sce
e.g. [22]) and the pathways (for example, it is reported in (23] that horizontal saccades

originate in the cortex of the contralateral frontal lobe, whereas pursuit originate in



the ipsilateral parleto-occipital visual association arcas). Differences have been found

regarding the other types eve movements as well (see e.g.. [23]).

Among the four tyvpes of eve movements described above there have been extensive
investigations aimed at understanding the saccadic eve movement from a variety of
viewpoints (see e.g., [15] and references therein. or the 60 odd papers listed and
references therein in [12]). There have heen many recent investigations aimed at
understanding the saccadic movement of the eve from the viewpoint of control theory
(seee.g.. [17, 16, 18, 9]. etc.). Modeling the eve as a control svstem involves taking into
account the nature of the neural signals. dvnamics of the eve balls and the surronnding
medium, and nonlinear dvnamics of the muscles and their inherent limitations on
length and generation of force. resulting in a fairly complicated mathematical model.
In spite of this, as had been indicated above, saccadic eve movement is fairly simple
to analvze from the viewpoint of control theory. Primarily one only need to find
amplitudes and durations of constant control signals during acceleration. coasting
and deceleration periods. In contrast analvsis of other tvpes of eve movements are
far more complex. Since some type of feedback control is involved in all these tvpes
one can safely assume that understanding pursuit control svstem is a prerequisite to
understanding vestibulo-ocular and vergence eve movements as well. In this thesis the
task of proposing a mathematical model in order to generate neural control signals to
produce pursuit eyve movement is undertaken. As far as we are aware this is the first

such attempt which takes into consideration anatomically accurate models of relevant

muscle groups.

Modeling of the human ocular syvstem and its dyvnamic properties has been ad-
dressed by many scientists. In 1630. Descartes[10] developed one of the tirst models
of eve movement based on the priciple of reciprocal innervation. a notion of paired
muscular activity in which a contraction of one muscle is associated with the relax-
ation of another. Descartes basic idea has been expanded and modified to include

varying levels of detail and sophistication. In 1954, Westheimer (sec e.g.. '71) de-



veloped a linear second-order approximation of eve dynamics during a saccade. His
model worked well for up to 10 degree saccades but not for larger ~accades. Robin-
son [2. 1. 3] advanced a more realistic representation of eve movement consisting of
a linear fourth-order model that could simulate saccades between 5 and 50 degrees.
but the velocity profiles produced by this model were not physically realistic. Both
Westneimer and Robinson ackunowledged the eve movement mechanisnm to be inher-
entlv nonlinear due to the geometry of the svstem and the nonlinear physiological
behavior of certain components pertaining to extraocular nuiscle. Another group of
researchers proposed the Cook-Clark-Stark [8. 6] imnodel which addressced the nonlinear
relationships between force and velocity in the muscle and produced realisric position.
velocity. and acceleration profiles. However. their model failed to incorporate certain
force-length muscle characteristics which have recentlyv gained prominence in the lit-
erature of bio-mechanical modeling. Later this model was modified by the addition

of force-length relationship of muscle.

Perhaps the most realistic models of musculotendon actuators was proposed by
Hill [14]. This model captures the nonlinear force-length relationship reasonably well.
and has been used extensively in [27. 13] in modeling leg movement during jumping.
and in modeling the saccadic eve movement in [9. 16. 18, 17 . Here a Hill-tvpe model
is used to represent muscle dyvnamics. and address the problem of finding control laws

that make the pupil movement follow a given trajectoryv is addressed.

