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Abstract

Objectives High-frequent opioid use tends to increase an individual’s risk of opioid use disorder, 
overdose and death. Thus, it is important to predict an individuals’ opioid use frequency to im-
prove opioid prescription utilization outcomes.
Methods Individuals receiving at least one opioid prescription from 2016 to 2018 in the national 
representative data, Medical Expenditure Panel Survey, were included. This study applied five 
machine learning (ML) techniques, including support vector machine, random forest, neural net-
work, gradient boosting and XGBoost (extreme gradient boosting), to predict opioid use frequency. 
This study compared the performance of these ML models with penalized logistic regression. The 
study outcome was whether an individual lied in the upper 10% of the opioid prescription distribu-
tion. Predictors were selected based on Gelberg–Andersen’s Behavioral Model of Health Services 
Utilization. The prediction performance was assessed using the area under the receiver operating 
characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) in the test 
data. Patient characteristics as predictors for high-frequency use of opioids were ranked by the 
relative importance in prediction in the test data.
Key findings Random forest and gradient boosting achieved the top values of both AUROC and 
AUPRC, outperforming logistic regression and three other ML methods. In the best performing 
model, the random forest, the following characteristics had high predictive power in the frequency 
of opioid use: age, number of chronic conditions, public insurance and self-perceived health status.
Conclusions The results of this study demonstrate that ML techniques can be a promising and 
powerful technique in predicting the frequency of opioid use and health outcomes.
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Introduction

According to the Centers for Disease Control and Prevention (CDC), 
the recent use of opioid prescriptions in the USA has been continu-
ously declining.[1] From 2012 to 2018, the quantities of opioid pre-
scriptions dispensed in the USA have declined from 255 million 

to 168 million.[1] The overall national opioid prescribing rate (the 
average number of prescriptions per 100 persons) has also decreased 
from 81.3 to 51.4 over the same period.[1] The opioid crisis was 
officially declared a ‘public health emergency’ in 2017 by the US 
President. In the same year, the US Department of Health & Human 
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Services developed a 5-point opioid strategy and invested about 
$900 million to tackle the opioid crisis.[2]

From 2017 to 2018, death rates related to prescription opioids 
significantly declined by 13.5%.[3] These declines suggest that health-
care providers may have become more cautious when prescribing 
opioids and that the government policies to combat the opioid epi-
demic have been effective. However, in 2018, nearly 15 000 persons 
still died of overdoses involving prescription opioids, which is an 
average of 41 deaths per day.[3] Moreover, 32% of all opioid over-
dose deaths are related to prescription opioids.[3] These patterns sug-
gest that there is still a severe national public opioid crisis affecting 
economic and social welfare in the USA.

Numerous past studies have examined opioid utilization, such 
as opioid prescription numbers and rates, opioid misuse and daily 
morphine milligram equivalent dose per prescription.[4–11] In these 
studies, conventional statistical methods, such as logistic regression 
and ordinary least squares method, were used to study various opioid 
utilization topics. However, the logistic regression model’s predic-
tion performance may not have been adequately evaluated and such 
model may not offer the best predictive ability and quality compared 
with alternative methods such as machine learning (ML).[12] During 
recent years, with the development of information technology, ML 
has thrived in predictive analysis due to its advantages, such as cap-
turing non-linear and complicated interactions, minimizing errors 
between the actual and predicted cases and improving the prediction 
accuracy. Thus, ML offers an alternative and perhaps a superior ap-
proach to building a reliable prediction model.

ML has been widely used in studies addressing many health 
problems, one of which is opioid utilization.[12–23] Some of these 
studies compare the prediction performance of ML with conven-
tional methods such as logistic regression. For most studies, they 
find that ML performs better in prediction than logistic regression.[12, 

15, 18, 19, 21] Logistic regression is more widely used to examine the asso-
ciations between the independent and dependent variables than ML 
due to its high interpretability of the coefficients; however, logistic 
regression suffers from a low prediction performance due to the 
issue of imbalanced data.[24] Imbalanced data refer to the number of 
observations in some of the outcomes classes that appear much more 
frequently, resulting in predictive models being biased towards the 
majority group, but the minority group is usually more important.[25] 
Although ML methods may also have low predictive power when 
data are imbalanced, various techniques such as random oversam-
pling, random undersampling and creation of artificial data points, 
are available to adjust the class distribution of a dataset when using 
ML methods.[25] These techniques provide improved predictive 
power of ML compared with logistic regression.

