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Abstract

A major goal of cognitive neuroscience is to delineate how brain systems
give rise to mental function. Here we review the increasingly large role
informatics-driven approaches are playing in such efforts. We begin by re-
viewing a number of challenges conventional neuroimaging approaches face
in trying to delineate brain-cognition mappings—for example, the difficulty
in establishing the specificity of postulated associations. Next, we demon-
strate how these limitations can potentially be overcome using comple-
mentary approaches that emphasize large-scale analysis—including meta-
analytic methods that synthesize hundreds or thousands of studies at a
time; latent-variable approaches that seek to extract structure from data in
a bottom-up manner; and predictive modeling approaches capable of quan-
titatively inferring mental states from patterns of brain activity. We high-
light the underappreciated but critical role for formal cognitive ontologies
in helping to clarify, refine, and test theories of brain and cognitive function.
Finally, we conclude with a speculative discussion of what future informatics
developments may hold for cognitive neuroscience.
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INTRODUCTION

One of the central goals of cognitive neuroscience is to understand how brain systems give rise
to cognitive functions, which raises a critical question: What are the cognitive processes that we
aim to understand? To grasp the importance of this question, consider an analogy from the field
of molecular biology. A central question for this field is how genes are translated into proteins,
and answering this question requires a systematic description of the genes and the proteins that
are being related. Fortunately for molecular biologists, a number of databases describe all of the
proteins and genes that have been discovered across a wide range of species. These databases
ground the concepts that researchers in the domain are studying in a set of objective definitions,
allowing different researchers to be sure that they are talking about the same thing. For example,
researchers may describe the object of their study as “DARPP-32,” but by providing an accession
number in the UniProt database, one could easily ensure that the protein under investigation is
the same as one named “protein phosphatase 1 regulatory subunit 1B” in another paper.

By comparison, cognitive neuroscience is awash in a sea of conflicting terms and concepts.
William Uttal (2001) summed up this problem clearly in his well-known critique of neuroimaging,
The New Phrenology:

Unlike lepidopterists, who have the relatively simple task of gathering and classifying butterflies, psy-
chologists have few such convenient physical anchors. Organizing the myriad proposed psychological
components—“butterflies”—of our minds has been and is one of the great unfulfilled challenges of our
science. Indeed, it is not only unfulfilled; it has not, in my opinion, been adequately engaged. Rather,
hypothetical psychological constructs are invented ad lib and ad hoc without adequate consideration
of the fundamental issue of the very plausibility of precise definition. (p. 90)

In this article, we outline how the field of cognitive neuroscience has begun to address this
challenge through the use of tools adapted from the field of biomedical informatics. First we
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Decoding: the use of
neuroimaging data to
classify mental activity

Ontology: a formal
description of the
concepts assumed to
exist within a
particular domain, and
their relationships

address two fundamental challenges that face the enterprise of cognitive neuroscience. One chal-
lenge centers on the difficulty in isolating specific mental functions using psychological tasks.
Even if this challenge is solved, a second, deeper problem arises in the establishment of selective
mappings between brain systems and mental functions. We argue that the standard approach to
neuroimaging is fundamentally unable to deliver such selective mappings.

Second, we discuss how large-scale databases enable more powerful analyses to address these
challenges. In addition to reviewing conventional benefits of conducting analyses at scale—for
example, aggregating over hundreds or thousands of studies at a time allows estimation of associ-
ations with a precision that individual studies typically cannot—we focus on novel inferences that
are only possible using such large-scale data. We demonstrate how large-scale databases can help
quantify the true specificity of hypothesized structure-function associations by zooming out from
a single brain circuit or experimental contrast to survey an entire complex landscape of many-to-
many mappings between psychological and neural processes. We review data-driven approaches
that leverage the scale and breadth of such databases to identify latent components of brain activity
and cognitive function, and we illustrate how predictive modeling techniques can combine with
large-scale databases to support novel quantitative approaches to the decoding of mental states
from brain activity.

Finally, we discuss how formal ontologies hold an important key to better describing the
structure of the mind and its relation to the brain. We describe the Cognitive Atlas project, which
aims to develop a formal ontology for cognitive neuroscience. We conclude by highlighting some
of the future directions that we foresee for the field of cognitive neuroinformatics.

INFERENTIAL CHALLENGES FOR NEUROIMAGING

The development and widespread application of modern functional neuroimaging methods such
as functional magnetic resonance imaging (fMRI) have long offered the tantalizing promise that
researchers might one day understand how large-scale patterns of brain activity map onto specific
mental states or processes. This promise has already been partly realized by the discovery of nu-
merous brain-cognition associations over the past two decades [e.g., the existence of brain regions
that preferentially process certain classes of perceptual stimuli, or the increase in activation of a
“default mode network” (Raichle et al. 2001) when people are engaged in undirected mental activ-
ity]. However, it has also become increasingly clear that numerous inferential challenges threaten
the broad goal of attaining a comprehensive understanding of the joint structure of the mind and
brain using functional neuroimaging techniques. Many of these inferential threats are statistical or
methodological in nature (e.g., low statistical power, preprocessing and registration problems) and
are outside the scope of this review. However, a number of threats stem from very basic conceptual
challenges that we believe remain widely underappreciated within the neuroimaging community.
Here we discuss two such challenges: first, the difficulty of isolating cognitive functions, and
second, the difficulty in establishing specific mappings between brain and behavior.

Isolating Cognitive Functions

In principle, identifying the neural substrates of specific cognitive functions using functional neu-
roimaging would appear to be conceptually straightforward. According to the classical subtrac-
tion logic that underlies much of neuroimaging research (Poldrack 2010), it should be possible to
identify the neural correlates of specific processes by contrasting experimental conditions that are
carefully selected to vary with respect to only a key process of interest. This is sometimes referred
to as the assumption of pure insertion in reference to the idea (originally attributed to Donders;
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cf. Sternberg 1969) that one can theoretically add a discrete processing step to an existing task
without meaningfully altering the remaining set of processes. For example, by contrasting a condi-
tion in which participants passively view visual stimuli with a condition in which participants press
a button whenever a new stimulus appears (while holding presentation duration constant across
both conditions), one might perhaps be able to cleanly isolate the neural processes associated with
planning and executing a motor response.

In practice, of course, things are more complicated. In particular, the logic of cognitive
subtraction is notoriously fragile in the face of real-world psychological tasks (e.g., Egeth et al.
1972, Friston et al. 1996, Jennings et al. 1997). For one thing, the assumption of pure insertion
is demonstrably false in many, and perhaps most, cases. Even a simple manipulation of motor
responding is unlikely to cleanly isolate motor processes as intended because the requirement to
make a motor response is all but guaranteed to change the way participants deploy attention to
the visual stimuli (e.g., it may induce top-down biasing of early visual activity in a proactive effort
to identify stimulus changes as soon as they occur—something that would be unlikely during
passive viewing). Consistent with this, both behavioral (Egeth et al. 1972) and neuroimaging
( Jennings et al. 1997) studies have shown interactions between task performance (response times
and activation, respectively) and response sets. The same fragility is likely to be true for most
other experimental approaches as well. For example, parametric designs (in which a single task
parameter is varied, such as memory load) rely on a similar pure modulation assumption (Poldrack
2010); that is, that the only change occurring is that of the specific parameter being modulated.
Parametric increases in working memory load influence not only working memory–related
circuits but also motivational and attentional circuits (e.g., as the number of encoded items in
a Sternberg task increases, some participants may begin to experience negative emotion due to
their inability to perform the task), violating the pure modulation assumption.