This thesis is organized as follows. In Chapter II. a mathematical model describ-
ing the occular motor control syvstem is discussed. This model is taken from the NS,
thesis of A. McSpadden [17 . and relevant features captured in the model include
length and actuation force limitations and other nonlinearities of muscles. mass, stiff-
ness and damping in the eve. and amplitude and rate limitations of neural input
signals. This model disregards details of the origin and the cortical pathwayvs of the
neural signal. In Chapter III. a mathematical analysis of the pursuit eve movement

is discussed with the aim of describing representative neural inputs generated in the



form of a feedback control law that would facilitate tracking a slowly moving target.
To our knowledge this is the first such attempt. where the fundamental nature and
limitations of muscles are represented accurately. No suggestion is made that these
signals are comparable to actual neural signals. It is left to the experimentalists to
verify this aspect. However. the fundamental ideas behind the design can be modified
if one were to start from experimental data and recover the neural control signals from
them. In Chapter IV, some simulation results from Matlab are presented to illustrate
the performance of the controller designed in Chapter I11. Tracking signals considered
are two sinusoidal signals and a ramp signal. It is concluded that the performance of
the controller is comparable to what has been reported in the research literature on

pursuit eve movement. The Matlab programs used are reproduced in an Appendix.



CHAPTER II
THE OCCULAR MOTOR PLANT MODEL

There have been many recent studies aimed at modeling the dynamics of the eve
movement (see e.g.. [17].[11].[20].[9]). A common theme in all this work is to model
the eye as a rigid body controlled by muscles attached to it. Thev differ in the wav
the muscles are modeled. It is our viewpoint that the nonlinear dvnamics of muscles
play a central role. In this regard, recent models developed by [17 are the most

relevant.

In his M.S. thesis [17]. A. McSpadden derived a svstem of dvnamical equations to
describe the eve movement in a horizontal plane. Attention is restricted to the medial
rectus and lateral rectus muscles as actuators, and they were modeled using Hill'~
equations [14. 27]. The eve is modeled as a solid sphere with rotational innertia Jg.
rotational viscocity B¢ and linear spring constant A around a vertial axis through its
center. It is assumed that the medial rectus and lateral rectus muscles have identical
characteristics, each having a mass M. A schematic model is presented in Figure 2.1.

In [17]. dynamical equations were derived to represent the model depicted in
Figure 2.1. consisting of twelve coupled nonlinear differential equations with two
neural control inputs. It was shown that a reasonably good approximation consisting

of eight state variables can be derived in the form.

o= flr) + gi(o)n(t) + ga(0)na(t) (2.1)

where, & represent the state vector. f.g; and g» are nonlinear vector fields to be
described later. and n; and n» represent the neural input signals to the medial rectus

and lateral rectus muscles. respectively.

The state vector of the occulomotor plant is v = [0.0. Fyy. Fo, Ly Lpo.ay.as)



where,

# = eyeangle
9 = angular velocity of the eve
F;1 = tendon force of the medial rectus muscle
Fi» = tendon force of the lateral rectus muscle
lmi = length of the medial rectus muscle
lma = length of the lateral rectus muscle
a; = activation level of the medial rectus muscle
a, = activation level of the lateral rectus mmuscle.

Of course. the state space is a proper subset of R® since several of the state vari-
ables have to satisfv hard constraints. For the sake of simplicity, only the following

constraints are imposed here.

e Tendon forces are not allowed to fall below a minimum threshold level or exceed
a maximum threshold level.

e \uscle lengths have to be between a lower and an upper limit.

e \Neural activation levels of the medial rectus and lateral rectus muscles have to

be between 0 and 1.

Dyvnamics of the occulomotor plant given in (2.1) are quite complicated. Below



we describe the vector fields f. ¢;. and ¢o:
_ N -
(x3 — 1y — Byzy — KNy21)/J,
Ki(rs)[—1o — (180/7)o(x3. 5. 17)]
Ki(zy)[ry — (180/m)o(xy. 2. 1))

0(1'3. Xs. .7,‘7)

g(z) =
ga(x) =

Here, 7 represent a time constant reflecting the delay in converting neural signals to

muscle activation signals, and /\; and o are nonlinear functions.

ktex +ky:  0<z < F

Kt(I) = (_)3)
ks: T Z Ft07
‘maa:[zx_Fpe(y) - 1]3: ~ Z C
o(r.y. z,w) = Fi‘;ﬁf}? (2.4)

< (.

-

o(y)+(180/7r) Ky (x)
The function parameters F,.. F; and ¢* in the expressions of o are given by.

4

:_ZLL:[&lp(kme(lSO/W’)(l o Ims): [m.s S l S [mc-

v(l) = 9 (180/77 ) e prm: I>1 .. . (2.3)
0; otherwise.