High-frequency opioid use tends to increase an individual’s risk of 
opioid use disorder, overdose and death. When an individual receives 
too many opioid medications, it is crucial for healthcare providers 
to identify and offer fewer prescriptions or alternative therapies to 
reduce the risks of opioid abuse. Thus, it is important to predict 
an individuals’ opioid use frequency to improve opioid utilization 
patterns. However, no previous study has used ML techniques to 
predict high-frequency opioid utilization in a national representative 
sample for the US population. The objectives of this study were: (1) 
to apply five different ML techniques to predict opioid utilization, 
(2) to compare the performance of ML with logistic regression to 
determine if ML can offer additional predictive power and select the 
best performing ML technique based on performance measures and 
(3) to evaluate the relative importance of each variable in explaining 
opioid utilization in the best performing ML technique. The study 

results may provide insights into predictive power of ML techniques 
in high-frequency opioid utilization. Additionally, the findings may 
offer vital information to healthcare providers and policymakers re-
garding the essential factors affecting opioid utilization.

Methods

Data source
This study analysed data from 3 years (2016–2018) of the Medical 
Expenditure Panel Survey (MEPS).[26] The MEPS contains national 
representative data of healthcare use, expenditure, payment sources 
and more for the non-institutionalized civilian population in the 
USA. MEPS uses questionnaires to collect information from indi-
vidual household members. The Full-Year Consolidated Data File, 
the Medical Conditions File and the Prescribed Medicines File from 
MEPS were analysed in this study.

Outcome variable
The outcome variable in this study was a binary variable measuring 
opioid use frequency. A list of opioid drugs compiled by the CDC 
was used to identify opioid prescriptions in the Prescribed Medicines 
File of MEPS.[27] For each patient, the number of opioid prescriptions 
per year was computed. Although opioid use is complex, informa-
tion available in the MEPS is not conducive to the inclusion of some 
other outcomes such as dose or morphine milligram equivalents of 
prescriptions. Further, this study is not meant to be all-inclusive. 
Individuals who received at least one opioid prescription were in-
cluded in the study sample. Non-users of opioids were excluded be-
cause they may have different characteristics than the users. In total, 
there were 7915 patients in the study sample. Individuals filled 11 
opioid prescriptions at the 90th percentile. The outcome variable 
was coded ‘1’ for individuals receiving no less than 11 prescriptions 
and ‘0’ otherwise.

Independent variables
Gelberg–Andersen’s Behavioral Model for Vulnerable Populations 
(hereafter Gelberg–Andersen Model) was utilized to select variables 
affecting opioid use frequency.[28] According to this model, health 
service utilization by an individual is affected by three groups of 
factors: predisposing, enabling and need factors. The variables that 
affect the propensity to opioid use were considered predisposing 
factors, including male (yes/no), age, race/ethnicity, married (yes/
no) and education. Race/ethnicity included non-Hispanic Whites, 
non-Hispanic Blacks, Hispanics, non-Hispanic Asians and Others. 
Education measured whether an individual’s education level was 
higher than a high school degree. The enabling factors included in-
surance status, income and census region. Insurance status included 
three categories: any private insurance, public insurance only and no 
insurance. Income consisted of four categories: poor or near-poor 
(income <125% of the poverty line), low income (income ≥125% 
but <200% of the poverty line), middle income (income ≥200% but 
<400% of the poverty line) and high income (income ≥400% of the 
poverty line). Census region included the Northeast, Midwest, South 
and West regions.

The need factors included an individual’s self-perceived health 
status (poor, fair, good, very good and excellent) and the total 
number of chronic conditions. The total number of chronic condi-
tions was computed as the row count of chronic conditions based 
on ICD10CDX in MEPS. Starting in 2016, MEPS began using 
ICD10CDX based on ICD-10-CM to replace ICD9CODX for 
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coding medical conditions. A reference dataset of chronic condition 
indicators from the Healthcare Cost and Utilization Project was em-
ployed to identify chronic conditions in the Medical Conditions of 
MEPS.[29] The number of chronic conditions was classified into three 
levels: ≤1, 2–4 and ≥5.