Although these problems with the isolation of specific processes using subtractive designs
are widely known, it remains common in the neuroimaging literature to conflate experimental
manipulations with the specific cognitive functions that are putatively manipulated. The cautions
of Chronbach & Meehl (1955) against conflating latent constructs with operational measures
appear to have been largely forgotten. For example, a search of PubMed reveals more than 1,800
papers whose title or abstract includes the phrase “working memory task.” It may not register
to most of those authors that in using this term (rather than a more descriptive term such as
“Sternberg item recognition task” or “delayed response task”), they are making a theoretical
claim that the task in question provides a way to isolate a specific mental process called working
memory. This becomes particularly problematic when the mappings between constructs and
tasks come into question. For example, 99 abstracts in PubMed include the phrase “N-back
working memory task,” even though the construct validity of the N-back task as a measure of
working memory has come into serious question (Kane et al. 2007). As we discuss further below,
this is a perfect recipe for conceptual confusion.

Establishing Specificity

Even if we suppose, for the sake of argument, that it were possible to employ manipulations in
neuroimaging experiments that completely uphold the subtractive assumptions, we would still
face the equally daunting problem of establishing the specificity of brain-behavior associations.
Suppose we found a 100% pure task of working memory that reliably activated lateral prefrontal
brain regions when scanned with fMRI. Would we be entitled to conclude that we have established
the cognitive function of lateral prefrontal cortex (LPFC)? No. What such a finding would establish
is only that working memory engagement is a sufficient condition for activation of LPFC. It would
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not support the opposite inference—namely, that if LPFC is active, working memory processes
must be engaged. The latter inference is invalid because there could in principle be many other
psychological processes that also activate LPFC but have little to do with working memory.
This difficulty in probabilistically inferring mental function from observed brain activity has been
dubbed the problem of reverse inference in the cognitive neuroscience literature (Poldrack 2006,
2011). Formally, the reverse inference problem involves inferring the likelihood of engagement
of a particular mental process MP from a particular activation A (which could be a single region
or pattern across regions). This can be obtained using Bayes’ rule (Poldrack 2006),

P (MP|A) = P (A|MP) ∗ P (MP)
P (A)

,

given some prior P(MP) on the likelihood of the mental process being engaged and a base rate
P(A) for the activation in question. The utility of framing the reverse inference problem in terms
of Bayesian inference is that it makes clear that the added value of any activation in identifying the
underlying mental process (i.e., the difference between the prior and the posterior probability) is a
function of the likelihood of activation in the specific condition relative to the base rate of activation
in that region. Regions that are more active across all psychological functions will provide less
support for any specific reverse inference.

Alternatively, one can describe these inferential challenges in terms of necessary and sufficient
conditions. The reason that randomized, controlled experimentation is widely hailed as the gold
standard in science is that it can support strong conclusions about causal sufficiency. For example,
suppose we experimentally manipulate the nature of the stimuli during a working memory task—
presenting, say, faces in one condition and words in another—and observe that the face condition
is associated with widespread changes in inferotemporal and frontal brain activity, and also with
longer behavioral reaction times. We would be able to definitively conclude that the experimental
manipulation we introduced is causally sufficient to produce both the neural and the behavioral
changes we observed. However, we cannot conclude the opposite—that engagement of those
specific cognitive processes is necessary to produce that specific activation or behavioral response.

To see this, consider an example from psychology. Suppose subjects perform a working memory
task with two conditions that vary in putative working memory load, and they tend to respond
more slowly in the high-load condition. It might be natural in such a case to say that increased
working memory processing is the cause of subjects’ slowed responses. But now suppose that the
same subjects also perform a visual discrimination task involving two conditions that differ only
in the physical size of the on-screen stimuli. Further, suppose that the subjects tend to respond
more slowly in the small-stimulus condition. Surely, in this case, few psychologists would want
to conclude that slowed responses to smaller visual stimuli must at least partly reflect increased
working memory load! What this example illustrates is that claims that seem perfectly reasonable in
one context—for example, that increased reaction time in a working memory task reflects increased
working memory load—often depend critically on tacit background assumptions that are not part
of the formal inference. If the context changes, one may then have to invoke a completely different
set of putative causes for the same observable outcome. Unless the background conditions thought
to differentiate between different contexts can be explicitly modeled, it is not clear how one might
quantitatively infer which particular set of causes was responsible for a given outcome.

Relatedly, we also cannot easily draw causal conclusions about the relationship between brain
activity changes and behavioral changes. When one observes correlated neural and behavioral
changes that make intuitive sense, it can be tempting to interpret the former as the cause of the
latter. However, the fact that all behavioral changes must derive from some neural changes does not
mean that they must derive from the particular neural changes one happens to observe in any given
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Annotation:
the description of
relationships between
a dataset and other
concepts or datasets

study. For example, the fact that increases in frontal activity are consistently associated with longer
reaction times does not entail that the former cause the latter. It is conceivable that frontal increases
are the result rather than the cause of variations in reaction time, simply reflecting the fact that
participants are processing information for a longer period of time on trials when they take longer
to respond (cf. Yarkoni et al. 2009). Indeed, one underappreciated implication of the fact that
the blood-oxygen-level-dependent (BOLD) signal sums approximately linearly over time (Dale
& Buckner 1997) is that any increase in the duration of local processing in a region—no matter
what its cause may be—is likely to produce a corresponding increase in observed brain activity.
Such examples underscore a major challenge to efforts to map the structure of human cognition
using neuroimaging because many of the brain-behavior mappings researchers have drawn in the
literature are based largely on observation of concomitant neural and behavioral changes.

THE BENEFITS OF LARGE-SCALE INFORMATICS APPROACHES

Importantly, the inferential challenges discussed in the previous section are not intrinsic to cogni-
tive neuroscience or functional neuroimaging but simply reflect pragmatic constraints on what one
can expect to achieve in any single study. The problem of reverse inference, for instance, arises
not because it is fundamentally impossible to infer mental states from brain states, but rather
because it is very difficult to contrast a sufficient number of experimental conditions to justify
strong claims about the specificity of any individual mapping. It may be feasible to make much
more circumscribed claims that are conditioned on specific background conditions (cf. Hutzler
2014, Klein 2012, Machery 2014)—for example, that conditional on doing a reading task, some
pattern of activity implies orthographic decoding. Similarly, the uncertainty surrounding which
cognitive process deserves credit for the effect of a particular experimental task on brain activity
is attributable to the impracticality of using dozens of different tasks in every study in order to
isolate a specific process by converging operations (Garner et al. 1956). Fortunately, both of these
limitations can be ameliorated by scaling up one’s investigation to simultaneously consider the
results of many different studies. In this section, we discuss a number of ways that existing and
emerging informatics platforms can help map the structure of human cognition in novel ways and
on an unprecedented scale.