Kt lexp(hine (180/77)(1 = Lne): s <1 < e

Fpe(l) - < kpm(180/’_‘7)([ o [mC) + chl [ Z [m(-- . (26)

0; otherwise.

\

R = 1-(lfml

w

). (2.7)
Approximate values of the constants appearing in the functions above were estimated

in [17] to be:

L



Table I1.1: Parameters and estimated values

parameter | description value

r radius of the eve 1.24cm
Jg rotational innertia of the eyve 6 x 10 °gts" /"
B, rotational viscocity of the eve 0.0158¢1 /9
I rotational viscocity of the eve 0.79gt/°
By passive muscle viscosity 0.06¢ts/°
AV muscle mass 0.748¢g
Frax maximum isometric muscle force 100gt

lmp primary muscle length 4.0cm

bogt optimal muscle length 1.65¢m
Lins muscle slack length 3.7cm

Line linear limit of passive muscle 1.8cm
Kme a shape parameter 0.0387/°
- linear passive muscle elasticity 0.9gt/°
Rt minimum passive muscle elasticity | 0.126gt/0
| 2. linear limit of muscle force 20qgt

w a normalizing parameter 0.5

Ve maximum muscle velocity ' 5689° /s
ks linear tendon elasticity 2.5gt/°
ky minimum tendon elasticity 1.5gt/°
ke a shape parameter for tendon force | 0.0333/ 0
lis tendon slack length 0.2¢m

lie a shape parameter 0.532cm
Fs a shape parameter 30gt

3.3 in the next chapter.

These parameter values will be used in carrving out simulations reported in section
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CHAPTER III
ANALYSIS OF THE SMOOTH TRACKING PROBLEM

In this chapter, the pursuit eve movement control, i.e.. control problem of visually
tracking a slowly moving signal, is discussed. Attention is confined to the horizontal
eye movement and the medial rectus and lateral rectus muscles are treated as actua-
tors. It is evident that in most situations the dvnamics of the signal to be tracked are
unknown a priori. Therefore, the treatment begins with no assumptions on dynamics
of the signal to be tracked. For control theoretic reasons. it becomes necessary to
make some assumptions on the level of smoothness of the signal to he tracked. Here
1t 1s assumed that this signal is three times differentiable. Recall from the discussion
in the introduction that according to Troost [23] the input signal to the occular mo-
tor control syvstem during vestbulo-occular movement is the accleration of the head.
Since the objective of the continuous control system during this phase is to keep the
fovea fixed to a target (see the introduction) this input can be treated as the second
derivative of the tracking signal. Thus, there is already physiological evidence to sug-
gest that up to the second derivative of the tracking signal is involved in the occular
motor control system. It is suggested here that further physiological research may

needed to be carried out in order to verify whether or not the third derivative is also

involved.

3.1 Tracking with a priori unknown dynamics

Here the problem of the eve tracking signal 0,.(¢) is discussed where no assumptions
are made regarding the details of the dynamics of 6,(#). The only assumption made
is that at time t the brain is aware of the value of 6, and its first three derivatives.
A physical example that would fit this description would be the motion of a fly. As
had been stated in 4.2.1 it is assumed that the head is at rest at all times. The aim

is to generate representative neural signals that will ensure that the eve angle 6(t)

11



will track the reference signal 6,(t) asvmptoticallv. Let us rewrite the dvnamics of

the first two equations in (2.1) as

jjl — Iy,
. I B 1
Ty = —Tg-’l'l = ]—9.1'2 + —(r3 —.ry). (3.1)
Yy Jg Jg
where 21 = 0, x5 = 6, a4 and 1, are the tendon forces of the medial and lateral

rectus muscles. The aim here is to ensure that () — 6,(t) — 0 exponentially fast.