Model development
Five different ML models were applied to predict high-frequency 
opioid users: support vector machine, random forest, neural net-
work, gradient boosting and XGBoost (extreme gradient boosting). 
These five models were chosen due to their respective advantages, 
such as popularity, capturing non-linear associations and resiliency 
to overfitting. To evaluate the performance of ML models, a fitted 
penalized logistic regression was used as a comparison. Instead of 
using the conventional logistic regression (i.e. without shrinking 
the regression coefficients towards zero), the penalized logistic re-
gression was utilized due to the outcome variable’s imbalanced 
problem.[12] All models were implemented in JupterLab with Python 
Kernel. The Scikit-learn package was utilized for penalized logistic 
regression, support vector machine, random forest, neural network 
and gradient boosting while the xgboost package was employed for 
XGBoost.

The study data were randomly split into a training set and a test 
set, with the test set composed of 20% of the observations. The 5-fold 
cross-validation was applied to fit the ML models in the training set. 
The popular approach, RandomizedSearchCV in Scikit-learn, was 
utilized to tune the hyperparameters. The hyperparameters were 
needed to define specific functions in each ML model to be learned. 
For example, the hyperparameters in penalized logistic regression in-
cluded ‘L–1’, ‘L–2’ and ‘elastic net’ penalty. The hyperparameters in 
the random forest included the number of trees, the trees’ maximum 
depth and the maximum number of variables at each split. The 
hyperparameters in the neural network included learning rate, layer 
sizes and activation function. A  grid search with cross-validation 
was used to train different ML models in the training set to build 
better classifiers. The trained ML models were then fitted using the 
test set. The outcome variable was highly imbalanced: only 10% of 
individuals received at least 11 opioid prescriptions, while ~90% of 
individuals received less than 11 opioid prescriptions. The random 
oversample method was used in training models to mitigate the 
negative impact of the imbalanced problem on models’ performance.

Statistical analysis
Differences in the categorical variables between the opioid high-
frequency users and low-frequency users were tested via Pearson’s 
chi-squared statistics. Differences in continuous variables were tested 
via t-tests. Each patient was assumed to have equal weight. The 
performance measure of the predictions included two widely used 
evaluation metrics: the area under the receiver operating character-
istic curve (AUROC) and the area under the precision-recall curve 
(AUPRC). The AUROC score represents the degree of separability 
of the model. The higher the AUROC score, the better the model at 
distinguishing between the two classes of the outcome variable. The 
receiver operating characteristic (ROC) curve plots the true posi-
tive rate in study outcomes against the false positive rate at various 
thresholds settings.[30] Like the AUROC, the higher the AUPRC score, 
the better the model at distinguishing between the two classes. The 
precision-recall curve (PRC) plots positive predictive values against 
true positive values.[31] To interpret AUROC and AUPRC, notice 
that the baseline score for AUROC is 0.5 – a random classifier will 
achieve an AUROC of 0.5; the baseline score for AUPRC is equal 

to the ratio of positive examples over total example.[32, 33] In this 
study, this ratio is the number of high-frequency opioid users over 
the total users and equal to 11.2%. One advantage of AUPRC over 
AUROC is that AUPRC is a more useful performance measure for 
imbalanced data when concerned with discovering positive cases.[34] 
For this study, the AUPRC was used as a baseline metric evaluating 
prediction performance. To determine the importance of the patient 
characteristics in explaining the opioid use frequency, the relative 
importance of the characteristics in the best performing model was 
computed based on the reduction in the Gini criterion used to select 
split points during the modelling process. The larger the reduction 
in the Gini index, the higher the relative importance of the variable. 
Data analysis codes were made available on the following website 
upon acceptance of the manuscript for publication: mtmstarvalue.
uthsc.edu/codes.