Large-Scale Meta-Analytic Structure-to-Function Mapping

One of the first informatics-driven advances in researchers’ ability to map brain-cognition rela-
tionships was the development of new statistical methods and software packages for fMRI meta-
analysis and the creation of associated coordinate databases such as BrainMap (Laird et al. 2005),
Brede (Nielsen et al. 2004), and SumsDB (Dickson et al. 2001). The BrainMap database, for ex-
ample, currently contains over 100,000 activation coordinates from over 2,600 fMRI studies that
span diverse cognitive domains. All experimental contrasts are annotated with key metadata (e.g.,
sample size, clinical populations) and coded along key dimensions (e.g., stimulus modality, task
type). Drawing on such databases and tools, researchers have conducted hundreds of fMRI meta-
analyses on topics ranging from single-word reading (Turkeltaub et al. 2002) to rectal distension
in irritable bowel syndrome (Tillisch et al. 2011). By aggregating across dozens, and in some cases
hundreds, of fMRI studies, such meta-analyses have been able to overcome the sensitivity limita-
tions associated with many primary fMRI studies (Wager et al. 2007) and provide highly robust
estimates of the neural correlates of relatively specific cognitive tasks.

Despite their enormous impact on the field, however, conventional meta-analytic approaches
also have important limitations. One is their lack of scalability: Because manual annotation
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and verification of published articles is a time-consuming process, existing coordinate databases
such as BrainMap are no longer able to keep up with the growth of the primary literature
(cf. Derrfuss & Mar 2009). Thus, as time goes on, it becomes increasingly difficult for investi-
gators to conduct comprehensive meta-analysis of the literature, even in relatively circumscribed
domains. A second problem is that conventional meta-analysis approaches, which focus on iden-
tifying the brain regions consistently activated by particular cognitive tasks or processes, do not
help address the long-standing problem of reverse inference. Consider, for example, the chal-
lenge of determining what cognitive function(s) the human anterior insula supports. Individual
fMRI studies have implicated this region in the processing of pain (Wager et al. 2004), intero-
ceptive awareness (Critchley et al. 2004), error monitoring (Klein et al. 2007), sustained attention
(Dosenbach et al. 2006), phonological processing (Wise et al. 1999), salience (Wiech et al. 2010),
and numerous other processes—and this variety is recapitulated in an equally broad range of
meta-analyses that also report anterior insula activation, such as studies of empathy (Fan et al.
2011), subsequent memory (Kim 2011), and working memory (Owen et al. 2005), among others.
Although such findings convincingly demonstrate that many different kinds of tasks reliably acti-
vate the anterior insula, they provide relatively little insight into what the specific function of the
anterior insula (or any other region) might be.

In work that addresses both the scalability and inferential limitations of conventional meta-
analysis, Yarkoni et al. (2011) recently introduced a novel framework called Neurosynth that
supports large-scale synthesis of fMRI data using a fundamentally different approach. Instead
of relying on careful manual annotation of studies, this approach emphasizes automation and
scale—effectively trading quality for quantity. Neurosynth uses relatively simple text mining and
computational linguistics methods to automatically extract both reported activations and semantic
annotations from published articles (see Figure 1). Although the data extracted from any individual
study are highly susceptible to error and lack corresponding metadata (e.g., one cannot even
reliably determine whether a particular activation represents an increase or decrease in blood
flow), the high degree of automation enables Neurosynth to grow in stride with the primary
literature at virtually no cost. Consequently, the Neurosynth database has now eclipsed BrainMap
in size, with over 10,000 studies and 360,000 discrete activations represented. In keeping with a
philosophy of data sharing, reproducibility, and open science, the entire database is made freely
available to the community without any use restrictions or requirements of coauthorship.

The relatively comprehensive coverage of the Neurosynth database opens the door to novel
kinds of inference—particularly those focused on quantifying the specificity of brain-cognition
associations. In an emblematic recent study, Chang and colleagues (2013) used Neurosynth to
quantitatively decode the psychological processes associated with different sectors of the human
insula, including the aforementioned anterior sector. The availability of a relatively comprehen-
sive cross-section of the fMRI literature enabled the authors to quantify not only which kinds
of tasks tend to consistently produce anterior insula activity (nearly all of them), but also which
processes were most likely to activate the region—thereby providing a measure of specificity that
individual fMRI studies or meta-analysis studies focused on experimental comparisons could not
(Figure 2). These investigators demonstrated that the anterior insula is maximally associated with
higher cognitive processes such as task-switching and response inhibition, which suggests that
its frequent presence in other kinds of tasks may reflect a fundamental role in basic goal-directed
cognitive processes necessary for all kinds of complex cognition (for further discussion, see Chang
et al. 2013).

The entire Neurosynth codebase has been released under a permissive software license and an
interactive web portal (http://www.neurosynth.org) has been developed to facilitate community
adoption of such methods. The Neurosynth website makes it possible, for example, to obtain
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Figure 1
An overview of the Neurosynth project. (a) Neurosynth involves the automated extraction of activation
coordinates from published papers; these coordinates can be used to perform a meta-analysis to identify
regions associated with the presence of specific terms in publications. (b) Forward inference involves
estimation of the likelihood of activation given the presence of a term, whereas reverse inference involves
estimation of the likelihood of presence of a term given activation in each voxel. (c) Neurosynth can be used
to predict which of a set of terms is most likely to be present in a paper, given a particular activation pattern.
Figure adapted with permission from Yarkoni et al. (2011).

whole-brain reverse inference maps for concepts such as reward, episodic memory, or response
inhibition, or to generate a rank-ordered list of the psychological concepts most strongly associ-
ated with activation at any location in the brain (http://www.neurosynth.org/locations). Most
recently, a real-time web interface was introduced to support the kind of open-ended decoding
functionality employed by Chang et al. (2013); this interface enables other researchers to perform
near-instantaneous quantitative reverse inference on uploaded whole-brain statistical maps. Al-
though the results of such analyses have a number of important limitations (discussed below), they
nevertheless represent a significant advance over the largely qualitative interpretations that have
historically dominated discussion sections in fMRI articles (cf. Poldrack 2006). Notably, the anal-
yses support inferences that are based on interpretation of whole-brain patterns of activity rather
than isolated brain regions, and by virtue of relying on an automated analysis of the literature
as a whole, they are less susceptible to various cognitive biases known to affect research results
(e.g., the tendency to preferentially focus on studies that converge with one’s preferred theoretical
position).