Let us temporarily treat (z3 — r,;) as a control input ¢(#) to 3.1. so that it has
the appearance of a second-order linear control system. It is also stable since its
eigenvalues are at -51.0, -3109.0 corresponding to the assumed values of J,. K, and B,.
(These figures suggest a fairly high amount of damping and stiffness. and physiological
reasons behind them are not clear from the literature) Therefore, the tracking problem

can be solved if one were to take
o(t) = K0, + B8, + J,0,, (3.2)
for in this case, if the tracking error is defined as
(e1,€2) = (x1 — O,z — 6,). (3.3)
then the error dynamics satisfv

€1 = € (3.4)
N B
éQ = —}—ggel — 7;1()2. (3-))
and this system has eigenvalues at (—351.0. —3109.0).

Note that the third and fourth equations of (2.1) are.

: ] 180

L3 = ]&;(133)[—1'2 - (?)]nu]

: . 180 :

2y = ]\t(.zg)[(z?Q — Flmj. (36)

Since the function A(.) is bounded from below. (3.6) can be solved for I, and

[ . for anv desired expression for iy and 1. The strategv here is as follows. As it
mo . p 3 5! 5.

12



was argued earlier, (14(7) — (1)) is needed to be coutrolled so that it will converge

to the right hand side of (3.2) fast. This can be achieved by letting.
fy = ay = —a(zy —y) + i(1) + ac(h), (3.7)

where, « is a sufficiently large positive constant (a is chosen to be equal to 10 in the

simulations to follow), and v(¢) is given in (3.2).

Define,
v(t) = (t) — av(t) (3-8)
]3 l~_) /
= Jgﬁer(f) + (By + an)#er(t) +{Ry+ (139)%9,.0) + a N ,0,(1).(3.9)
( (

Here the aim is to choose I, and Im, such that the difference in the right hand
sides of (3.6) is equal to the right hand side of 3.7. Solutions to this problem are
clearly non-unique. This non-uniqueness has to be exploited to find physiologically

realistic solutions. The relevant physiological constraints translate to the following:

1. muscle activations are in the range [0, 1].

2. for small values of muscle activation the equation (3.6) cannot be inverted to

solve for Iy, .

Additionally, physiological evidence has been reported to point out that the tendon

forces never fall below a certain mimimum value.

In view of the above an arbitrarv minimum value for the muscle tendon forces is

fixed here (set at 10 gt in the simulations to follow). This bound is imposed indirectly
via (3.6) by setting,
iy = —axz +7(t)
iy = —arg+ () (3.10)
where 7, and ¥, are alwavs kept above a times the minimum tendon force. Due to

the high bandwidth of (3.10) this ensures that r3(#) and ry(t) will seldom fall below

the desired minimum value.

13



Let Frin = minimum muscle tendon force allowed. Now. the followinge limitations

on 7y, and vy are imposed:
a) Yi(t) > (0 Fpn). 1=1.2.
b) v (t) = v2(t) = y(1), where v(t) is given in (3.9).
To meet these requircments choose (1) as.

”Fmin + 7(")) if 7(1) _>. 0
aFoin, ify(t) < 0.

(1) =

“‘En.i'nw if 7(t) > 0
aFmin — (). ify(t) < 0.

Y2(t) =

Finally, from (3.6) and (3.10), it follows that.

; 1 r
I, = — ()] = 2y} ——
: 1 r
lm. — vy — A9 .
2 {[\'t(l‘zl) [(1 I4 VQ(t)] + I-} 180

(3.13)

(3.14)

where () and 7,(¢) are as in (3.11), y(?) is as in (3.9). and «a is a reasonably large

positive constant (choosen to be equal to 10 in the simulations).

Now, the muscle activations a;(t) and ay(t) are found by inverting (2.1). Of

course these inversions will be valid only if the activations will fall in the range

[0,1]. Activations falling outside of the range will indicate either the attempted eve

movement fall outside the physiologically feasible range. or that the feedback solution

found here is inferior to the one employed physiologically. Simulations below illustrate

that as long as the attempted eve movement is reasonable the proposed feedback law

meet physiological constraints.

Assuming that the constraints are met. the muscle activations can be presented

14
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- ( ) Fpe(/ml( ))
(l,l(f) f (t) .
FIH(IIE( m1( ))[1+(ml )1/3]

maxzr

a(t) = ) = Bl () (3.15)

Fonar Fy(lony (1)1 4 (51

mazx

where, [,,,, () and Im, (t) are given in (3.14).