Results

Descriptive statistics
Summary statistics of the characteristics of the study sample were 
analysed (Table 1). There were 7915 individuals in the sample, of 
which 11.2% (n = 888) were high-frequency opioid users. Comparing 
the low-frequency opioid users and high-frequency opioid users 
showed significant differences (P  <  0.01) in all the characteristics 
except gender and census region. Compared with the low-frequency 
opioid users, high-frequency opioid users were more likely to be 
older, be non-Hispanic Whites, be unmarried, have earned lower 
educational degrees, have public insurance only, belong to lower-
income categories, perceive their health status to be in the lower 
health categories, and have a higher number of chronic conditions.

Results from machine learning
Predictive performances of the different ML in predicting high-
frequency opioid users were reported (Table 2). In terms of AUROC, 
the random forest achieved the highest score (0.7726), followed 
by gradient boosting (0.7679), support vector machine (0.7628), 
XGBoost (0.7563), penalized logistic regression (0.7537) and neural 
network (0.7530). Concerning AUPRC, the random forest achieved 
the highest score (0.2871), followed by gradient boosting (0.2846), 
neural network (0.2842), XGBoost (0.2740), penalized logistic re-
gression (0.2665) and support vector machine (0.2659). The random 
forest turned out to be the best performing model in both AUROC 
and AUPRC measures of prediction performance. Moreover, the 
AUROC (0.7726) and AUPRC (0.2871) of random forest were much 
higher than the baseline scores of 0.5 and 0.11. Furthermore, the 
penalized logistic regression, usually chosen as the compare group, 
only performed slightly better than the neural network in AUROC 
and slightly better than the support vector machine in AUPRC. 
Curve plots of AUROC and AUPRC for the best performing model, 
the random forest, are depicted in Figures 1 and 2. In both Figures 1 
and 2, the ‘No Skill’ line represented the baseline model (i.e. random 
guessing) with AUROC of 0.5 and AUPRC of 0.11. Both figures 
showed that random forest significantly improved the prediction 
performance relative to the random guessing.

To evaluate each variable’s importance in explaining high-
frequency opioid use in the best performing model (i.e. random 
forest), the relative importance of the top 10 variables was calcu-
lated (Table 3). The most influential feature in explaining the high-
frequency opioid use was age, followed by the number of chronic 
conditions (5 or more), public insurance only, self-perceived health 
status (fair) and self-perceived health status (poor).
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Discussion

The current opioid epidemic has prompted increased concerns over 
the opioid utilization patterns. This study makes a contribution 

to the literature related to opioid crisis since this is the first study 
employing several different ML models and logistic regression to 
predict high-frequency opioid utilization in a national represen-
tative sample. The focus on a higher number of opioid prescrip-
tions for this study is vital since high-frequency opioid use tends 
to increase an individual’s risk of opioid use disorder, overdose and 
death. In this study, predictors were selected according to the widely 
used Gelberg–Andersen Model. The study results revealed that ML 
models had better performance in predicting whether an individual 
lies in the upper 10% of the distribution of opioid prescriptions than 
logistic regression. The success of ML in this study indicates that 
researchers could use ML techniques to improve the prediction per-
formance for high-frequency opioid use.

As documented in the literature, when data are imbalanced (i.e. low 
prevalence of outcome of interest), AUROC, a widely used perform-
ance measure for binary classifiers, may be misleading.[31] In this case, 
AUPRC is recommended as a more accurate evaluation measure of 
model performance.[32] AUROC and AUPRC were both reported in this 
study, but AUPRC was utilized as the baseline evaluation metric. After 
training each model using the training dataset, the results revealed 

Table 2 Performance results of machine learning models in 
classifying patients on opioid use

Model Evaluation metrics 

AUROC AUPRC

Penalized logistic regression 0.7537 0.2665
Support vector machine 0.7628 0.2659
Random forest 0.7726 0.2871
Neural network 0.7530 0.2842
Gradient boosting 0.7679 0.2846
XGBoost 0.7563 0.2740

AUROC is the area under the receiver operating characteristic curve while 
AUPRC is the area under the precision-recall curve. For both AUROC and 
AUPRC, the larger the score, the better the model’s prediction performance. 
Random forest had the highest AUROC and AUPRC scores (bolded). 