Functional Parcellation and the Search for Latent Structure

An analysis of the latent structure of the neuroimaging data provides a second, and very different,
way of approaching the search for mental structure and determining whether and how the brain
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Figure 2
Results of large-scale forward-inference and reverse-inference analyses of insula function in the Neurosynth database. Whereas the
dorsal anterior insula (blue) is consistently activated by a broad range of tasks in the forward-inference analysis, the reverse-inference
analysis reveals it to be preferentially associated with higher cognitive functions. Figure adapted with permission from Chang et al.
(2013).

carves the joints of mental function. There is a long history of using statistical methods to try to
parcellate the brain into functional units based on correlated activity or connectivity patterns. Early
reports that widely distributed networks of brain regions often modulate in concert (e.g., Biswal
et al. 1995) quickly led to a diversity of large-scale efforts aimed at extracting a comprehensive set
of networks, parcels, or components that capture the dynamics of brain activity—for example, by
using clustering techniques to identify locally homogeneous sets of voxels (Craddock et al. 2012,
Gordon et al. 2014), or by using matrix factorization methods such as independent components
analysis (Beckmann & Smith 2004) to find low-rank approximations to high-dimensional connec-
tivity data (for a review, see Varoquaux & Craddock 2013). Although such efforts were initially
focused solely on the neurobiological level of analysis, researchers soon recognized their potential
utility as bridges between brain-based network analysis and cognitive function. In an influential
example, Smith et al. (2009) mapped a set of components extracted from activation coordinates in
the BrainMap database onto the domains of tasks used in the associated studies, uncovering a set
of plausible mappings between neural networks and psychological functions. Figure 3 presents a
similar analysis performed on the Neurosynth database.

It is also possible to work in the opposite direction, starting with a decomposition of the
psychological space and assessing its relationship to brain activity. Poldrack et al. (2012) first
performed topic modeling on the text from the Neurosynth database using a technique known as
latent Dirichlet allocation (Blei et al. 2003). This method defines a probabilistic generative model
for text that involves first sampling from a set of topics and then sampling words according to
their probability under the selected topic. Given a set of documents, the latent topics are inferred
using Bayesian estimation, which provides a set of weights for each term and each document in
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Figure 3
Multivariate
meta-analysis
identifies mappings
between neural
activation and
psychological function.
The MELODIC tool
was used to perform
probabilistic
independent
components analysis
(ICA) on 9,721 images
from the Neurosynth
database (Beckmann &
Smith 2004). The slice
maps show voxels that
were significantly
associated with each of
the top six components
(red-orange, positive
association; blue,
negative association).
Polar plots show the
relative association
between each
component and
selected latent topics
from the database (cf.
Poldrack et al. 2012)
and demonstrate that
most ICA components
showed relatively
selective associations
with cognitive topics.
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relation to each of the topics. Separate analyses were performed limiting the text to terms related
to either psychological functions or brain disorders. These weights were then used to generate
maps showing which regions were statistically associated with loading on each topic (referred to
as topic maps). The topics identified using this technique generated plausible sets of cognitive
terms and related maps (e.g., one topic had as its top terms “narrative,” “discourse,” “compre-
hension,” “memory,” and “discourse processing” and was associated with activation across the
left hemisphere language network; another topic’s top terms were “auditory,” “perception,”
“hearing,” “attention,” and “listening” and was associated with activation in bilateral auditory
cortices). More recently, Yeo and colleagues (2014) used a more sophisticated hierarchical topic
model to extract a set of cognitive components that jointly explain the covariance structure
between both cognitive tasks and brain activity, thus attempting to formalize the intuitive idea
that the mapping between neural activity in individual brain regions and cognitive tasks may be
best described hierarchically (i.e., lower-level units are repeatedly configured into higher-level
circuits).

Decoding Mental Structure

A third way to approach the challenge of inferring mental structure from neurobiological data is
in terms of prediction: Given a neuroimaging dataset, we wish to make the most accurate predic-
tion possible regarding which mental processes are engaged. The coordinate-based approaches
described above have been surprisingly successful at making predictions about broad categories,
but they generally lack the detailed process-level annotation or the subject-level neuroimaging
data necessary to make much more specific predictions. An alternative approach has been to apply
machine learning classification and decoding techniques (Haynes & Rees 2006, Norman et al.
2006) to smaller datasets—for example, to try to determine which of several classes of pictures or
words a subject is currently viewing (e.g., Mitchell et al. 2003, Cox & Savoy 2003). The earliest
work in this domain focused primarily on decoding of specific stimulus or task features within a
single individual, but subsequent work has shown that one can decode large-scale psychological
functions from fMRI data in a way that generalizes across individuals (Mourão-Miranda et al.
2005, Shinkareva et al. 2008, Wager et al. 2013). However, the high decoding accuracies fre-
quently reported in such studies also belie their highly constrained nature: It is much easier to
correctly classify subjects’ mental states when there are only a handful of possible candidates (e.g.,
discriminating faces versus houses as opposed to discriminating all possible classes of objects) (cf.
Hutzler et al. 2014, Klein 2012, Machery 2014). Thus, the major open challenge is to combine
the respective strengths of these two decoding approaches, with the goal of eventually generating
highly accurate, yet relatively unconstrained, predictions about people’s mental states.

Although unconstrained decoding of mental states currently lies more in the realm of fiction
than of science, promising incipient efforts have been made. One recent line of work focuses
on reconstructing subjects’ experience of a broad range of stimuli under relatively naturalistic
conditions—often including identification of previously unseen stimuli. For example, Kay and
colleagues (2008) used novel encoding models to accurately identify which of 120 natural images
subjects were viewing. More recent studies have used similar approaches to reconstruct movie
clips from visual cortex activation (Nishimoto et al. 2011) or apply semantic labels to thousands
of objects and actions (Huth et al. 2012). Related work has used large-scale models of semantic
structure to decode the identity of words and pictures from brain images (Mitchell et al. 2008).
Although such studies remain constrained to one particular modality, their use of generative
encoding models that can identify entirely new objects represents an important advance over
older approaches that discriminate between a small, fixed set of alternatives.
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Classifier: a statistical
tool used to classify a
new observation into
one of a set of discrete
classes

In a different line of work using subject-level data from eight different tasks, Poldrack and
colleagues (2009) examined whether it was possible to decode which task an individual was engaged
in from their brain activity pattern, using a neural network classifier trained on other individuals.
These investigators found that it was possible to decode these tasks with greater than 80% accuracy
and that the underlying structure of the trained neural network provided insights into the clusters
of tasks that engaged similar neural patterns. Subsequent work using the OpenfMRI database
has shown that it is possible to decode a much larger number of tasks; for example, Poldrack
et al. (2013) found that it was possible to obtain greater than 50% accuracy at classifying between
26 different task contrasts from this database. Interestingly, this classification accuracy could
be obtained even when the dimensionality was greatly reduced using independent components
analysis (reaching asymptote around 100 dimensions), which suggests that it primarily reflects the
balance between large-scale neural systems rather than fine-grained patterns of activity. Further
analysis of the confusion matrix showed that in many cases, similar tasks from different studies
were systematically confused by the classifier, which suggests that it was tapping into general
cognitive features of those tasks rather than specifics of the particular design.