Observe that (3.15) describe muscle activation as a state feedback control law. It
utilizes the first three derivatives of the reference signal. The neural inputs can be

computed as,

nz(t) — ai(t) + T(:lw,'(t), § = 1, 2. (31())

This completes the process of computing representative neural signals to the me-

dial rectus and lateral rectus muscles during the pursuit of the reference signal 6, (7).

3.2 Tracking with a priori known dynamics

Here, the case of following a signal which is generated as the output of a svstem
with known dynamics, e.g., a rolling ball, is considered. The key assumption made is
that the brain has an internal representation of the dvnamics to be tracked. This is

assumed to be of the form,

w = Sw) (3.1)
0, = h(w), (3.2)

where w(t) € R", 0,(t) € R". and S is a smooth function. By the same reasoning as in

the previous section, #, and its first three derivatives are needed in order to compute



a feedback control law. In terms of the known dyvnamics these can be written as.

6, = h(w) (3.3)
d
W@r — LDII(.&) (3—1)
- , )
(]fl 8,- = Lsh(w') (30)
& :
_9 == ). d.
dt3 r Lsh( ) (3 6)

These signals can be used in place of the explicitly computed derivatives here.

In order to illustrate this idea consider the simple example of tracking a ball rolling

horizontally. Its dvnamics have the form.

.l:l = 19 (37)

Ty = — 9. (3\)

where r; is the horizontal position of the ball, and r, is the velocity of the ball.
For the sake of simplicity it is assumed that the mass of the ball and the applicable
coefficcient of viscous friction are both equal to units. The eve keeps track of the
location of the ball. Therefore. the output to be tracked is the angular position of
the ball. which can be written as. 6,(t) = arctan(x;/J). where 3 and is the distance

from the eve to the line of motion of the ball.

Thus. the reference angle and its derivatives can be written as.

6, = arctan(xy/.7)
d I
_97‘ = ) - D)
dt 3+ 27
(‘12 0 o jl"_)(-jj + lf + 2.1’2.1‘2)
a2 (32 + z%)? '

These expressions can be used in (3.9) in deriving the control laws given in (3.15).

16



3.3  Simulations

In this section. the performance of the feedback control law derived in (3.15) is
illustrated via simulations. An 8"-order model derived in [17 is used here. which is
reproduced in (2.1) alongside with the values of the relevanr parameters in Chapter
II. Simulations were done in Matlab’ using ODE4) routines. These routines employ
2nd- and 4th-order Runge-IKutta method with adaptive step size control. The relevant

Matlab program is included in the appendix.

In the simulations latency is interpreted as the time to “catch up”™ with the signal
to be tracked reasonable well. Since no delays are explicitly modeled in the occu-
lar motor plant (see Chapter II) simulations will not produce an explicit lateney in
response time. Most likely in reality there will be such a latency occuring due to
cortical signal processing delays. It would be satisfactory for us in the simulations if
the “time to catch up” is shorter that the maximum latency reported in Troost 23]

of 125 msec during pursuit.

3.3.1 Tracking the movement of a sinusoidal signal

The problem of tracking the sinusoidal signal 6, () = 20 sin(27t) for a 1.8 second
time interval is considered. It is assumed that the eve initially start at 10° angular

position. Simulation results are shown in Figure 3.1

First, the simulation demonstrate that the designed controller acomplishes pursuit
eye movement very well. Figure 3.1.a shows that the tracking error is practically equal
to zero after about 40 msec. Tendon forces (Figure 3.1.b), muscle lengths (Figure

3.1.c) and activation signals (Figure 3.1.d) are well within the designed limits.