Table 1 Individual characteristics in the study population (number and frequency unless otherwise specified)

Characteristics All (n = 7915) High-frequency opioid 
users (n = 888; 11.2%)

Low-frequency opioid 
users (n = 7027; 88.8%)

P-value

Number % Number % Number %  

Predisposing factors   
 Age, mean (SD) 53.5 (17.0)  58.0 (13.4)  52.9 (17.4)  <0.0001
 Male 2937 37.1 335 37.7 2602 37.0 0.6856
 Race/ethnicity  <0.0001
  Non-Hispanic Whites 4678 59.1 582 65.5 4096 58.3  
  Non-Hispanic Blacks 1467 18.5 160 18.0 1307 18.6  
  Hispanics 1295 16.4 100 11.3 1195 17.0  
  Non-Hispanic Asians 176 2.2 5 0.6 171 2.4  
  Others 299 3.8 41 4.6 258 3.7  
 Married 3770 47.6 382 43.0 3388 48.2 0.0035
 Education > high school 2483 31.4 197 22.2 2286 32.5 <0.0001
Enabling factors   
 Insurance type  <0.0001
  Any private 4320 54.6 304 34.2 4016 57.2  
  Public only 3256 41.1 553 62.3 2703 38.5  
  No insurance 399 4.3 31 3.5 308 4.4  
 Poverty category       <0.0001
  Poor 1964 24.8 300 33.8 1664 23.7  
  Low income 1286 16.3 192 21.6 1094 15.6  
  Middle income 2159 27.3 215 24.2 1944 27.7  
  High income 2326 29.4 152 17.1 2174 30.9  
 Census region       0.0611
  Northeast 1025 13.0 111 12.5 914 13.0  
  Midwest 1866 23.6 214 24.1 1652 23.5  
  South 3253 41.1 393 44.3 2860 40.7  
  West 1771 22.4 170 19.1 1601 22.8  
Need factors        
 Self-perceived health status       <0.0001
  Excellent 788 10.0 20 2.3 768 10.9  
  Very good 1875 23.7 92 10.4 1783 25.4  
  Good 2648 33.5 252 28.4 2396 34.1  
  Fair 1822 23.0 332 37.4 1490 21.2  
  Poor 782 9.9 192 21.6 590 8.4  
 Number of chronic conditions       <0.0001
  ≤1 2238 28.3 61 6.9 2177 40.0  
  2–4 2775 35.1 255 28.7 2520 35.9  
  ≥5 2902 36.7 572 64.4 2330 33.2  

SD, standard deviation. Differences in categorical variables between opioid high-frequency users and low-frequency users were tested via Pearson’s chi-squared 
tests. Difference in age was tested via t-test.
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that ML techniques had acceptable performance in predicting high-
frequency opioid users based on existing criteria for classifying ML 
model performance.[35] The random forest seems to be the best per-
forming model since it achieved the highest values of both AUROC and 
AUPRC in the independent test dataset, outperforming the penalized 
logistic regression. However, the significance of differences between 
models was not tested, and it appears that the random forest model 
and gradient boosting exhibited especially similar performance.

Given the current opioid crisis, it is vital to identify the variables 
that play an essential role in predicting opioid prescriptions since this 
could assist the government and healthcare providers in targeting 
policies to prevent opioid overdose, misuse and death. In the best 
performing model (i.e. random forest), age, the number of chronic 
conditions (5 or more), public insurance only, and self-perceived fair 
and poor health status had relatively high predicting power in high-
frequency opioid use. This result was expected since opioids have been 
widely considered the most effective drugs for treating chronic pain.[6] 
Older individuals with poor perceived health status are more likely to 
have chronic pain and receive more opioid prescriptions.[6] Previous 
literature also shows that individuals with public insurance are more 
likely to consume more opioids.[6] Therefore, healthcare providers 

and government should be mindful that patient characteristics such 
as older age, with multiple chronic conditions, with public insurance 
only and with poorer self-perceived health status, have relatively high 
predictive power of high-frequency opioid use. Procedures may need 
to be set in place to use caution when prescribing and distributing pre-
scription opioids if a patient possesses these factors.