A more demanding question is whether it is possible to predict the psychological processes
underlying the task rather than the task identity. This question has also been addressed in a
number of recent studies. Koyejo & Poldrack (2013) used data from the OpenfMRI database
that had been annotated manually to specify the putative psychological processes engaged by
each of the 26 task contrasts, with the goal of predicting psychological processes rather than task
labels. Because many of the contrasts were thought to isolate multiple psychological functions, the
authors used multilabel classifiers that have the ability to predict the presence of multiple processes
for any particular dataset. They found that it was possible to predict many of the psychological
processes with relatively high accuracy, particularly for those processes that occurred relatively
often within the database (and thus had more data available for training). In similar work, Schwartz
and colleagues (2013) used the OpenfMRI database to decode task features (such as the stimulus
modality and nature of the response) and showed similarly strong classification for these features.
These studies provide the proof of concept that it should be possible to accurately decode the
psychological building blocks of a task from their associated activation patterns.

Limitations of Large-Scale, Brain-Based Approaches

The results described above highlight the utility of large-scale, brain-based approaches in dis-
covering interesting relations between psychological functions and brain systems. However, such
approaches also have important limitations. Some of these limitations are primarily technical in
nature and reflect current methodological weaknesses that are likely to be overcome in the future
via introduction of other novel approaches and informatics platforms. For example, one general
problem for virtually all extant meta-analytic databases is the lack of psychologically detailed
annotations. This weakness is most prominent in the case of Neurosynth, where data are
automatically extracted using relatively simple heuristics that cannot readily identify key metadata
fields (e.g., sample size, direction of experimental contrast); however, even when neuroimaging
studies are manually curated, as in the BrainMap database, annotations are largely focused
on task-level descriptions rather than underlying psychological processes (e.g., knowing that
an N-back paradigm with face stimuli was used in an experiment does not directly convey
whether psychological processes such as active maintenance of information, familiarity detection,
phonological rehearsal, and so on, are involved in carrying out the task). We discuss potential
solutions to this problem in the next section.
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Another technical limitation is that virtually all existing meta-analytic approaches rely on the
analysis of discrete coordinates reported in published articles rather than continuous whole-brain
statistical maps. Coordinate-based meta-analysis is demonstrably inferior to image-based meta-
analysis because it unnecessarily discards the vast majority of usable information in the original
maps, thereby reducing sensitivity and typically precluding the estimation of continuous effect
sizes (Salimi-Khorshidi et al. 2009). In the hopes of facilitating a shift to image-based approaches,
investigators are currently working to address this limitation by creating a centralized online
repository of whole-brain statistical maps. NeuroVault (http://www.neurovault.org) is a new
platform that allows researchers to quickly upload and annotate their images, which facilitates
rapid dissemination and interactive visualization of statistical maps and eventually will support
more powerful meta-analytic syntheses (Gorgolewski et al. 2014).

Finally, limitations are inherent in fMRI as an imaging methodology. In particular, the temporal
resolution of fMRI limits the ability to identify dynamic changes in the millisecond time scale,
whereas this is exactly the time scale over which most psychological processes occur. Thus, fMRI
maps should be viewed as a composite of all activity occurring during a particular episode of
mental activity. To the degree that different psychological functions are distinguished by different
dynamic combinations of a common set of processing functions on this short time scale, then it
may not be possible to disentangle these using fMRI.

In contrast to these purely technical challenges, other limitations of the approaches discussed
above are inherent to any effort to approach mind-brain mapping from a purely neurobiological
perspective—that is, by seeking first to identify the “right” functional units at the level of the brain
and then to map the revealed structures onto psychological processes. Perhaps the most pressing
problem is that a model developed to achieve statistical or theoretical parsimony strictly at a single
level of description (e.g., to find the optimal parcellation of functional brain networks given some
fixed statistical loss criterion) is not guaranteed to map cleanly onto other levels of description (e.g.,
cognitive processes). In fact, it almost assuredly will not. For instance, it is exceedingly unlikely
that there is any single brain region, cluster, or network that corresponds neatly to high-level
psychological concepts such as episodic recall, working memory, or phonological rehearsal (in
much the same way that one would not expect to find a single gene, protein, or neuron type that
isomorphically maps onto such high-level concepts). The central question that then arises is what
one ought to do in cases where well-established psychological and biological structures do not
seem to map well onto one another. For instance, if there is no obvious biological entity that maps
cleanly onto the psychological concept of working memory, should we jettison working memory
from our psychological models in favor of other psychological constructs?

The answer to this question is neither straightforward nor unequivocal. On the one hand, all
else being equal, we believe that a model of psychological processes that also maps systematically
onto known biological structures is strongly preferable over one that does not—often even when
there are other grounds to prefer the latter. For example, suppose that a psychological model
with one free parameter captures 92% of the variance in some target behavior, whereas a different
model with eight free parameters captures 93%. In such a case, it would seem both theoretically
and statistically advisable to favor the simpler model over the more complex because the additional
seven parameters add little incremental value to the behavioral prediction. Yet if the parameters
of the more complex model were to each map very cleanly onto well-delineated biological vari-
ables, whereas the single-parameter model correlated very diffusely and nonspecifically with brain
activity (as it almost certainly must), we argue that the more complex model is probably more sci-
entifically useful. In this sense, biological discoveries can and should inform the continual revision
of psychological theories.
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At the same time, we recognize that there may be many cases in which there just isn’t any
psychologically tractable model available that simultaneously respects theoretical constraints
from both psychology and biology. For example, there is no guarantee that there is any viable
replacement for the concept of working memory that would both (a) map cleanly onto underlying
biological structures and (b) remain sufficiently compact and psychologically interpretable to
be useful in practice. Would it be advantageous to eliminate a high-level term such as working
memory from our scientific lexicon if the only way to cover approximately the same territory with
a biologically detailed model is to introduce a large disjunctive set of of separate mechanisms? This
question largely echoes earlier criticisms of reductionism (Fodor 1974); that is, the mere fact that
a “fuzzy” higher-level description can in principle be replaced by a lower-level description does
not mean that the lower-level description will necessarily be more useful in practice. Ultimately,
the question will rest on whether such a new framework is more scientifically productive than
the current framework, which is unanswerable until the new framework is proposed and tested.

Unfortunately, we know of no algorithmic way to distinguish cases in which a psychological
concept has outlived its utility from those in which a concept simply lacks any viable biologically
inspired replacement but remains useful. In practice, this is a problem that researchers may always
have to navigate on a case-by-case basis, and disagreements between researchers will certainly arise
in the process. We argue strongly, however, that informatics-driven methodologies can make it
much easier to navigate this problem. In the next section, we discuss ongoing efforts to develop
formal cognitive ontologies that can help clarify conceptual definitions, distinguish genuine sub-
stantive disagreements from pointless terminological disputes, and generate new ways of studying
and thinking about causal relationships within and between different levels of description.