[t is seen in Figure 3.1.a that in about 40 msec the eve catches up with the
signal to be tracked. This is well within the maximum latency of 125 msce reported
by Troost in [23]. The peak eve velocity is around 200°/sec which is more than the

reported maximum value of 50° /sec. Note that the occular motor system is capable of



generating such speeds during saccadic eve movement. Therefore. this peak velocity
doesn’t inherently violate physical limirs of the svstem. We would like to offer the
following interpretation in this regard. In the control design no attempt was made to
exactly match the actual neural signals since thev are not known to us. The control
design presented only describe the capabilities of the muscular-occular-motor svstem.
[t is very likelv that the cortex has its own bandwidth limitations. and the reported
velocity limits are due to those. If one would like to obtain a better fit he could play
with the parameter « in the controller, and with placing cigenvalues in 3.5 closer to

the imaginary axis.

3.3.2  Tracking the movement of a ramp signal

The problem of tracking the ramp signal 6, (¢) = 15¢ for a two second time interval
is considered. It is assumed that the eve initially start at 10° angular position.

Simulation results are shown in Figure 3.2

Simulation results show that the controller works very well while respecting ten-
don force, muscle length and activation level limits. The latency is about 40 msec
and the peak eve velocity is about 250°/msec. Again, these results show that the
performance of the controller is slightly superior to the physiologically observed per-

formance reported in Troost [23]. The explanation offered in the same as in the

previous example.

3.3.3 Tracking the movement of a ramp signal

It turns out that the parameter a in the designed control law play an important
role in keeping the activation signals within reasonable bounds. Here the problem
considered in section 3.3.2. i.e., tracking a ramp signal of amplitude 30° in two scconds.
is revisited. The parameter o is set to 2 (instead of 10 as in other examples). Angular

variables and the activation signals are plotted in Figure 3.3.



Clearly the results shown are unaceeptable due to excessive activation levels ve-
quired. This accomplishes our objective which was to show that the parameter o

used in the control design cannot be too low.

3.3.4 Tracking the movement of a quadratic signal

The problem of tracking the signal 6,(t) = 5% for a two-second time interval
is considered. It is assumed that the eve initially start at 10° angular position.

Simulation results are shown in Figure 3.14.

Simulation results show that the designed controller works well, but its perfor-
mance is superior to physiologically observed results. Explanation given in scction

3.3.1 is applicable here as well.
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CHAPTER IV
CONCLUDING REMARKS

The objecrive of this thesis is to ~tudy the pur=uir eve movement from rhe per-
spective of control theory. To be specific. a representative control law was designed
ro accomplish pursuit eve movement utilizing an oculomotor plant model developed
in [17° and via simulations it was demonstrated that the control law can accomplish
this task. Plant model utilized take into consideration anatomically realistic models

of muscular actuarors. but ignore corrial detal-.

Hitherto pursuit eve movement has not been studied with the ~ame vizor as the
saccadic eve movement. and no reasonable data seem to be available to even com-
pare the performance of the designed controller with physiological observations. Yet.
sketchy details on latency and peak velocity during pursuir reported by Troost etc.
(see e.g [23)) seem to indicate thar the designed controller performs ~lightly better
than rhe phyvsiological controller. and the most likely reason i~ thar the cortical cir-

cuitry impose additional resrrictions on the speed of tracking.

The key ideas behind the design of the pursuit controller here can be extended 1o
study vergence and vestibulo-occular control eye movements as well. It 1~ onr hope
to carry this out in the future. It i~ also hoped that the validity of the general narure

and the performance will be checked via phyvsiological experiments in the furure.
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APPENDIN: MATLAB PROGRANIS

#Function theta_ref_vec allows the user to specify the
hreference signal to be tracked and its first three derivatives.
hIn the example below a sinusoidal signal is specified.
#User should edit theta(1),---,theta(4) below in order
#to describe a different reference signal.
function theta = theta_ref_vec(t)

omega = 1.0;

P = 2.0%3.1415926535;
amplitude = 20.0;
theta(1)

amplitude*sin(p*t); Jreference signal (eye angle theta_ref(t)

theta(2)= p*amplitude*cos(p*t); % (derivative of reference signal (dot.

theta(3) = -p*p*amplitude*sin(p#*t); % dot_dot_theta_ref(t)

—p*p*p*cos(p*t); % dot_dot_dot_theta_ref(t)

theta(4)