This study has several limitations. First, a nationally represen-
tative sample of non-institutionalized civilians from MEPS was 
used; hence, the findings in this study cannot be generalized to other 
populations such as institutionalized civilians in the USA.[12, 36] The 
purpose of this study was not to develop a model that can be used 
in the future, but to determine whether ML could help to produce 
additional insights into the prediction of high-frequency opioid use. 
Second, even though five popular ML techniques in classifying binary 
outcomes were applied, the possibility that other available ML tech-
niques could perform better than this study’s best performing model 
cannot be ruled out. There is no consensus in the literature on the 
best choice of ML. However, various ML models were used for 
this study, and they provided very good prediction performance.[37] 
Third, the prediction performance of these ML techniques might be 
changed if a different set of predictors is chosen.[12] However, for 
this study, predictors were selected according to Gelberg–Andersen 
Model. These predictors were believed to be the most important 
factors affecting high-frequency opioid utilization. Finally, ML tech-
niques require special software and skills, and the findings can be 
harder to interpret than traditional regression models. However, ML 
tools can provide valuable information for predicting opioid use. For 
example, while the difference between AUPRC of logistic regression 
and the random forest was only 0.0206 in this study, the 7.7% dif-
ference between these models [(0.2871–0.2665)/0.2665] suggests a 

Figure 1 Performance for random forest in classifying patients on opioid 
use was measured using the area under the receiver operating characteristic 
curve (AUROC). ‘No Skill’ line represented the baseline model (i.e. random 
guessing) with AUROC of 0.5.

Figure 2 Performance for random forest in classifying patients on opioid use 
was measured using the area under the precision-recall curve (AUPRC). ‘No 
Skill’ line represented the baseline model (i.e. random guessing) with AUPRC 
of 0.11.

Table 3 Relative importance of the patient characteristics in the 
random forest

Variables Relative importance Rank

Age 0.2273 1
Number of chronic conditions (≥5) 0.2102 2
Insurance type (public insurance only) 0.1007 3
Self-perceived health status (fair) 0.0704 4
Self-perceived health status (poor) 0.0538 5
Number of chronic conditions (2–4) 0.0473 6
Self-perceived health status (very good) 0.0458 7
Poverty category (high income) 0.0350 8
Race/ethnicity (Hispanics) 0.0307 9
Education > high school 0.0226 10
Male 0.0182 11
Married 0.0177 12
Self-perceived health status (good) 0.0162 13
Race/ethnicity (non-Hispanic Asians) 0.0151 14
Poverty category (low income) 0.0137 15
Poverty category (middle income) 0.0126 16
Census region (South) 0.0122 17
Census region (West) 0.0119 18
Race/ethnicity (non-Hispanic Blacks) 0.0110 19
Insurance type (no insurance) 0.0107 20
Census region (Midwest) 0.0096 21
Race/ethnicity (Others) 0.0072 22

Random forest was found to be the best performing model in terms of 
AUROC and AUPRC. Relative importance of each variable was computed 
based on the reduction in the Gini criterion used to select split points during 
the modelling process. The larger the reduction in the Gini index, the higher 
the relative importance of the variable.
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meaningful improvement. Future studies may further test the signifi-
cance of the differences between various ML models.

Despite the limitations listed above, this study makes a contribu-
tion to the literature as this is the first study employing several dif-
ferent ML models and logistic regression to predict high-frequency 
opioid utilization in a national representative sample. The results 
of this study illustrate that random forest performed best in two 
popular evaluation metrics: AUROC and AUPRC. Further, it identi-
fied several influential variables in predicting the frequency of opioid 
prescription use. These ML models were found to have a more robust 
and superior prediction performance than logistic regression. These 
models could be used as valuable tools to accurately and efficiently 
identify individuals potentially at high risk of receiving too many 
opioid prescriptions. The study results demonstrate that ML can be 
a promising and powerful technique in health outcome predictions.

Conclusions

This study applied five different ML techniques and penalized lo-
gistic regression to predict the frequency of opioid prescriptions. 
Two ML methods, random forest and gradient boosting showed 
the best and similar performance, with random forest achieving the 
highest scores. Age, the number of chronic conditions (5 or more), 
public insurance only and self-perceived health status were found to 
have notable predicting power in the random forest. These findings 
provide a potential opportunity for healthcare providers to identify 
the frequent use of opioid prescriptions. Future research related to 
predictions in medical and health outcomes should consider com-
paring various ML techniques over conventional statistical methods.
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