TOWARD A COGNITIVE ONTOLOGY

The Need for Formal Representations

We argue above that the question, “What are the parts of the mind?” cannot be successfully
addressed strictly through a bottom-up perspective that first asks, “What are the functional units
of the brain?” and only then seeks to map the resulting components onto the psychological space (cf.
Price & Friston 2005). But we have also suggested that simply inverting this process and adopting
a purely top-down approach—that is, taking well-established psychological constructs such as
working memory and seeking their underlying neural substrates—is not likely to prove much
more fruitful. Aside from the methodological and conceptual problems with such an approach
discussed in the previous sections (e.g., the problem of reverse inference), there is an arguably
even more fundamental problem, which is that psychologists rarely agree on the meaning of the
constructs under investigation. For example, definitions of the term working memory include:

� “The manipulation and use of information [in short-term memory] to guide behavior”
(Larocque et al. 2014);

� “Working memory involves the process of active maintenance of a limited amount of infor-
mation” ( Jeneson & Squire 2012);

� “A hypothetical cognitive system responsible for providing access to information required
for ongoing cognitive processes” (Wilhelm et al. 2013); and

� “Working memory subsumes the capability to memorize, retrieve and utilize information
for a limited period of time” (Rottschy et al. 2012).

This diversity of views may reflect what Walter Mischel (2008) has called the “toothbrush
problem” in psychology: “Psychologists treat other peoples’ theories like toothbrushes—no
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self-respecting person wants to use anyone else’s.” With such divergent definitions of constructs
(and equally divergent tasks used to measure them), how can we expect to find consistent
mappings between mental constructs and brain systems?

Of course, it is hardly surprising that disagreements should arise over how to delineate and
describe an organ as complex as the human mind. And there is nothing intrinsically wrong with
having a diversity of opinions. The concern, however, is that psychologists do not seem to have
well-established procedures for effectively resolving such differences. For instance, how should we
determine whether working memory is best defined in terms of maintenance and manipulation
of information in a short-term memory buffer, or in terms of the ability to flexibly recruit other
cognitive resources in support of current goals? Should the label working memory apply solely to
a central executive mechanism, or should it also encompass slave systems such as the phonological
loop and visuospatial sketchpad, as in Baddeley’s (1992) influential model? The textbook approach
to such disputes is to devise a critical experiment that can offer definitive evidence in favor of one
theory over another. But in practice, it is exceedingly difficult to identify real-world cases in
which a critical experiment has actually prompted the abandonment of a theory (cf. Greenwald
2012).

We suggest that much of the difficulty in resolving theoretical differences is due to the in-
formal nature of most theoretical claims. At present, no unifying framework allows researchers
to represent their theories and definitions in a structured, formal way; although formalization
will not resolve differences on its own, it makes differences clearer and thus more amenable to
testing. Until recently, there was no resource we know of that allowed one to easily determine
which cognitive processes the Sternberg task invokes, what clinical conditions are associated with
impairments of grammar learning, or what set of mental states can be considered instances of
emotion. We believe the development of a formal framework for specifying relationships between
psychological concepts and tasks would substantially advance our ability to map the structure of
human cognition and its underlying neurobiological bases. Notably, there is considerable prece-
dent for such a development in other biomedical fields, where formal ontologies have played a
critical role in facilitating hypothesis testing and scientific exploration alike.

Formal Ontologies as a Potential Solution

One of the most basic questions that is raised by cognitive neuroscience (and that one might
reasonably expect psychologists to be able to answer) is, “What are the parts of the mind?” If one
had asked this question of a psychologist in the eighteenth century, an answer would have been
quickly forthcoming in the form of a list of mental faculties, which were adopted by the earliest
“brain mapping” researchers (i.e., phrenologists) as the basis for their structure-function mapping.
However, today virtually no psychologists would have an answer to this question. The closest that
one might come would be to examine the index of a cognitive psychology textbook, but one would
quickly find that there is no systematic description of how psychologists currently characterize the
structure of the mind. Given that the goal of cognitive neuroscience is to map mental functions
onto brain systems, this poses a fundamental problem.

Compare this situation to a similar question in biology, “What are all of the biological functions
that occur within a cell?” As recently as the 1990s, one would have been similarly challenged to
find a systematic answer to this question. However, in the late 1990s a group of biologists and
informatics experts developed a consortium (called the Gene Ontology Consortium) that began
to develop a formal knowledge base (or ontology) to represent the state of current knowledge
regarding the structure and function of biological systems (Ashburner et al. 2000). Today, one can
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visit the Gene Ontology website (http://www.geneontology.org) and obtain a comprehensive
formal description of cellular components, biological processes, and molecular functions.

What Is an Ontology?

The term ontology is used here to refer to an “explicit specification of a conceptualization”
(Gruber 1993) or more generally as a formal description of a knowledge structure; this usage of
the term, which arises from computer science, is related to but distinct from the usage of the term
in philosophy, where it often refers to the entities that are postulated by a particular theory (Quine
1948) or more generally to the nature of existence. At its base, a formal ontology specifies the
entities that exist within a domain along with the relations between those entities (Bard & Rhee
2004). For example, within the Gene Ontology, the entity “rough endoplasmic reticulum” has
the relation “is-a” to the entity “endoplasmic reticulum” (Figure 4), meaning that the former is
agreed upon to be a particular kind of the latter.

The Gene Ontology currently has entries for more than 26,000 biological processes, nearly
10,000 molecular functions, and more than 3,600 cellular components (and it is only one of many
ontologies that have been developed within the bioinformatics community to describe various
levels of biological function and structure). Given that each of these entries was manually curated,
this represents a massive investment of human time. Why would researchers put so much time
and effort into doing this? We review below several important benefits (for others, see Bard &
Rhee 2004, Bodenreider & Stevens 2006, Rubin et al. 2008).

Controlled vocabulary with unique identifiers. The establishment of an agreed-upon ontology
provides researchers in the field with a controlled vocabulary for the description of biological
entities, each of which has a unique identifier (e.g., the identifier for endoplasmic reticulum is
GO:0005789). This provides a machine-readable way to describe each entity, which can remain
consistent even if the field decides to change the name of the entity. It also provides a means to
link between different databases, which has proven remarkably powerful in biomedical informatics
(Bard & Rhee 2004).

Framework for annotation. One of the most important aspects of the ontology is that it provides
a framework through which to relate the ontology entities to other types of data, which in the
context of bioinformatics is referred to as annotation. Gene Ontology entities are annotated by
associating them with specific gene products (proteins or RNAs). The Gene Ontology annotation
database currently has over two million annotation entries, which reflect many different types of
evidence relating specific entities to specific gene products. For example, a search for annotations
of the entity “endoplasmic reticulum” identified 119,040 entries involving 74,239 proteins across
all species. The availability of a database of these annotations has enabled a number of new tools
for understanding biological data. Most important, it has provided the ability to assess, for any
specific set of genes, which entities in the ontology are likely to be “enriched” for that set of genes,
thus providing insights into the larger biological context for the experiment (Rhee et al. 2008).

Inferring relations. Ontologies are generally specified using formal knowledge representation
systems, or ontology languages, such as the Ontology Web Language. Once specified this way,
formal reasoning systems can be used to infer relations between entities that are not explicitly
specified in the ontology. For example, if we know that rough endoplasmic reticulum is a kind of
endoplasmic reticulum and that endoplasmic reticulum is a kind of cytoplasmic part, we can infer
that rough endoplasmic reticulum is a kind of cytoplasmic part.
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Figure 4
An example of entities and relations within the Gene Ontology. This chart (generated using the QuickGO
browser: http://www.ebi.ac.uk/QuickGO) shows the relations of the term “endoplasmic reticulum”;
different possible relations between entities are denoted using different line styles.