%#This main routine specifies parameter values of the oculomotor plant
Jmodel given in Table 2.1, specify initil conditions,
%» specify the time interval, call ode45 to do the simulation
/s(note:internal routines call the control design algorithm here)
hand process and store data to a form suitable for plotting.
global Bpm
Bpm = 0.06;
global Bg
Bg = 0.0158;
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global

global

global

global

global

global

global

global

global

global

global

global

global

global

global

Keg
Kg = 0.79;
Jg
Jg = 0.000005;
M
M= 0.748;
T
r = 1.24;

1ms

lms 3.7

Imc

1mc 4.8;
kme

kme= 0.0387;
kml

kml

0.126;
kpm
kpm = 0.9;

Fmc

Fmc = 20.0;
Fmax

Fmax = 100.0;
Ftc

Ftc = 30.0;
lopt

lopt = 4.65;
W

w =0.5;

kte
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kte = 0.0333;

global ktl

ktl 1.5;
global ks
ks = 2.5;
global tau
tau = 0.002;
global 1tc
1tc =0.532;
global 1ts
1ts =0.2;
global Vmax
Vmax = 5689.0;
global alpha
alpha = 10.0;
hinitial state
x0 =[10.0, 0, 20, 20, 4.0,4.0];
%»x0 = [0,0,4,0,4,0,2.2,2.2,0.0,0.0];
%x0=[6.0,0,4,0,4,0,2.31141,2.31141,0,0];
%initial time for the simulation
t0 = 0.0;
%final time for the simulation
tf = 1.8;
%call oded4b routine to cary out the simulation.
[t,x] = ode45(’model_red_track’,[t0:0.01:tf],x0);
hcalculate activation forces from what has been computed already.
pp = post_process_act_calc(t,x);
x(:,7) = pp(:,1);
x(:,8) = pp(:,2);

30



x(:,9) = pp(:,3);

x(:,10) = pp(:,4);

fid = fopen(’output’,’w’);

%hStore computed data in the file output.

fprintf(fid,’%8.3f %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f
n’,x);

fclose(fid);

sFunction Kt correspont to the equation (2.3) in the
hocculomotor plant model described in Chapter 2.
function zz = Kt(x7)
global kte;
global ktl;
global ks;
global 1ltc;
global 1lts;
global r;
Ftc = (ktl/kte) * ( exp( (180.0/(pi*r))*ktex(ltc-1ts) ) -1.0 );
switch x7

case x7 <0

zz = 0.0;

case x7 > Ftc

zz = Kks;
otherwise
zz = ktexx7 + ktl;

end
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% Function Fpe corresponds to the equation (2.6) in the
hocculomotor plant model described in Chapter 2.

function yy = Fpe(z)

global 1mc;
global 1ms;
global kpm;
global kml;
global kme;
global Fmc;
global r;
switch z
case (z < 1ms)
yy = 0.0;
case (z > 1lmc)
yy = kpm*180.0/(pi * r) * (z - 1lc) + Fmc;
otherwise
yy = (kml/kme) * (exp ( kme * (180.0 / (pi * r))* (z - 1
end

% Function F1 corresponds to equation (2.7) in the
%occulomotor plant model described in Chapter 2.
function z = F1(1lm)

global lopt;

global w;

lmbar = 1m/lopt;

zz = 1.0 - (Imbar-1)*(1lmbar-1)/(w*w);

z = max(0,zz);



#Function F_t_diff computes v(t) in equation (3.2) and its
hderivative. These are used in equation (3.9) in the

hcontrol design.

function ftdiff = F_t_diff(t)
global Jg;
global Bg;
global Kg;

xx=theta_ref_vec(t);

ftdiff(1) = Jg*xx(3) + Bg*xx(2)+Kg*xx(1);

ftdiff(2)