A Pragmatic Approach to Ontology Building

An important consideration when developing a formal ontology of mental processes is that psy-
chological processes are inherently “fuzzier,” or less structured, than biological processes. In many
biomedical domains, the basic units of analysis correspond to well-defined physical entities and
are not up for serious debate. For example, it’s highly unlikely that 10 or 20 years hence, ge-
neticists will decide that they were wrong all along about the nucleotide bases that make up the
human genome and will move to eliminate all talk of cytosine, guanine, adenine, and thymine
from the lexicon. In contrast, major psychological concepts appear to fall in and out of favor with
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some regularity—typically without having been demonstrably refuted by any critical experiment
(Greenwald 2012). More generally, it is not clear that a question such as what are the fundamental
building blocks of human cognition admits of a clear-cut answer in the same way that one can
unambiguously identify the letters of the human genome. Is working memory a more basic con-
cept than executive control or cognitive control? Does it make sense to speak of perception as a
basic concept, or is that a purely extensional definition that is best ignored in favor of individual
sensory systems such as vision and audition? Will concepts such as love and hate find their place in
a formal ontology of the mind, or are they merely folk psychological abstractions to be abolished
as science progresses, in the way that some philosophers once envisioned (Churchland 1981)?

The critical point here is not just that no consensus presently exists on such questions; it is
that the questions very likely admit of no single right answer. There is little reason to suppose
that the extremely complex and high-dimensional structure of human cognition can be neatly
reduced to a much lower-dimensional, “human-readable” description without substantial loss of
fidelity. Nor is it clear what criteria one could use to unambiguously distinguish between good and
bad models. Should researchers privilege theoretical parsimony, such that a good model is one
that maps well onto theoretical entities identified by prior scientific investigation (e.g., nodes in a
cognitive ontology should strive to attain a one-to-one mapping with neurobiological structures)?
Or should they favor statistical parsimony, such that if two models explain the same amount of
behavioral variance, the simpler one is to be preferred, even if the more complex one maps more
sensibly onto underlying biological entities? The answer will undoubtedly depend on individual
researchers’ goals and preferences.

Importantly, however, the principled absence of a single unassailable description of the struc-
ture of human cognition does not diminish the need for a formal ontology of psychological pro-
cesses. If anything, the contrary is true. Many of the theoretical disputes that arise in psychology
are, we submit, driven to a large extent by tacit differences in terminology that ramify as substantive
disagreements. For example, in the personality literature, researchers have long debated whether
the “fundamental feature” of extraversion is reward sensitivity, positive affect, or sociability
(Ashton et al. 2002; Lucas & Diener 2001; Lucas et al. 2000, 2008; Smillie et al. 2012). In our view,
it is not clear that there is a definitive answer to this question. It may well be that different research
communities are simply applying the label extraversion to different (though partly overlapping)
behaviors—in which case there would be no more utility in trying to determine what the “true”
definition of extraversion is than in trying to arbitrate between two formal color standards that
disagree as to whether aquamarine is a shade of blue or of green. The ability to formally clarify
and translate between different lexica would thus be a major boon to theoreticians.

From a purely pragmatic standpoint, one can think of a good ontology as a kind of universal
language that dramatically reduces the likelihood of miscommunication between researchers by
enabling statements to be defined in more formal and less ambiguous terms, even when the
mapping between terms and their referents is still not perfect. At their best, good ontologies
can serve as sophisticated inference engines capable of informing and even answering certain
kinds of questions that the unaided human mind is known to have trouble with—for example, by
identifying when two terms are being used interchangeably, when a single term is being used in
multiple conflicting ways, when a relationship between two concepts is likely to exist even though
one has not yet been reported, and when the putative nomological network (Chronbach & Meehl
1955) of a given concept contains internal inconsistencies.

The Cognitive Atlas

The success and broad utility of biomedical ontologies such as the Gene Ontology inspired the
question of whether it would be possible to address the problems described above by developing
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Figure 5
A schematic example of the Cognitive Atlas representation of Baddeley’s (1992) working memory theory.
(Top panel ) A representation of the concepts underlying the working memory theory. (Bottom panel ) An
example of a task measuring one of these concepts.

a formal ontology of mental processes and tasks, which led to the establishment of the Cognitive
Atlas (http://www.cognitiveatlas.org) (Poldrack et al. 2011). The broad goal of the Cognitive
Atlas is to serve as an open collaborative knowledge base for psychological science. It is meant to
capture two primary forms of knowledge. First, it aims to define psychological constructs in order
to provide consensus definitions that can serve as the basis for accurate scientific communication
and discussion. A fundamental distinction made within the Cognitive Atlas is between mental
concepts, which refer to putative but unobservable psychological processes or structures, and
mental tasks, which are the objective operations used to measure those putative constructs (see
Figure 5). This distinction follows the previously noted admonition by Chronbach & Meehl
(1955) regarding the separation of latent constructs and the operations used to measure them.
Second, the project aims to establish a knowledge base of the relations within and between mental
tasks and mental concepts. In a sense, it is these relations that form a major part of the basis
for psychological theories. For example, Baddeley’s (1992) theory of working memory could be
specified in terms of a set of concepts (e.g., phonological loop, acoustic store, and central executive),
a set of relations between these concepts (e.g., acoustic store is part of phonological loop), and
relations to tasks (e.g., the acoustic store is measured by the comparison of acoustically similar
versus dissimilar words on a short-term memory task).

Within the Cognitive Atlas, mental tasks are described in terms of three primary features:
(a) conditions (which specify different conditions of measurement), (b) contrasts (which specify
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either comparisons between conditions or relationships with continuous variables), and (c) indi-
cators (which specify variables that are measured within the task; these could reflect behavioral,
neural, or other physiological measurements). In order to capture the relations between tasks and
concepts, a novel ontological relationship (measured-by) was defined that denotes the fact that a
specific concept is measured by a specific task. Importantly, concepts are not related to the over-
all representation of a task but rather to specific contrasts. This design decision recognizes the
subtractive/contrastive logic of psychological measurement: researchers are typically interested in
comparisons between conditions that vary in some specific set of putative mental processes rather
than in the value of a specific indicator. For example, the concept of the phonological loop might
be measured by the contrast of phonologically similar versus dissimilar items on the Sternberg de-
layed recognition task. Other contrasts within the task could be related to other mental concepts;
for example, the contrast between target-present and target-absent probe trials might be thought
to reflect some aspect of decisional processes rather than measuring working memory.

The description of tasks within the Cognitive Atlas is relatively abstract and does not include
specific aspects of the stimuli, responses, or instructions for the task. A parallel effort, known as
the Cognitive Paradigm Ontology (or CogPO) (Turner & Laird 2012), is developing the means to
describe tasks in more detail. Ultimately it should be possible to link these two ontologies in order
to span directly from psychological processes outlined in the Cognitive Atlas to detailed operational
descriptions of tasks. This would allow the proper annotation of cases in which specific task
implementation details are critical determinants of the psychological processes that are engaged
(e.g., changes in the architecture of task switching in relation to the amount of time available for
preparation prior to switching) (Rogers & Monsell 1995).

FUTURE DEVELOPMENTS

The projects outlined above represent the first steps in the development of a cognitive neuroin-
formatics that can support strong inferences regarding the relation between brain systems and
psychological functions. What new advances will the next few years bring? In a short review
several years ago (Yarkoni et al. 2010), we briefly considered the question, What will cognitive
neuroscience look like 10 years from now? Some of the developments we anticipated at the time
included fully automated quantitative mapping between cognitive and neural states; intelligent pre-
processing and analysis pipelines that evaluate local data in relation to global databases; integration
of neuroimaging databases with other kinds of data, for example, functional genomic repositories;
introduction of centralized neuroimaging data repositories; and integration of formal ontologies
and formal method descriptions into fMRI analysis software. Now, five years on (and halfway
through our earlier forecast horizon), we are more optimistic than ever about the prospects for
a cumulative, integrative, informatics-driven science of the human mind/brain. A number of the
developments we anticipated five years ago already have realized implementations that we discuss
above (e.g., centralized data repositories such as OpenfMRI and NeuroVault, and the ability to
instantly decode maps uploaded to NeuroVault using Neurosynth). Others are in very early stages
of development. And then, of course, there are other important emerging projects that we did not
anticipate at all five years ago. Here we outline a few recent developments of particular interest.

Toward open, standardized, and centralized data sharing. The benefits of cognitive ontolo-
gies to scientific discovery become most apparent when applied at scale. A critical component
of ongoing and future efforts will therefore be the centralized aggregation and organization of
neuroimaging and psychology data. Currently, major ongoing efforts are directed at developing
machine-readable standards for representing neuroimaging data (e.g., the Neuroimaging Data
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Model; http://www.nidm.nidash.org/); creating reproducible, shareable, open-source analysis
pipelines (e.g., the Nipype framework; Gorgolewski et al. 2011); and the establishment of open
resources for the sharing of both raw fMRI datasets (e.g., OpenfMRI; Poldrack et al. 2013) and
statistical images (e.g., NeuroVault; http://www.neurovault.org). Some work has started to com-
bine these datasets with ontologies of psychological processes (e.g., Poldrack et al. 2012), but the
rapid development and growth of these databases will likely enable much more powerful analyses
in the future.

Crowdsourced annotation. Despite the recent successes of the automated meta-analysis ap-
proaches discussed above, it is clear that careful human consideration and annotation of neu-
roimaging data remain critical components of most investigations and are unlikely to be replaced
by machine learning approaches soon. We suggest that the next wave of advances in the area of
neuroimaging meta-analysis may result from successful hybridization of manual and automated ap-
proaches, particularly from the development of user-friendly crowdsourcing interfaces that allow
researchers to easily apply their expertise to manual curation of communal databases. A promising
prototype is Brainspell (http://www.brainspell.org), a website that allows users to manually val-
idate, annotate, and tag all data presently in Neurosynth—potentially providing all of the benefits
of manual curation for substantially less effort than full manual entry would require. An ongoing
challenge, however, is to develop effective incentives for participation in such efforts. One largely
unexplored approach in this area is the kind of “gamification” successfully achieved in other do-
mains using platforms such as Foldit (Khatib et al. 2011) and EyeWire (http://www.eyewire.org).

Using ontologies to resolve psychological debates. One of the greatest promises of a com-
prehensive formal ontology of cognitive processes lies in the potential to develop a kind of formal
inferential engine that enables researchers to compute well-defined operations over its nodes and
relationships, thereby informing, and in some cases even resolving, ongoing theoretical debates.
For example, in the Cognitive Atlas a measured-by relationship is defined that indicates that a
given task contrast (e.g., the high- versus low-load conditions on the Sternberg item recognition
task) depends critically on a particular psychological concept (e.g., working memory). In the fu-
ture, we could define a comparison operation that takes two concepts as input and returns separate
lists of all known task contrasts that (a) tap both constructs and (b) tap only one of the constructs.
Further, we could define additional operations such as similarity or difference that take two lists
of contrasts (or concepts) and return either quantitative metrics of similarity (e.g., based on com-
puting the similarity of two nodes’ local neighborhood or network structure parameters) or a list
of concepts (or tasks) that maximally distinguishes the two inputs. Given such a platform, it could
conceivably turn out, for example, that whether the episodic buffer is or is not a central part of
working memory is largely a definitional matter: Two researchers might each feed in a list of what
they consider to be critical working memory tasks only to find that they are talking past each
other, inasmuch as the disagreement is purely extensional (i.e., there is no implied contradiction
in which other latent concepts working memory is linked to but only in how broadly the label is
applied to individual tasks).

Similarly, when genuine substantive disagreements between theories exist, a formal ontology
of cognition could help focus attention appropriately. For example, there is debate in the executive
function literature over whether performance on tasks requiring suppression of a prepotent or
ongoing response in favor of a different response requires an active inhibitory process or whether
it instead can rely solely on competitive inhibition within a network (Munakata et al. 2011,
Aron et al. 2004). Each of these theories makes different predictions regarding the similarity
(i.e., covariance) of both behavioral and neural activation patterns across a large number of
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tasks. Given an appropriate annotation of a sufficiently large dataset, one could directly assess
which of these theories provides a better fit to the observed data (e.g., using analogs to structural
equation modeling) and also potentially demonstrate which specific set of concepts needs to be
experimentally compared in order to most powerfully assess the specific theoretical debate.

A unified, interoperable ecosystem. Perhaps the most promising development of the com-
ing years will be the increasing convergence and interoperability between diverse resources for
informatics-driven investigation of the human mind/brain. We anticipate the relatively near-term
emergence of a unified, interoperable ecosystem made up of dozens of individual services that
all loosely follow the same standards and protocols, enabling researchers to construct automated
pipelines that easily integrate currently disparate resources. Optimistically, we predict that within
a few years, researchers will be able to easily (i.e., without requiring advanced technical skills) up-
load raw data they have acquired and annotated to centralized platforms that run state-of-the-art
cloud-based processing and analysis pipelines; interactively explore the results of such analyses
via rich, user-friendly web interfaces that include extensive literature-based quantitative inter-
pretation and allow easy piping to other third-party services; and use ontology-driven inference
engines to conduct sophisticated, highly customized meta-analyses that draw on thousands of
datasets acquired and deposited using similar platforms.

CONCLUSION

The field of cognitive neuroscience faces a number of daunting challenges in its attempt to under-
stand the relation between brain systems and psychological functions. We have argued that the
most commonly used approaches in cognitive neuroscience are fundamentally unable to identify
the kind of selective associations between neural structure and psychological function that are the
presumed goal of the field, but that this question can be profitably addressed using informatics ap-
proaches that employ large-scale databases and formal ontologies. We predict that such approaches
will become increasingly common in psychology, as they have in biology, and that this will provide
a new pathway toward discoveries regarding how neural computations give rise to mental life.
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