Jg*xxx(4) + Bg*xxx(3)+Kg*xx(2);

sFunction lm_vec computes %h and Gw
Jsused in the control design in equations (3.14).
function lm_vec = 1lm_dot_1_2(t,x2,x3,x4,r,Jg,Bg,Kg,alpha,kte,ktl, ks,ltc,1ts)
global r;
global Jg;
global Bg;
global Kg;
global alpha;
global kte;
global ktl;
global ks;
global ltc;
global 1t;
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minimum = 200;

epsl = -0.0001;

vv = F_t_diff(t);
gamma_diff = + alpha*vv(1l) + vv(2);
if ( gamma_diff > epsi)

gamma_1 = minimum+gamma_diff;
gamma_2 = minimum;
else
gamma_1 = minimum,
gamma_2 = minimum-gamma_diff;
end

kt_1 = Kt(x3);
kt_2= Kt(x4);
c1=(pi*r/180.0);

Im_vec(1l) = cl* ( (-gamma_1 + alpha*x3)/kt_1 - x2);

cl*x ( (-gamma_2 + alpha*x4)/kt_2 +x2);

1m_vec(2)

%Function model computes the first six

%elements 1in the right hand side of the oculomotor plant
% model given in equation (2.1).

function xd = model(t,x)

global Bpm;

global Bg;

global Kg;

global Jg;
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global M;

global r;

global 1lms;

global 1lmc;

global kme;

global kml;

global kpm;

global Fmc;

global Fmax;

global lopt;

global w;

global kte,

global ktl;

global ks,

global tau,

global 1tc;

global 1ts;

global Vmax;

global alpha;

Imm_dot = lm_dot_1_2(t,x(2),x(3),x(4));
xd(1) = x(2);

(x(3) - x(4) - Bg*xx(2) -Kg * x(1))/Jg;
Kt (x(3)) *(-x(2) - (180.0/(pi*r))*1lmm_dot(1) );

xd(2)

xd (3)
xd(4) =Kt (x(4)) *(x(2) - (180.0/(pi*r))*1mm_dot(2) );

xd(5) = 1lmm_dot(1);
xd(6) = 1lmm_dot(2);
xd = xd’;



hFunction post_process_act_calc computes
hactivation forces from what has been computed already.
function pp = post_process_act_calc(t,x)
global Imc;

global 1lms;

global kpm;

global kml;

global kme;

global Fmc;

global Fmax;

global r;

global Jg;

global Bg;

global Kg;

global alpha;

global kte;

global ktl;

global ks;

global ltc;

global 1ts;

global Vmax;

global w;

global lopt;

maximum = 10000;
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epsl = 0.0001;
n = size(x,1);
for i=1:n
pl =x(1,3) - Fpe(x(i,5));
p2 =x(i,4) - Fpe(x(i,6));
theta_r = theta_ref_vec(t(i));
Im_vec = Im_dot_1_2(t(i),x(1i,2),x(1,3),x(1,4));
f11= F1(x(i,5));
f12 = F1(x(i,6));
denl= Fmax*fl1x(1+1lm_vec(1)/Vmax) (1/3);
den2=Fmax*f12*(1+1m_vec(2)/Vmax) ~(1/3);

pp(i,1) =maximum,

pp(i,2) = maximum;

pp(i,3) x(i,1) - theta_r(1);
pp(i,4) = theta_r(1);
if (abs(denl)>epsl)

pp(i,1) = pl/deni;
end
if (abs(den2) > epsl)

pp(i,2) = p2/den2;

end

end

% Plot muscle activation forces.

plot(t,x(:,7),t,x(:,8))



% Plot eye angles.
plot(t,x(:,1), t,x(:,9), t,x(:,10))

7% Plot tendon forces

plot(t,x(:,1), t,x(:,9), t,x(:,10))

s



PERMISSION TO COPY

In presenting this thesis in partial fulfillment of the requirements for a
master's degree at Texas Tech University or Texas Tech University Health Sciences
Center, I agree that the Library and my major department shall make it freely
available for research purposes. Permission to copy this thesis for scholarly
purposes may be granted by the Director of the Library or my major professor.

It is understood that any copying or publication of this thesis for financial gain
shall not be allowed without my further written permission and that any user

may be liable for copyright infringement.

Agree (Permission is granted.)

A== /2 [19

Student's Signature Date’

Disagree (Permission is not granted.)

Student's Signature Date



